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Abstract—Conventional Congestion Control (CC) algorithms,
such as TCP Cubic, struggle in tactical environments as they
misinterpret packet loss and fluctuating network performance
as congestion symptoms. Recent efforts, including our own
MARLIN, have explored the use of Reinforcement Learning (RL)
for CC, but they often fall short of generalization, particularly in
competitive, unstable, and unforeseen scenarios. To address these
challenges, this paper proposes an RL framework that leverages
an accurate and parallelizable emulation environment to reenact
the conditions of a tactical network. We also introduce refined
RL formulation and performance evaluation methods tailored
for agents operating in such intricate scenarios. We evaluate
our RL learning framework by training a MARLIN agent in
conditions replicating a bottleneck link transition between a
Satellite Communication (SATCOM) and an UHF Wide Band
(UHF) radio link. Finally, we compared its performance in
file transfer tasks against Transmission Control Protocol (TCP)
Cubic and the default strategy implemented in the Mockets
tactical communication middleware. The results demonstrate
that the MARLIN RL agent outperforms both TCP and Mockets
under different perspectives and highlight the effectiveness of
specialized RL solutions in optimizing CC for tactical network
environments.

Index Terms—Machine Learning, Congestion Control, Re-
inforcement Learning, Emulated Networks, Tactical Networks.

I. INTRODUCTION

Tactical networks present unique challenges for CC. While
operating in demanding circumstances marked by limited re-
sources, unreliable links, frequent disconnections, and varying
levels of connectivity, these networks need to support critical
real-time functionalities to facilitate mission applications such
as Command, Control, Communications, Computers, Cyber,
Intelligence, Surveillance, and Reconnaissance (C5ISR).

Traditional CC algorithms, such as those embedded in
transport protocols like TCP, face significant difficulties in
maintaining efficient communications within tactical networks,

as they were developed for wired environments and misin-
terpret as congestion symptoms phenomena such as packet
losses and temporary unreachability, that are very common in
tactical networks, thus severely and unnecessarily reducing
transmission speeds. Optimizing CC in unreliable networks
necessitates innovative approaches that are able to cope with
their dynamic and unpredictable nature.

In this context, the combination of RL techniques with Deep
Learning (DL) for policy parameterization, often referred to
as Deep Reinforcement Learning, has emerged as a promising
approach. Deep RL demonstrated remarkable robustness across
diverse domains, and its application in computer networks
offers new possibilities for addressing the challenges of CC [1],
[2]. By leveraging RL, agents can be trained to learn optimal
policies through interactions with the network environment,
enabling more efficient and reliable communications.

Despite numerous efforts showing promising results, the
performance of these RL agents still falls short of generaliza-
tion capabilities, especially when unreliable and unpredictable
links are encountered. This performance gap can be attributed
to various factors either linked to the learning problem itself,
such as designing the environment where the agent resides and
its "learning curriculum", or to the challenging and partially
observable nature of the networking environment. Addressing
these challenges requires the development of solutions that
enable RL agents to learn effective policies for CC decision-
making while experiencing complex and dynamic scenarios.
However, creating dedicated environments for conducting
experiments in such scenarios can be challenging, costly, and
even infeasible in real network environments. To overcome
this last constraint, the importance of an accurate emulation
environment cannot be overstated.

This paper extends our work within the MARLIN project
[3] by proposing an RL framework that leverages an accurate
and parallelizable emulation environment to reenact the
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conditions of a tactical network, thus allowing agents to
experience a wide range of dynamic behaviors. To better
evaluate the decision-making effectiveness of our agent, we
also introduce a novel metric, the RTT Transition Impact (RTI),
based on the maximum Round-Trip Time (RTT) detected
during a communication involving a link transition, that allows
to measure the agent’s responsiveness to link changes and its
queue management capabilities.

To evaluate our learning framework, we trained an RL
agent in an emulated environment replicating a bottleneck link
transition between a SATCOM link and an UHF radio link -
rather typical in tactical networks. We then evaluated the agent
performance in a file transfer task and compared it against
conventional CC algorithms such as TCP Cubic [4], as well
as CC algorithms implemented within communication middle-
wares tailored for tactical environments such as Mockets [5],
which the same MARLIN utilizes as partnering protocol. The
results demonstrate that the exposure of the agent to complex
networking scenarios enables training policies able to achieve
competitive decision-making performance, and validate the RL
training approach based on accurate emulation and purposely
designed valuation metrics for specialized environments like
tactical networks.

II. CONGESTION CONTROL IN TACTICAL NETWORKS

Tactical networks represent a unique communications
environment due to a combination of particularly harsh and
dynamic network conditions paired with a high degree of
heterogeneity in the network technologies employed and,
consequently, the characteristics of the links. This situation
demands efficient data transmission strategies that can quickly
respond to changes in the status of the network, which makes
the role of transport protocols and CC algorithms of crucial
importance in tactical networks and especially challenging.

Traditional and de-facto standard CC algorithms for TCP,
such as CUBIC, were not designed for this type of scenario
and, as a consequence, tend to underperform significantly or,
in some cases, cause connections to break altogether, leading
to significant loss of network resources [6]. Frequent packet
loss causes loss-based CC algorithms, which interpret loss as
a sign of congestion, to step out of the slow start phase and
decrease their congestion window, impeding the effectiveness
of the bandwidth discovery process. In contrast, delay-based
CC algorithms typically misinterpret abrupt changes in the
end-to-end latency, such as those caused by changes in the
routing rules, as a sign that they are allowed to either increase
or reduce their Congestion Window (CWND) significantly.
This behavior can again lead to severe underutilization of
already scarce network resources.

This fostered the design of dedicated solutions to overcome
the limitations of TCP in tactical environments, such as
Mockets [5], a User Datagram Protocol (UDP)-based commu-
nication middleware that allows extensive customization of its
configuration parameters. By enabling adjustments to parame-
ters like the CWND, the Pending Packet Queue Size, and the
Selective Acknowledgment Transmission Timeout, Mockets
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Figure 1: The MARLIN containerized training framework.

offers the flexibility to fine-tune its settings according to the
specific requirements of different communication channels.
Mockets implements a very aggressive CC algorithm whose
purpose is to fully utilize the link bandwidth in the presence
of variable communication latency and elevated packet loss.
While it presents several advantages over TCP and other
transport protocols in degraded environments [6], the existing
CC fails to share link capacity with other communication
flows going through the same links and cannot adapt quickly
to changes in the available bandwidth.

These limitations are especially visible in case of hetero-
geneous network technologies. In fact, abrupt changes from
high-bandwidth, high-latency links like SATCOM to a low-
bandwidth, low-latency links like UHF, and back, can wreak
havoc on the performance of CC solutions. To compound these
issues, tactical environments exhibit: routing rules that can
change during a mission; highly varying wireless performance;
node mobility; and the enemy’s activity, which could jam
communications and/or render nodes unreachable. These
challenging scenarios necessitate the utilization of advanced
techniques capable of enabling dynamic and responsive
reconfiguration in response to evolving network conditions.

III. LEVERAGING CONTAINER NETWORKS TO EMULATE
CHALLENGING NETWORKING SCENARIOS

Complex networking scenarios, such as those encountered
in tactical environments, are known for their intricacy, often
involving sets of heterogeneous entities with distinct behav-
iors [7]. However, RL environments dedicated to CC are
usually not designed to capture such complexities in their
training setting, making the agents prone to underperform
when deployed in these scenarios.



To bridge this gap, our work enhances the MARLIN frame-
work1 by incorporating customizable link behaviors, which
in this case we implement to resemble the complexities of
tactical environments. By introducing these diverse scenarios
into the training environment, we can expose the RL agent to
a wider range of experiences, enabling it to learn and adapt to
the intricate behaviors exhibited by the heterogeneous entities
in tactical networks.

Specifically, we extend the MARLIN solution to employ a
network generator module. In succinct terms, such a compo-
nent is responsible to create custom container networks, define
the behavior of the links involved, and generate background
traffic from competitive/collaborative sources. The reader can
refer to Figure 1 for a summary of the framework, which also
includes the topology defined for this work (detailed in V).

The network generator module defines a Remote Procedure
Call (RPC) interface exposing a series of methods bonded to a
Containernet [8] instance operating on the host machine. Con-
tainernet is a lightweight container-based network emulation
tool built on Mininet that allows users to create and manage
virtual networks with Docker containers for the purpose of
simulating complex network scenarios.

Once started, our network generator module defines a
starting topology running specific Docker images for every
container involved. The RPC methods are then used by the RL
environment to create and define diverse scenarios. Every time
the environment is initialized or reset, a dedicated RPC method
is invoked, setting the links to their original values. In the
meantime, the same environment will start the communication
between the Mockets sender and its receiving counterpart,
which effectively starts the collaboration between the agent
and the protocol. Other hosts are prompted to generate traffic,
competing with the RL agent for link usage. These containers
will induce different TCP and UDP traffic behaviors following
a Multi-Generator Network Test Tool (MGEN) [9] script
defined through the RPC arguments.

In Section IV-C, we detail how such a controlled setting
might guide the agent toward effective policies.

IV. A REINFORCEMENT LEARNING FORMULATION FOR
CONGESTION CONTROL IN TACTICAL ENVIRONMENTS

In this section, we present the fundamental RL [10]
components on which this version of MARLIN relies. In
particular, we address the challenge of determining the timing
of actions in the tactical scenario and propose a reward
function specifically designed for these complex environments.

A. Observation and Action space

MARLIN utilizes a state representation consisting of 14
features collected during the timeframe following the previous
action at step t−1. The state space is expanded by computing
7 statistics for each feature, including the last value, mean,
standard deviation, minimum, maximum, Exponential Moving
Average (EMA), and difference from the previous state st−1.

1Code available at https://github.com/RaffaeleGalliera/marlin-rlcc

The previous 10 states are stacked together, forming an
observation history. Observations are then normalized using
a moving average. The action space, instead, comprises
continuous actions within the range of [−1, 1], denoting the
percentage gain in congestion window (CWND) size. For
example, an action of .3 would increase the CWND by 30%,
while -.3 would instead reduce it by the same quantity.

B. Timing Decisions

When designing a RL-based CC agent, determining when
the next action is going to be taken constitutes one of the
first questions that need to be answered. In the original work
[3], the authors opted for a heuristic based on the Smoothed
Round-Trip Time (SRTT) detected by the partnering protocol.
This approach becomes problematic when the agent is trained
within links with delays in the order of seconds, as it would
increase the time needed to complete the same training process
by several orders of magnitude, without any guarantee of
convergence to a policy with the same quality.

To address this limitation, our work utilizes a predefined
time window of 100ms. Within this timeframe, the partnering
protocol collects the necessary statistics, which will be used
to form the state of the agent.

C. Rewarding the agent in Tactical Networks

We designed a reward function incorporating penalties based
on retransmissions, proving it to be highly suitable to tactical
networks, owing to a multitude of compelling reasons.

By integrating penalties for retransmissions into the reward
function, the RL agent is actively incentivized to minimize
their occurrence, thereby improving the reliability of data
transmission. This behavior curtails potential delays and data
loss, which harmoniously aligns with the specific requirements
and constraints inherent to tactical networks.

Building upon the principles delineated in [3] with the
controlled training scenarios, it is possible to approximate
the traffic influx from competing sources at each time step
t. Consequently, reward functions can be devised to both
confer greater rewards as the agent progressively approaches
the optimal utilization of the available bandwidth and greater
penalties when retransmissions are present, thereby incentiviz-
ing efficient network usage. These concepts can be merged
into a single reward function described as follows:

rt = − targett[1 + r ∗ (1− lossc)]

targett + ackedcumulative
t

(1)

where targett is an approximation of the number of bytes
the agent could have delivered up to step t since the
beginning of the episode in order to fully utilize the link
and ackedcumulative

t represents the number of kilobytes there
were acknowledged by the receiver until step t. The value
r quantifies the number of retransmissions detected by the
partnering protocol, while lossc is the decimal representation
of the current random packet loss.

It is worth mentioning that a strictly negative reward
function promotes the agent to accumulate the smallest amount
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Figure 2: Characterization of the background traffic patterns.

of penalties. The penalty received is smaller the closer the
agent gets, at each step, to utilize the link to the best of its
possibilities, avoiding overwhelming the other traffic flows.

V. EXPERIMENTAL RESULTS

In order to replicate the wide-ranging variations commonly
observed in tactical networks, we have developed a testbed
that serves as a training scenario and implements an instance
of the tactical environment described in Section II.

In this particular scenario, a data rate of 1Mb/s is initially
accessible through a SATCOM link, which exhibits a 500ms
delay due to the satellite-ground station distance. However,
as the tactical network operates in a dynamic environment,
it is crucial for it to respond efficiently even in situations
where the SATCOM link becomes unavailable or experiences
sudden performance degradation. To address such behavior,
we simulated a transition to an alternative UHF radio link
with a 256Kbps data rate, a reduced delay of 125ms, and an
assumed 3% packet loss. Following our framework detailed
in Section III it is possible to reproduce such a dynamic envi-
ronment by defining three elements: the network architecture,
the link behavior, and the background traffic patterns.

In Figure 1, we present the design of a dumbbell architecture
that separates two networks, denoted as LS and RS. The
sender hosts of both Mockets and the MGEN traffic generator
are situated on network LS, while their receiving counterparts
reside on network RS. It is worth noting that the network
architecture remains unchanged throughout the scenario.

To replicate the desired scenario, we implement the linking
behavior within our network generator module. Initially, the
bottleneck link is configured to emulate the properties of the
SATCOM link. However, after a duration of 10 seconds, a
link transition is triggered, reconfiguring the link to embody
the characteristics of the UHF radio link. This adjustment
accurately reproduces the intended scenario within the testbed.

In the meantime, background traffic flows are emitted by
the competing sources, following the sequences presented
in Figure 2. Each sequence is repeated every 8 seconds
and includes two parallel components divided into elephant

flows, i.e., long-lived data transfers that represent a large
percentage of the total traffic, and mice flows, i.e., short-lived
data transfers at low throughput. Elephant flows are alternated
every two seconds, while two mice flows are continuously
generating very short-lived (in the order of milliseconds) traffic
bursts with intervals that follow a Poisson distribution.

Traffic patterns are adjusted to align with the characteristics
of the UHF link at the time of transition, as illustrated in
Figure 2b. This effect simulates a perfect adaptation of the
background traffic flows to the link change, assuming that
competing traffic sources are able to seamlessly adjust to link
transitions. It is also supposed that the occurrence of significant
UDP elephant traffic, such as video streams, is interrupted
from the competing sources while the communication is routed
through the UHF link.

A. Training

When training a RL agent, in addition to its objectives,
we also need to define the “horizon” towards which it is
going to optimize its behavior. For this purpose, many RL
problems define terminal states and the rewards associated
with them serve as a signal for successful completion. Once a
terminal state is reached, the current episode ends, and a new
episode begins. In problems like CC it is challenging to define
terminal states as, at least theoretically, a communication
instated between two nodes could continue indefinitely. For
such a reason, MARLIN considers CC a time-unlimited task
during training. In these settings, the agent does not optimize
its behavior towards reaching a predefined terminal state while
maximizing its return, but the focus is shifted to maximizing
its returns over an indefinite time horizon.

Partial episodes, each of which was 200 steps long,
were used to diversify the experience of the agent for an
approximate duration of 20 seconds per episode, considering
that the interval between actions was set to 100 milliseconds,
as discussed in Section IV-B.

The algorithms and hyperparameters used mostly followed
the default values presented in [3], except for the buffer size
and training duration, which were reduced and set respectively
to 250K and 500K steps. The observation space and the action
space are unaffected compared to the previous work, except
for the maximum value that the CWND might assume, here
set to 150KB.

B. Evaluation Method

To evaluate the performance of the trained agent, we
conducted a series of file transfers in our experiments. Each
evaluation episode involved transmitting a 600KB payload.
The experiment, repeated 400 times for both TCP and our
version of MARLIN, was separated in batches of 100 transfers
under various random packet loss probabilities of the UHF
link, ranging from 0% to 3%. It is important to highlight that
the agent was exclusively trained using a random packet loss
probability of 3%. The purpose of this evaluation is to confirm
that the agent did not learn any patterns based on the number
of retransmissions induced by the emulated packet loss.
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Figure 3: Performance comparison in terms of average transfer time and RTI across the evaluation episodes.

The results were compared together to the performance of
a random agent and Mockets, both performing only on the
3% packet loss scenario, as they do not adopt any adaptive
mechanism. The latter was configured such that the CWND
matched the bandwidth capacity of the link, before and
after the transition. Enabled by our controlled environment,
this seamless process eliminates the necessity of customary
protocol reconfiguration, thereby intensifying the challenge
for our agent. Finally, we approximated an ideal fair behavior,
assuming an algorithm able to split the bandwidth available
left by non-collaborative flows (i.e. UDP traffic) with adaptive
flows (i.e. TCP flows), without causing any RTT increase.

Evaluating CC solutions in dynamic and challenging
links necessitates careful consideration in the selection of
appropriate metrics. In our evaluation process, we focused
on three key aspects: the file transfer completion time, the
number of retransmissions incurred, and the sensitivity of the
agent to link changes and its queue management capabilities.

While the first two factors can be straightforwardly quanti-
fied, we believe the latter to be more subtle. Simply relying on
the average or maximum RTT measured in the link might seem
reasonable at first sight, but they would either fail to capture
buffer loading peaks or lack information about the specific link
where the peak incurred. These observations emphasize the
necessity of employing an able to capture the responsiveness
of the agent to adapt to the new link characteristics.

To address this challenge, we designed a novel metric
called the RTT Transition Impact (RTI). With the objective of
assessing the influence of CC algorithms on buffer loading
when transitioning between the links, the RTI leverages the
use of the normalized maximum RTTs measured separately
for each of the m links involved during communication. By
considering individual link measurements, the RTI provides
insights into the impact of link changes on the performance
of the CC algorithm and it can be defined as follows:

RTI = ln(

∑m
i=1

rtti,max

rtti,nom

m
) (2)

where m identifies the different links involved. The maximum

RTT detected during the timeframe related to link i is denoted
as rtti,max, while the nominal RTT for the same timeframe is
denoted as rtti,nom. By employing the natural logarithm, we
can emphasize the magnitude of the impact for smaller values,
while denoting with a value of 0 a flawless performance.

Through the utilization of the RTI metric, we enhance our
evaluation methodology by capturing the intricate dynamics
of tactical network environments and their effect on CC
algorithms. This metric contributes to a more comprehen-
sive understanding of its ability to adapt to evolving link
conditions, thereby facilitating a more accurate assessment of
CC performance in dynamic and challenging scenarios.

C. Results

Figure 3 presents a comparison between MARLIN, Mockets,
TCP Cubic, a random agent, and the ideal fair behavior
in terms of the average transfer time and the average RTI
achieved. The results show that our trained agent exhibits
a moderate improvement in file transfer completion time
compared to TCP, with an average performance of 19.3s
compared to 22.20s. However, it is noticeably slower than
Mockets, which achieves an average completion time of 10.59s.
This outcome is expected as Mockets is purposefully designed
for tactical environments and adopts an aggressive policy that
introduces high overhead on the network, as we will further
discuss.

In terms of average RTI, MARLIN consistently outperforms
its competitors across different scenarios, regardless of varying
packet losses and with minimal RTI fluctuations between the
4 scenarios. On the other hand, TCP Cubic exhibits a peculiar
and variable behavior in terms of RTI performance. It is
observed that lower levels of packet loss result in higher
RTI for TCP Cubic, indicating potential limitations in its
queue management capabilities. This contrast highlights the
robustness and stability of MARLIN in maintaining low RTI
values in our scenario, showcasing promising performance for
tactical network environments.

To conclude and support our results, we assessed the average
number of retransmissions per episode involving MARLIN,
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Figure 4: The average number of retransmissions during evaluation
with a 3% random packet loss set on the UHF link.

Mockets, the random agent, and TCP Cubic when a 3% packet
loss was present on the UHF link. Figure 4 illustrates how
our agent is able to limit the average retransmissions to 12.22
against the 53.1 for TCP Cubic and 141.93 for Mockets.

VI. RELATED WORK

Considerable emphasis has consistently been placed on the
optimization of CC algorithms. This has led to the proposal
of numerous heuristics, including notable examples such as
TCP Vegas [11], BBR [12], and TCP CUBIC [4]. However,
most algorithms achieve satisfactory performance in specific
scenarios often demonstrating poor generalization, especially
in dynamic and unreliable networks [13].

In the ever-evolving field of networking, it is not surprising
that recent efforts have focused also on RL-based optimization
techniques, aiming to develop solutions able to adapt to the
complexity and heterogeneity of networking environments.
Approaches such as DRL-CC [2] have focused on training
policies in simulated environments, achieving competitive
performance, but demonstrating several challenges when
applied to real networks. Others, such as MVFST-RL [1]
focused on training non-blocking CC RL agents on the
application level, overcoming the limitation of non-blocking
solutions. MARLIN [3], followed a similar non-blocking
approach, with a particular emphasis on training and evaluating
the agent end-to-end on a real network.

To the best of our knowledge, this paper presents a two-fold
novel contribution: it is the first RL environment for CC with a
focus on tactical networks and the first exploiting the flexibility
of emulated networks with containerized applications to train
and evaluate a RL agent for CC.

VII. CONCLUSION AND FUTURE WORK

This paper presented a step toward comprehensive RL en-
vironments capable of training policies on emulated networks
with dynamic link behavior, paving the way for studying the
application of RL to complex networking scenarios, which
might be impractical or costly in real network environments.

Experimental results demonstrated how MARLIN, with
a relatively exiguous training budget, was able to learn an
effective CC policy in the presented scenario, addressing the
shortcomings of both the Mockets’ aggressive strategy and
TCP Cubic. Among the other criteria used for evaluation, we
have also introduced the RTI, a metric useful for capturing
the sensitivity of the agent to link changes.

It is crucial to mention that the framework and the results
presented here, albeit we believe them to be promising and
compelling, are still limited and focus on a specific training
scenario. A variety of approaches and methods still need to be
explored, implemented, and evaluated within MARLIN, which
will be part of our future work. These include but are not
limited to, parallel environments, more heterogeneous dynamic
network setups, self-timed decisions, and competitive and/or
cooperative Multi-Agent Reinforcement Learning (MARL)
settings.
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