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Abstract—We developed DeepADMR, a novel neural anomaly
detector for the deep reinforcement learning (DRL)-based
DeepCQ+ MANET routing policy. The performance of DRL-
based algorithms such as DeepCQ+ is only verified within
the trained and tested environments, hence their deployment
in the tactical domain induces high risks. DeepADMR mon-
itors unexpected behavior of the DeepCQ+ policy based on
the temporal difference errors (TD-errors) in real-time and
detects anomaly scenarios with empirical and non-parametric
cumulative-sum statistics. The DeepCQ+ design via multi-agent
weight-sharing proximal policy optimization (PPO) is slightly
modified to enable the real-time estimation of the TD-errors. We
report the DeepADMR performance in the presence of channel
disruptions, high mobility levels, and network sizes beyond the
training environments, which shows its effectiveness.

I. INTRODUCTION

Deep reinforcement learning (DRL) algorithms are success-
fully applied to complex high-dimensional problems, mainly
due to the use of deep neural networks (DNN) for function
approximations [[1]]. Researchers have applied DRL algorithms
for various problems in mobile ad-hoc networks (MANETS),
e.g., for minimizing average or worst-case end-to-end delay
in routing problems [2]], [3]] and routing path optimization [4].
In [5]], it is shown that the DRL-based DeepCQ+ algorithm
outperforms the state-of-the-art robust routing for dynamic
networks (R2DN) [6]. In this context, robust routing relies
on the routing of the unicast data flows with the availability
of simplified multicast forwarding (SMF) (as simplified data
flooding and relaying) among routing peers [7].

Despite the generalization ability of learned DRL-based pol-
icy, however, applying these algorithms to different environ-
ments necessitates re-learning to attain similar performance,
with methods such as curriculum learning [[8]], data augmen-
tation [9], and policy distillation [10]. DRL agents endeavor
to generalize in perturbed and adversarial environments, in-
curring high risk in the deployment of the trained policy in
the tactical domain where reliability and human-operator trust
is vital. Hence, a reliable anomaly detection method is vital.
Indeed, any deployment of DRL agents without characterizing
their measurement errors and thus detecting and characterizing
anomalies, as the physical world and physics require, can incur
mission failures.

Eschewing centralized command and control, MANETS
present challenging network routing problems in dynamically
changing environments. MANET nodes can die and their
links can attenuate, and their domains are prone to shift to

new regimes. These incur inaccuracies and breakdowns in
the performance of DRL algorithms, which is known (about
the unknown distributions outside training data distributions)
for any learning and adaptive system, humans included. The
adage that “no plan survives the first contact with the enemy”
cautions against any confidence in the MANET schemes
and DRL training results sans expert-constructed diagnostics
and sanity enforcement. MANETSs are often canvased with
anomalies that matter impacting mission success.

Anomaly refers to deviation from the expected operational
norm. An anomaly can be irregular and rare and typically
have unknown distribution. Anomaly detection is typically
performed by measuring how much the data points lie outside
the nominal range in a persistent manner, that is, persistent
outliers. Due to the nature of RF propagation (especially for
mmWave of 5G), user device movements/platform mobility,
and environmental disturbance, MANET failures are frequent
and this makes anomaly detection the core enabler for contin-
uous MANET operations. This implies that the performance
metric for MANETSs should be the resiliency score, which
is computed by anomaly detectors. The resiliency score for
MANETs dominates in importance over other metrics such
as overhead/efficiency and goodput carried over from fixed
network metrics. Indeed, frequent MANET failures necessitate
anomaly detection functionality in dynamic network opera-
tions in tactical environments.

This paper describes our novel neural anomaly detection
method. We leverage the advances in Multi-Agent DRL to
imbue learned agent policies into human-crafted rules and
into anomaly detection. Specifically, our anomaly detection
method, DeepADMR, is based on temporal difference error
(TD-Error) [11] and cumulative sum (CUSUM)-like [12]
methods. We applied the anomaly detector to our DeepCQ+
[S] routing testbed. We chose TD-Error as our metric for
resiliency as it is fundamental and effective [[11]], [13]], and
the distributional TD-Error is shown to be associated with
dopamine-based learning in the brain [14]. Our experiment
results on anomalous network conditions such as channel
disruptions, network size changes, and node mobility changes
show the effectiveness of our approach.

In many domains, physics- and expert-elicited rule-based
algorithms exist. DRL agents can complement but not replace
these expert-crafted models or rules; in our case, reliable
network routing management. Indeed, DRL has the unsolved
1% problem, a dangerous void such that it cannot ensure safe



and effective operations in new, adversarial, and perturbed
environments, and hence our DeepADMR anomaly detection
and diagnostics fills this primary need.

The contributions of this work are as follows:

1) We summarize our DeepCQ+ neural routing [5]] with
modification and training regime for anomaly detection.

2) We describe our DeepADMR, a new real-time non-
parametric neural anomaly detection method based on
empirical cumulative-sum-like monitoring of TD-Error
streams to produce a learned policy for novel, adversarial
and perturbed environments.

3) We present the results showing the effectiveness of
DeepADMR in real-time anomaly detection of network
behavior.

II. RELATED WORK

Inverse of Wasserstein generative adversarial network
(WGAN) [15] is used to detect anomaly in which an original,
nominal distribution is mapped into the normal distribution in
the training phase [16]. The resulting normal distribution is
discretized into uniform cell symbols (“buckets” or discrete
partitions) according to the Birthday Coincidence uniformity
test for universal data anomaly detection [[16]]. In the execution
phase, a new distribution is fed into the learned Inverse WGAN
for the coincidence uniformity test to decide on whether the
new distribution is normal or anomalous based on certain
threshold.

Actor-Critic neural network is used to detect network
anomaly with nominal data point of sensor data series is given
the reward of 0 and the abnormal sensor data point is instead
given the reward of 1. Formulating this sequence of sensor
readings as Markov Decision Process, the confidence level
that a hypothesis is true is then computed as Bayesian log-
likelihood ratio [17] of Actor-Critic policy.

III. TEMPORAL DIFFERENCE ERROR

In DRL, the target environment is often modeled as
a Markov Decision Process (MDP). We consider a MDP
(S; A;P; R; ) for some given state space (S), action space
(A), transition dynamics (7), reward function (R) and dis-
count factor (7). For a given and deterministic policy 7 : S >
A, the action value function Q™ at time-step ¢ is defined as
the expected cumulative reward under the policy starting from
state s; with action a; during a time horizon of T as

T
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where the expectation ET is over samples of r; ~ R(s, at)
and s;+1 ~ P(st,at). v is the discount factor for the cu-
mulative reward. The action-value function can be recursively
calculated as where it describes the well-known Bellman
equation [18].

Our DRL-based DeepCQ+ routing policy [5] deploys a
weight-sharing proximal policy optimization (PPO) [19] as our
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learning algorithm as it trains robustly over parameter space.
PPO uses the expected return at each node’s state (i.e. value
estimate V(s;) = max, Q(st,a)). We minimize Temporal
Difference error, TD-Error §;, the difference between value
estimate at time ¢ (i.e. V(s;)) and a possibly-better value
estimate at the next time step ¢ + 1 (i.e. vy + YV (s¢41) [11]]
and given by

(575 :Tt+’YV(St+1) —V(St). (2)

The objective function of PPO is as follows,
LHP(9) = E, [min (ngt/lt, clip(ne,,1 —€,1 4+ e)/lt” 3)
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parameters before the update. A; is the Advantage function
using generalized advantage estimate (GAE) with A parameter
given as,

Ay =6+ (YN)0pp1 + o+ (N T, €]

where 7y = and 6,4 is the vector of policy

This estimator equals the TD()\) error estimator. When A = 0,
the estimator is equivalent to the TD-Error (i.e. TD(0) = d;).
Fig. |1| shows the PPO training, with the two actor and critic
models. The critic model, which is jointly trained using LY (1)
over parameters j, estimates the value function and is used for
the computation of the TD-Errors.
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Fig. 1. Actor and critic models trained separately in PPO training. The critic
model is trained using GAE parameter A = 0 for the use in DeepADMR.

During execution, this TD-Error can be computed in real-
time using the value network. The value network is the DNN
that is trained using PPO to estimate the value function.
Our training expectation is that the TD-Error to be small
enough within the class of nominal training environments. If
this value is not small, then it suggests that either the next
node’s state is different from expected and/or the reward signal
from the environment is different from those expected during
training. Intuitively, we expect TD-Error to be an indicator
of irregular behavior, or surprise, of new environments and
anomaly scenarios when monitored during execution, when
observation mismatches expectation.

IV. OUR MANET LEARNING TESTBED

DeepCQ+ routing is described in [5], [20], where we make
a DNN version for packet routing policy in MANETs. The
anomaly detection in this work complements the DeepCQ+



routing; so it is crucial to describe the DeepCQ+ framework
as the host platform for our anomaly detection.

DRL agents select an action based on a policy and observe
the network response emitted by a reward. The reward acts as
a reinforcement signal to improve the policy. Reinforcement
learning (RL) aims to maximize the rewards over time, leading
to optimal policy. In this case, the MANET nodes are consid-
ered to have SMF protocol and our routing optimization is on
top of SMF protocol. In this context, agents (nodes) decide to
which node(s) to forward packets, and choose to broadcast, or
unicast (and to which next-hop node). The actions at each node
(unicast or broadcast) are made by the routing policy given the
state of the node. Similar to [6], [21]] nodes keep a table of
RL-metrics for node status described by two RL-metrics: C-
factors and )-factors. Each node i keeps a Q-factor, ¢(i, j, d)
for each destination d and potential next-hop j, which is an
estimate of the quality of path to reach d through neighboring
node j [22]. The C-factors are defined to oversee the dynamic
of the network [21]]. Indeed, c(i,j,d) is a confidence metric
representing the likelihood of a node ¢ reaching the destination
d eventually by using the next hop j. A detailed treatment of
these two factors is given in our DeepCQ+ papers [5], [20]. In
DeepCQ+, C'Q-vectors is the main component of the agent’s
state feed into the routing policy.
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Fig. 2. Multi-agent network routing learner with shared policy parameters
between agents with centralized training and decentralized execution. Each
agent ¢, uses the shared policy 7y individually to find its own action a;(¢)
based on its own observations o;(t). The multi-agent environment transitions
to next state sy based on a combination of individual actions and emits
rewards accordingly.

We consider a homogeneous MANET with network size,
N. This network holds multiple unicast traffic flows with
randomized source and destination pairs. This means that
incoming packets are injected at random nodes intended
for random destinations and at random rates. The network
dynamics are modeled as a movement of the nodes at various
random velocities and directions. We use the Gauss-Markov as
MANET mobility model. The Gauss-Markov mobility model
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Fig. 3. Persistent change in TD-Error in bottom figure when MANET channel
is disturbed by jammers compared to the anomaly-free operation on top.

covers the impact of network dynamics [23]]. Each realization
of a network scenario (also called an episode in the context
of RL) has at least T time periods (each time period is a
single packet duration time). For simplicity, we assume that
packet duration is fixed in time (i.e., a slotted system) but
data rates can still vary. An episode ends when it runs over a
maximum traffic length, 7},,,,. The nodes have a duplicate
packet detection (DPD) process to prevent routing packets
from loops.

We use PPO [19] for neural network training, with multi-
ple epochs of stochastic gradient descent to update routing
policy. Partial observability and communication constraints
in MANET necessitate the learning of decentralized policies,
which rely only on local information at each agent. Decentral-
ized policies also obviate the exponential joint-action space,
endowing them with fast convergence in training. Amazingly,
decentralized policies can be learned in a centralized fashion
via the paradigm of centralized training with decentralized
execution. Homogeneous agents, moreover, can share their
policy network weights during training [24]. Fig. [2] shows
our multi-agent learner with centralized training, decentralized
execution, and parameter sharing among agents.

V. NOVEL NEURAL ANOMALY DETECTION

Outlier detectors are sensitive to false alarms since it is
possible to observe non-persistent random outliers under nor-
mal system operations. If a system exhibits persistent outliers,
however, then this may indicate an actual anomaly. Hence,
with anomaly defined as persistent outliers, we accumulate
statistical evidence for anomaly over time, similar (but distinct
in our non-parametric requisition) to the accumulation of log-
likelihood ratios (LLRs) in the well-known CUSUM algorithm
[25] for change detection. These persistent outliers or changes
are shown in Fig. 3] where TD-Error values are compared
non-parametrically for anomaly-free vs channel-disrupted op-
erations in MANET.

As described, our novel real-time anomaly detection,
DeepADMR, is based on the method of measuring temporal
difference error, TD-Error [11]], and neural network learning.
DeepADMR is diagrammed in Fig. ] and works as follows:

First, we train our PPO learning agents with shared weights
independently. We use locally available rewards for the PPO
policy training to estimate the deviation from expected be-
havior locally and in a decentralized fashion. For this PPO
policy training, we set GAE parameter A = 0. The reason we



train PPO with GAE parameter A = 0 is that GAE advantage
estimator is equivalent to the TD(\) error estimator. Using the
TD(\) error to regularize actor-critic methods is equivalent to
regularization with the GAE estimator with A. Hence, when
A =0, it becomes TD(0) and this allows us to make use of
TD-Error as the metric whenever PPO is trained with A = 0
in its GAE. The advantage of GAE makes it less prone to
overfitting environmental instance-specific features and thus
leads to better generalization. In addition to learning the policy
network, we also learn the value estimate network which
estimates the value function V' (s;; ) via trained weights p
(which is different from policy network weights 6). Since
the reward is considered available locally, we use this value
network to estimate TD-Error (5(1) locally at node ¢ given by

59 = V(Sgi)Q n) — ( ) ’YV(Sf-Ha 1) )

The PPO agent has its weights trained with the nominal
(anomaly-free) operations or simulations during offline mode.
During training, each agent learns from locally-available infor-
mation at time step ¢ due to the action taken at t—1, a;—1. This
information includes the number of acknowledgment packets
(ACKs), ny—1, C/Q-related route states (i.e. c;, q; vectors,
and their change rates Ac; = ¢;—c¢_1, and Aq; = gt —q¢—1)
for the current node ¢. This data constitutes the input vector
to the neural routing policy as

s = [ef”.a”, acf”, gy af?,] ©)

Since the reward is also used in the estimation of the TD-
Errors, it follows that PPO handles locally-available rewards,
amenable to real-time operations during execution.

§” =wy - 1{7112 )1 = 1} —ws - l{ng?l > 1} (ngi)l -1)

—ws - 1{”% ), = 0} + wy - 1{Dt71(i)} ;
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where 1{z} is equal to one if z is true, and otherwise it
is 0. D,Ez_)l is true if the current node 4 just delivered a
packet to its destination at the previous time step ¢ — 1 and
has received an ACK from the destination for the packet.
The weights wy, ws, w3, wy are positive weights tune-able for
the performance of the DeepCQ+ routing policy. During the
execution, TD-Error is computed from the current state sg ),
next state sg 421, and the reward r§ ?) which are available locally
at the agent/node 1.

Of note, our routing policy training here is slightly different
from the original DeepCQ+ [3]] as in this work we use locally
available rewards. This means that we only reward the nodes
that receive ACK for their delivery of packets and not all the
nodes along the route.

Next, we utilize the CUSUM-like method [12] for tracking
and accumulating persistent outliers to detect anomalies in
TD-Error data streams, as TD-Error is an individual metric
with noisy sampling. Fig. @] shows our CUSUM-like anomaly
detection with (a) the offline phase of training with nominal
network data streams using PPO and (b) the online phase
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Fig. 4. Offline and online phases of the anomaly detection.

of executing the learned routing policy with CUSUM-like
log-unlikelihood distribution and thresholds. Our CUSUM-
like operation on TD-Error data streams is non-parametric,
deriving the advantages of CUSUM with no need for knowing
the probability density function of nominal TD-Error data
and anomalous TD-Error data before and after the change
point respectively. In fact, during training, TD-Error does not
necessarily need to converge to zero. Nominal data streams
can have non-zero TD-Error individually as a whole, as we
need only to compute the deviation from possibly non-zero
nominal TD-Error landscape to detect outliers. Our CUSUM-
like operation over TD-Error data streams is suitable for real-
time anomaly detection as it is sensitive to small shifts in
sequential TD-Error data streams.

In the offline phase, we gather nominal TD-Error values St(z)
from the anomaly-free scenario. Given this nominal dataset,
we compute the nominal cumulative distribution function as
an empirical probability distribution function (¢CDF) of the
nominal k-nearest-neighbor (kNN) summary statistics ng)
corresponding to the anomaly-free TD-Error St(l). From this
eCDF f (-), we compute the corresponding tail probability
(p-value), p;. If a §; = TD(0) data point falls outside the
acceptance region, that is, if its corresponding tail probability
is less than a where « is user-defined acceptance level on
the nominal empirical kNN distribution, we mark the TD-
Error data point as an outlier. We continue to accumulate
outliers to detect persistent ones as an anomaly. Specifically,
if its tail probability p-value is less than «, denoted as py,
and formulated as “log-unlikelihood” ¢, = log(a/p:) (in
lieu of the original CUSUM’s log-likelihood ratio), an outlier
is detected, and we use ¢; to update the decision function
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Fig. 5. TD-Errors and TD-CUSUM output and network performance when
channel disruption is present.

g¢. Comparing the decision function g;, which accumulates
values ¢;, and threshold %, the original CUSUM anomaly
detection is formulated , given gg = 0, as anomaly is
called for I' = Infi{g: > h} and the decision function
g+ = max(0, g;:—1 + ¢;). These offline and online operations
endow DeepADMR with the capacity to see how effective
DeepCQ+ routing policy works under environments outside
trained regimes and in decentralized fashion.

VI. DEEPADMR ANOMALY DETECTION RESULTS

We trained DeepCQ+ (DeepR2DN) for 12 nodes without
any channel disruption or jammer in the RF environment.
The average mobility speed (dynamic level), area size, and
traffic flow rates are randomized within a specified range
when DeepCQ+ routing policy is trained. This is consid-
ered our offline anomaly free operation. The DeepADMR
is designed to detect severe and persistent deviation of our
MANET environment and operation from the distribution of
the scenarios that the DeepCQ+ is trained over. This does
not include randomized dynamic levels, area size, and traffic
flows but includes fundamental variations in the environment
that cause unexpected behavior of the DeepCQ+ routing policy
and therefore degraded performance. We tested DeepADMR
for various network sizes and channel disruptions.

For anomaly detection, after training only for 12 nodes
without channel disruption, we tested our DeepADMR neural
anomaly detection. These anomaly scenarios include chan-
nel disruption present where the jammer is preset near the
transmitting node but farther from receiving hop, preventing
the transmitter to detect and decode the ACK packets. This
causes unexpected observation at the transmitting node (e.g.
no ACK is received). Another testing anomaly scenario is a
much larger network size N = 50 when trained for networks
of size N = 12. Although the performance of the DeepCQ+
shown to scale properly with network sizes, we still observe
surprise outcome when execute it in very large network sizes.
Note that the goal of the DeepADMR is to detect if the
new scenarios strongly deviate from the training environment
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Fig. 6. TD-Errors and TD-CUSUM output and network performance for
N = 50. The offline mode is N = 12.

distributions. The results show that DeepADMR is effective to
observe persistent TD-Error deviation (TD-CUSUM score g;)
computed by the CUSUM-like algorithm as shown in Fig. [3]
and Fig. [] The performance of the DeepADMR are measured
in the form of receiver operating characteristics (ROC) curve
and given in Fig. [7] and Fig. [§

ROC curve of DeepADMR for network size N = 50 vs. N = 12 (Anomaly-free)
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Fig. 7. ROC curve for DeepADMR to detect anomaly scenario of network
size 50 compared to the anomaly-free network size of 12 where the DeepCQ+
routing policy is trained over.

VII. CONCLUSIONS

We described DeepADMR, our neural anomaly detector
based on CUSUM-like operations on TD-Error streams, as
applied to the computer network routing anomaly detection
problem. The results of DeepADMR anomaly detection on



True Positive Rate

Fig.

ROC of DeepADMR with channel disruption

1.0 4 4
’
’
’
’
’
’
’
’
0.8 St
’
’
’
’
’
’
R
0.6 7
’
’
’
’
’
’
’
L
0.4 7
’
’
’
’
’
’
7
0.2 1 7
’
’
’
’
’
’
R4 ROC curve (area = 0.89)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

8. ROC curve for the DeepADMR to detect anomalies for the channel

disruption or jammer (outlier RF environment)

network routing problems caused by changing network size,
various channel disruptions, changing mobility, and increased
traffic indicated the effectiveness of our approach. Having
reliable and trusted communications is indispensable in ad-
versarial, dynamic, and uncertain environments, hence our
DeepADMR manifests the core functionality of successful
missions.
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