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Abstract—In this study, we propose using an over-the-air
computation (OAC) scheme for the federated k-means clustering
algorithm to reduce the per-round communication latency when
it is implemented over a wireless network. The OAC scheme
relies on an encoder exploiting the representation of a number in
a balanced number system and computes the sum of the updates
for the federated k-means via signal superposition property of
wireless multiple-access channels non-coherently to eliminate the
need for precise phase and time synchronization. Also, a re-
initialization method for ineffectively used centroids is proposed
to improve the performance of the proposed method for hetero-
geneous data distribution. For a customer-location clustering
scenario, we demonstrate the performance of the proposed
algorithm and compare it with the standard k-means clustering.
Our results show that the proposed approach performs similarly
to the standard k-means while reducing communication latency.

Index Terms—Federated k-means, over-the-air computation,
unsupervised federated learning.

I. INTRODUCTION

Over-the-air computation (OAC) is a physical layer concept
that can benefit a wide variety of applications for function
computation over a bandwidth-limited wireless channel by
reducing resource utilization to a one-time cost that does not
scale with the number of edge devices (EDs) [1]. It exploits
the signal superposition property of wireless multiple-access
channels to compute a set of special mathematical functions
such as arithmetic mean and sum [2]–[4]. With the increased
attention to computation-oriented applications over wireless
networks, OAC has been utilized as a fundamental tool to
improve communication latency. For example, in [5]–[7],
OAC is used for aggregating gradients or model parameters
of neural networks for supervised distributed training, such
as federated learning (FL) [8], over a wireless network to
improve per-round communication latency. With the same
motivation, in this work, we investigate OAC for obtaining an
unsupervised federated learning algorithm, i.e., the federated
k-means algorithm, over wireless networks.

The k-means algorithm is a well-known algorithm that
successively partitions a dataset to improve a metric that
measures cluster formation. In the literature, it has been
analyzed for various distributed settings. For instance, in [9],
the authors introduce a privacy-preserving protocol, which
relies on exchanging the centroids between two parties with
vertically- or horizontally-partitioned data. The federated k-
means algorithm is first explicitly mentioned in [10], where
the authors apply it to a clustering task based on MNIST

and EMNIST datasets. In [11], a one-shot federated clustering
scheme is proposed. In this method, the EDs run the k-means
locally and send the clustering results to the edge server
(ES) for aggregation. In [12], one-shot federated clustering
is extended to an iterative federated clustering algorithm.
For guaranteeing the privacy of federated k-means, in [13],
it is proposed to use Lagrange encoding on local data and
share the coded data samples across the EDs along with
noise injection. In [14], a federated clustering framework that
determines the number of global clusters and validates the
clustering via Davies–Bouldin index. In [15], the memory
and communication efficiency of the federated k-means is
proposed to be reduced by using the low-dimensional features
of the local data samples. In [16], it is proposed to initialize
the centroids at the EDs for better centroid initialization. To
the best of our knowledge, the federated k-means algorithm
over a wireless network with OAC is not investigated in the
literature.

In this study, we propose to implement the federated k-
means algorithm over wireless networks with a non-coherent
OAC based on balanced number systems [17]. The pro-
posed approach reduces per-round communication latency
by computing the sum of the local updates for clustering
over the air while promoting data privacy via federation. To
improve the performance of clustering while taking the data
heterogeneity into account, we use a maximum adaptation
approach for the OAC scheme and employ a simple-but-
effective re-initialization method for the centroids that have
small number of data samples. We compare the proposed
algorithm with the case when the global dataset is available
at a central server for various OAC configurations under
different channel conditions.

II. SYSTEM MODEL

A. Problem Statement

Consider a scenario where K EDs are connected to an ES
over a wireless network. Let Dk denote the dataset available at
the kth ED, where a data sample d in Dk is an L-dimensional
real vector, ∀k. Suppose that the EDs are not willing to
share their datasets with the ES due to privacy considerations.
Under this constraint, the objective of each ED is to learn
where data samples are clustered in the global dataset, i.e.,
D = D1 ∪D2 ∪ · · · ∪DK , for further inference. For instance,
consider the rectangular tessellation given in Fig. 1 with 100
tiles, where each tile corresponds to a retail store in a mall.
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Fig. 1. A clustering scenario. Each tile corresponds to a retail store in a mall,
where each store has a local dataset containing their customers’ locations
(black and gray points). The stores are interested in where the customers are
clustered in the mall without uploading their datasets to a central server.

Each retail store has a dataset that contains the precise x- and
y-coordinates of their customers’ locations, i.e., the points
that reside within the corresponding tile. For this scenario, to
assess the customers’ preferences, each store is interested in
where the points (e.g., customers’ locations) are clustered in
the entire mall without uploading their datasets to a central
server. For this example, the EDs may be local radios at the
retail stores, connected to a base station, i.e., an ES, located
at the center of the mall. As can be seen from Fig. 1, the data
distributions and the cardinalities of datasets at the EDs can
widely vary since each dataset contains only the customers’
positions within the store.

The aforementioned scenario can be expressed as an op-
timization problem seeking for the centroids of C disjoint
clusters S1, . . .,SC that partition the set D to minimize a loss
function given by

f(S1, . . .,SC) =

C∑
c=1

∑
d∈Sc

∥d − µc∥22 , (1)

where µc =
1

|SC |
∑

d∈Sc
d is the centroid of cth cluster. The

minimization of (1) is NP-hard [18]. Hence, we consider an
approximate solution via the k-means clustering algorithm.

The standard k-means algorithm aims to solve (1) it-
eratively. For a given a set of centroids c(n)1 , . . ., c(n)C , it
calculates the cth cluster based on Euclidean distance as
S(n)
c = {d|∥d − c(n)c ∥22 ≤ ∥d − c(n)c′ ∥22,∀c′}. Subsequently,

the cth centroid is updated as

c(n+1)
c = (1− µ)c(n)c + µ

1

|S(n)
c |

∑
d∈S(n)

c

d , (2)

for |S(n)
c | > 0, where µ is the learning rate and equal to 1

for the standard k-means algorithm.
For our scenario, the partition S(n)

c , ∀c, cannot be formed
since the global dataset is not available at the ES. With

federated k-means, clustering can be achieved without the
global dataset as follows: The ES distributes c(n)1 , . . ., c(n)C to
the EDs for the nth iteration. Given the centroids, each ED
computes the local clusters based on its local dataset as

S(n)
k,c = {d|∥d − c(n)c ∥22 ≤ ∥d − c(n)c′ ∥22,∀c′,d ∈ Dk} . (3)

The update step in (2) can then be re-expressed as

c(n+1)
c = (1− µ)c(n)c + µ

1∣∣∣S(n)
c

∣∣∣
K∑

k=1

∑
d∈S(n)

k,c

d (4)

= c(n)c + µ
1∣∣∣S(n)
c

∣∣∣
K∑

k=1

∆c(n)k,c , (5)

for |S(n)
c | =

∑K
k=1 |S

(n)
k,c | > 0 and ∆c(n)k,c is defined by

∆c(n)k,c ≜
∑

d∈S(n)
k,c

d − c(n)c . (6)

Thus, with the federated k-means algorithm, the kth ED
shares either the sum of data samples within the cluster or
the total change with the ES, as can be seen in (4) and
(5), respectively. Since the data samples are not shared with
the federated k-means algorithm, the privacy is improved at
the expense of per-round communication latency (or resource
utilization) that grows linearly with the number of EDs due
to the communication between the EDs and the ES. In this
work, we address the latency issue of the federated k-means
over wireless networks with OAC.

B. Signal model and wireless channel

We assume that each ED and the ES are equipped with
a single antenna and the large-scale impact of the wireless
channel is compensated with a state-of-the-art power control
mechanism [19]. For the signal model, we assume that the
EDs access the wireless channel on the same time-frequency
resources simultaneously with orthogonal frequency division
multiplexing (OFDM) symbols. Assuming that the cyclic
prefix (CP) duration is larger than the sum of the maximum
time-synchronization error and the maximum-excess delay of
the channel, the received symbol on the lth resource (e.g., an
OFDM subcarrier) can be expressed as

y
(n)
l =

K∑
k=1

h
(n)
k,l x

(n)
k,l + w

(n)
l , (7)

where h
(n)
k,l ∼ CN (0, 1) is the channel coefficient between the

ES and the kth ED, x(n)
k,l ∈ C is the transmitted symbol from

the kth ED, and w
(n)
l ∼ CN (0, σ2

n) is zero-mean symmetric
additive white Gaussian noise (AWGN) with the variance σ2

n.
SNR = 1/σ2

n denotes the signal-to-noise ratio (SNR) of an ED
at the ES receiver.



III. FEDERATED k-MEANS WITH NON-COHERENT OAC

In this section, we discuss how we address the communica-
tion bottleneck of wireless federated k-means by computing
the sum in (5) with a non-coherent OAC scheme without using
the channel state information (CSI), i.e., h(n)

k,l , ∀k, ∀l, at the
EDs and ES. To this end, we consider the OAC scheme that
exploits balanced number systems [17].

A. Edge Device - Transmitter

Let v
(n)
k,q be the (q + 1)th element of

vec([∆c(n)k,1 , . . .,∆c(n)k,C ]) ∈ RLC for q ∈ {0, 1, . . ., LC − 1},
where vec(·) is the vectorization operation. The kth ED
encodes v

(n)
k,q into a sequence of length D as(

η
(n)
k,q,D−1, . . ., η(n)k,q,d, . . ., η(n)k,q,0

)
= fenc,β(v

(n)
k,q ) , (8)

for η(n)k,d ∈ Sβ ≜ {sj |sj = j−(β−1)/2, j ∈ {0, 1, . . ., β−1}},
∀d, where β is an odd positive integer (i.e., base) and fenc,β

is a function that maps v
(n)
k,q to a sequence of D numerals

in a balanced number system with base β. The numerals are
obtained via fenc,β(v

(n)
k,q ) as follows [17]:

1) v
(n)
k,q is clamped as v′ = max(−vmax,min(v

(n)
k,q , vmax))

to ensure v′ ∈ [−vmax, vmax] for a given vmax > 0.
2) v′ is re-scaled as ξ

vmax
v′ + ξ + 1

2 .
3) The scaled value is mapped to an integer between 0 and

2ξ with a floor operation and the corresponding integer
is expanded as

⌊
ξ

vmax
v′ + ξ + 1

2

⌋
=

∑D−1
d=0 bdβ

d, for

bk,d ∈ Zβ and ξ ≜ (βD − 1)/2.
4) η

(n)
k,q,d is calculated as η

(n)
k,q,d = bd − (β − 1)/2, ∀d.

It is worth noting that the quantized v
(n)
k,q can be obtained as

v̄
(n)
k,q = fdec,β

(
η
(n)
k,q,D−1, . . ., η(n)k,q,0

)
≜

vmax

ξ

D−1∑
d=0

η
(n)
k,q,dβ

d .

(9)

We refer the reader to [17] for several numerical examples
with fenc,β and fdec,β .

Without loss of generality, in this study, we use a resource
mapping rule given by l = βDq + βd+ j for a given triplet
(q, d, j). Based on the numerals obtained in (8), we compute
the transmitted symbol x(n)

k,l in (7) as

x
(n)
k,l =

√
Esr

(n)
k,l × I

[
η
(n)
k,q,d = sj

]
, (10)

for sj ∈ Sβ , where Es ≜
√
β is the symbol energy, r

(n)
k,l

is a random quadrature phase-shift keying (QPSK) symbol
to improve the peak-to-mean envelope power ratio (PMEPR)
of the corresponding OFDM waveform, and the function I [·]
results in 1 if its argument holds, otherwise, it is 0. Thus,
with (10), β complex-valued resources are dedicated to each
numeral, and one of them is activated based on its value.

Since all EDs access the spectrum simultaneously for OAC,
the number of complex-valued resources consumed for each
communication round can be calculated as LCβD and not

Algorithm 1: Wireless federated k-means with OAC

Input: c(0)1 , . . ., c(0)C , v
(0)
max, Smin, µ, α, σ

2
c , β,D,N

Output: c(N)
1 , . . ., c(N)

C
for n = 1 : N do

/* Processing @ EDs
for k = 1 : K do

Compute S(n)
k,c with (3), ∀c

Compute ∆c(n)
k,c with (6), ∀c

Compute x
(n)
k,l with (10), ∀l

/* Superposition in the uplink
The EDs transmit the OFDM symbols simultaneously for OAC
The EDs transmit |S(n)

k,c |, m
(n)
k , ∀c

/* Processing @ ES

Compute v̂
(n)
q with (11), ∀

Update v
(n+1)
max with (12)

Update c(n+1)
c′ with (5), ∀c′ ∈ Ec

Update c(n+1)
c′′ with (III-C), ∀c′′ ∈ E

/* Broadcast in the downlink

The ES broadcasts v
(n+1)
max , c(n+1)

c ,∀c

scaled with the number of EDs. Also, as the EDs do not
use CSI, not only the channel estimation overhead but also
the need for phase and precise time synchronizations are
eliminated with the aforementioned OAC scheme. Note that,
without OAC, the number of resources required may be
roughly calculated as LCKrbitsrcompressionNbits, where rbits is
the spectral efficiency in bits/s/Hz, rcompression is the compres-
sion ratio, Nbits is the number of bits for representing v

(n)
k,q .

B. Edge Server - Receiver

At the ES, we exploit the fact that the (q + 1)th element
of vec(

∑K
k=1 ∆c(n)k,1 , . . .,

∑K
k=1 ∆c(n)k,C), denoted by v

(n)
q , can

be obtained approximately by using (9) as

v(n)q =

K∑
k=1

v
(n)
k,q ≊

K∑
k=1

v̄
(n)
k,q =

vmax

ξ

D−1∑
d=0

K∑
k=1

η
(n)
k,q,dβ

d

= fdec,β

(
σ
(n)
q,D−1, . . ., σ(n)

q,0

)
,

for σ
(n)
q,d ≜

∑K
k=1 η

(n)
k,q,d =

∑β−1
j=0 sjKq,d,j , where Kq,d,j

denotes the number of EDs given that the dth numeral in (8)
is sj . Hence, we need to estimate Kq,d,j , ∀d, ∀j, to obtain
an estimate of v(n)q . In [17], it is shown that the norm of y(n)l

can be used as K̂q,d,j = (∥y(n)l ∥22 − σ2
n)/Es, where q, d, and

j can be obtained as q = ⌊l/(Dβ)⌋, d = ⌊l/β⌋ mod D, and
j = l mod β, respectively, based on the resource mapping
rule at the transmitters. Finally, σ(n)

q,d and v
(n)
q can be estimated

as σ̂
(n)
q,d =

∑β−1
j=0 sjK̂q,d,j and

v̂(n)q = fdec,β

(
σ̂
(n)
q,D−1, . . ., σ̂(n)

q,1 , σ̂
(n)
q,0

)
, (11)

respectively. Subsequently, c(n)c is updated via (5).
In this study, we assume that each ED reports the cardinal-

ity of the local partitions, i.e., {|S(n)
k,c |,∀c}, to the ES for |S(n)

c |
calculation. It is worth noting that the sum for computing
|S(n)

c | can be evaluated with OAC for further resource saving.
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(e) Flat fading, SNR = 10 dB.
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(f) Frequency-selective fading, SNR = 10 dB.

Fig. 2. The loss over the communication rounds for the wireless federated k-means with OAC (Smin = 0).

C. Enhancements

The performance of the wireless federated k-means with
the proposed OAC scheme can be improved further with
several methods. To reduce the quantization error, we adopt a
similar protocol discussed in [17] to set vmax adaptively. With
this strategy, vmax is updated throughout the communication
rounds as

v(n+1)
max = α×max

k
m

(n)
k , (12)

where m
(n)
k = maxq v

(n)
k,q is a single parameter transmitted to

the ES over an orthogonal channel from the kth ED.
Since the ES does not know the global dataset, the cardi-

nality of some of the partitions can be 0. Hence, the corre-
sponding centroids cannot be updated with (5). To address
this issue, we introduce a generalized re-initialization step as
c(n+1)
c′′ = c(n)c′ + n(n)

c′′ , for c′′ ∈ E ≜ {c|S(n)
c | < Smin, Smin ≥

0}, where c′ is chosen randomly from Ec ≜ {1, . . ., C}/E and
n(n)
c′′ is a zero-mean random Gaussian vector with the variance

of σ2
c . With (III-C), the ES re-initializes a centroid where the

cardinality of the corresponding partition is less than Smin by
assigning it to a point nearby a centroid with |S(n)

c′′ | ≥ Smin.
The corresponding algorithm with the aforementioned en-

hancements is given in Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we analyze the performance of the wire-
less federated k-mean with the proposed OAC scheme for
the scenario illustrated in Fig.1. We consider a 100 m ×
100 m rectangular area for K = 100 EDs. We express
the user’s locations in a 2-D Cartesian coordinate system
(i.e., L = 2) based on a mixture of Gaussian distributions
(10000 points) and a uniform distribution (100 points). We
choose the mixture weights, the mean values on the x-
and y-axes, and the standard deviations on the x- and y-
axes for the Gaussian mixture model as (0.6, 20, 20, 5, 1),
(0.1, 75, 25, 7, 7), (0.1, 50, 50, 10, 1), (0.1, 75, 75, 0.5, 4), and
(0.1, 20, 60, 1, 10). For the uniform distribution, we set the
distribution boundaries 0 and 100 meters for both x- and
y-axes. For the algorithm, we consider C = 100 clusters,
where the initial values of the centroids are set to the center
of the tiles, as shown in Fig.1. We choose v

(0)
max = 300,

Smin ∈ {0, 5}, µ = 0.1, α = 1.2, σ2
c = 1, β ∈ {3, 5},

and D = {1, 3}. We run the algorithm for N = 1000
communication rounds. We generate the results for AWGN
channel (i.e., h

(n)
k,l = 1, ∀k, ∀l), flat fading channel (i.e.,

h
(n)
k,l = h

(n)
k,l′ ∼ CN (0, 1), ∀k, ∀l, l′, l ̸= l′), and frequency-

selective fading channel (i.e., h(n)
k,l ∼ CN (0, 1), ∀k, ∀l) for

SNR ∈ {10, 20} dB. We regenerate the channel coefficients



0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(a) AWGN, SNR = 20 dB.

0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(b) Flat fading, SNR = 20 dB.

0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(c) Frequency-selective fading, SNR = 20 dB.

0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(d) AWGN, SNR = 10 dB.

0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(e) Flat fading, SNR = 10 dB.

0 50 100 150 200 250 300

Communication rounds

2

3

4

5

6

7

8

L
o
s
s

10
4

Baseline

:3, D:1

:5, D:1

:3, D:3

:5, D:3

(f) Frequency-selective fading, SNR = 10 dB.

Fig. 3. The loss over the communication rounds for the wireless federated k-means with OAC (Smin = 5).

to model the time variation. We compare our results with the
standard k-means algorithm, denoted as the baseline, i.e., the
scenario when D is available at the ES for clustering.

In Fig. 2, we provide the loss in (1) over the communication
rounds for Smin = 0 and SNR = {10, 20} dB for different
channel conditions. In this case, the re-initialization step
discussed in Section III-C is disabled. For D = 1, the
OAC scheme introduces high quantization errors for both
β = 3 and β = 5. Hence, for all channel conditions and
SNR levels, their performances are worse than the cases for
D = 2. The proposed scheme performs similarly to the
baseline for D = 2 and β = 5. The performance of the
proposed scheme is slightly better than that of the baseline
due to the random noise in the communication channel, which
allows the algorithm to find a better local optimum point.
We observe a similar improvement when SNR is reduced to
20 dB from 10 dB. In Fig. 3, we analyze the same scenario
in Fig. 2 for Smin = 5. In this case, the partitions have at
least 5 data samples. Since the centroids are utilized more
effectively, the loss is reduced further as compared to the ones
in Fig. 2. The simulation results vary marginally for different
channel conditions, indicating that the wireless federated k-
means with the OAC and the standard k-means can perform
similarly when the quantization error is reduced by increasing
D or β. Also, with the proposed scheme, LCβD = 2000

complex-valued resources need to be utilized for computing
the centroid updates. On the other hand, the same computation
without OAC requires LCKrbitsrcompressionNbits = 32000 for
rbits bits/s/Hz, rcompression = 1/5, and Nbits = 8.

In Fig. 4 and Fig. 5, we provide the locations of the
centroids after N = 1000 communication rounds for Smin = 0
and Smin = 5. As can be seen, the centroid locations are
similar to each other in different channel conditions. We
observe that some of the centroids do not change their
locations as the local datasets are empty for the baseline. It
is also worth noting that some of the centroids are aligned
with the data samples for Smin = 0. This is because the
corresponding partitions have only one data sample. This
implies that the federated k-means algorithm requires any
extra precautions such as noise injection for enhancing privacy
[13]. These issues are addressed for Smin = 5. In this case,
the centroids are more localized in densely populated areas,
resulting in a better representation of the users’ locations.
The centroids are likely not to be aligned with a specific user
location as a partition has at least 5 data samples in this case.

V. CONCLUDING REMARKS

In this study, we propose a wireless federated k-means
clustering algorithm along with an OAC scheme that does
not require CSI at the ES and EDs to address per-round
communication latency. By considering data heterogeneity,
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(d) Freq.-sel. channel, β = 5, D = 3.

Fig. 4. The final centroids for the wireless federated k-means with OAC
(SNR = 10 dB, Smin = 0).

we utilize a maximum-value adaptation method to reduce
quantization error and a re-initialization strategy for a centroid
that has a small cardinality in the corresponding partition to
improve the performance of the algorithm. For a customer-
location clustering scenario, we assess the proposed algorithm
under different channel conditions and OAC configurations.
Our results indicate that the proposed approach can perform
similarly to the standard k-means while reducing the per-
round communication latency notably. Future work will ana-
lyze the convergence of the proposed approach.
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