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Abstract—This paper studies the poisoning attack and defense
interactions in a federated learning (FL) system, specifically in
the context of wireless signal classification using deep learning for
next-generation (NextG) communications. FL collectively trains
a global model without the need for clients to exchange their
data samples. By leveraging geographically dispersed clients, the
trained global model can be used for incumbent user identifica-
tion, facilitating spectrum sharing. However, in this distributed
learning system, the presence of malicious clients introduces the
risk of poisoning the training data to manipulate the global
model through falsified local model exchanges. To address this
challenge, a proactive defense mechanism is employed in this
paper to make informed decisions regarding the admission or
rejection of clients participating in FL systems. Consequently,
the attack-defense interactions are modeled as a game, centered
around the underlying admission and poisoning decisions. First,
performance bounds are established, encompassing the best
and worst strategies for attackers and defenders. Subsequently,
the attack and defense utilities are characterized within the
Nash equilibrium, where no player can unilaterally improve its
performance given the fixed strategies of others. The results offer
insights into novel operational modes that safeguard FL systems
against poisoning attacks by quantifying the performance of both
attacks and defenses in the context of NextG communications.

Index Terms—Federated learning, machine learning, wireless
network, security, poisoning attack, resilience, game theory,
wireless signal classification, NextG communications.

I. INTRODUCTION

Next-generation (NextG) communications are anticipated to
revolutionize various applications such as smart warehouses,
vehicle-to-vehicle networks, and virtual and augmented reality,
offering improved throughput, low latency, and enhanced
quality of experience (QoE). However, simplistic analytical
models based on expert knowledge struggle to capture the
intricate nature of waveforms, channels, and resources in
NextG communications. To address this challenge, machine
learning (ML) emerges as a promising approach, enabling
learning and adaptation to dynamic spectrum conditions. In
particular, deep learning (DL) techniques exhibit exceptional
capabilities in capturing the high-dimensional data character-
istics of wireless communications, surpassing traditional ML
methods for detection, classification, and prediction tasks [1].

DL-based wireless signal classifiers are effective for incum-
bent user detection, which is crucial for enabling dynamic
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spectrum sharing in NextG communication systems with in-
cumbent users. One pertinent use case in the tactical domain
involves spectrum co-existence between NextG communica-
tion systems and tactical radars, such as in the Citizens Broad-
band Radio Service (CBRS) band. DL also finds applications
in physical layer authentication of user equipment in NextG
communications. To address the challenges of data collection
from diverse edge devices, federated learning (FL) offers
a solution by enabling a collaborative system where clients
train a single ML/DL model without sharing their individual
training datasets. Instead, they share only the model parame-
ters with the server (e.g., base station), which processes the
information and disseminates a global model. This approach
not only ensures privacy but also reduces communication load,
as the trained models are typically much smaller than the
original training data. Moreover, edge devices with limited
resources can still participate in collaborative training by using
their own capabilities. These capabilities make FL ideal for
the collaborative training with multiple sensors in a variety
of applications including navigation, autonomy, environment
monitoring, and communications systems. To that end, the use
of FL over a wireless network should take into account the
unique characteristics of wireless communications, ensuring
effective training [2]–[8].

As DL becomes a core part of NextG systems, there is an
increasing concern about the vulnerability of DL to various
exploits, attacks, and non-cooperative behaviors. On one hand,
clients may be selfish to participate in FL [9], [10] by receiving
the global model but not returning their trained local models.
FL may be also subject to conventional jamming attacks
to disrupt communications (model exchanges) between the
clients and the server [11], [12]. In addition, adversarial
machine learning (AML) equips smart adversaries with novel
means to tamper with the training and/or test inputs to DL
algorithms for NextG communications.

The inherent openness and shared nature of the wireless
medium make NextG communication systems highly suscep-
tible to threats from adversaries such as eavesdroppers and
jammers. These malicious actors have the capability to observe
and manipulate the training and test inputs transmitted over the
air. Consequently, there is a growing need to understand the
attack surface concerning AML attacks targeting the data and
control planes of wireless communications [13]–[16].

The utilization of distributed clients in FL systems intro-
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duces a susceptibility to poisoning attacks, which can target
multiple clients. In such attacks, a malicious participant injects
false or deceptive data into the model, leading to biased or
inaccurate results. This compromise can have adverse effects
on the global model in FL, causing incorrect decisions to
occur. The vulnerabilities of wireless systems to poisoning
attacks have been studied for spectrum access [17], cooperative
spectrum sensing [18], and internet of things [19].

In this paper, we adopt a proactive defense approach that
focuses on selecting clients for admission into the FL process.
The effectiveness of this defense lies in potentially rejecting
the poisoned clients while admitting those that are unpoisoned.
By increasing the number of unpoisoned clients admitted and
minimizing the inclusion of poisoned clients, the accuracy of
the system improves. In order to enhance resilience, it is essen-
tial to effectively address the conflicting interactions between
the attack and the defense in an analytical framework. Game
theory provides a mathematical foundation for quantifying the
payoffs associated with these interactions, making it a suitable
tool for modeling both conventional attacks, such as jamming
[20], [21], and AML attacks [22]. In this paper, we formalize
the interactions between the attack and the defense as a non-
cooperative game and quantify the vulnerability and resilience
of FL for NextG signal classification with respect to poisoning
attacks.

The game involves the selection of actions by the attack,
namely which clients to poison, and by the defense, namely
which clients to admit for FL. The defense aims to maximize
the payoff referred to as the utility of resilient operation,
which is based on the classification accuracy while considering
the cost associated with admitting clients to FL, including
computational and communication expenses. Meanwhile, the
attack seeks to maximize another payoff, which is the classifi-
cation error minus the cost incurred when launching the attack,
encompassing activities such as eavesdropping, computing,
and jamming. We identify the Nash Equilibrium strategies as
resilient modes of operation, where neither the attack nor the
defense can unilaterally change their strategy to improve their
payoff given the fixed strategy of the opponent. For this game,
we derive equilibrium payoffs as functions of the classification
accuracy and costs for both the attack and the defense.

The rest of the paper is organized as follows. Section II
provides an overview of FL for wireless signal classification.
Section III delves into the attack and defense mechanisms
for FL in NextG communications. Section IV introduces
the formulated game solution for the scenario involving two
clients participating in FL. Building upon this, Section V
extends the game formulation to accommodate an increasing
number of clients in FL. Section VI concludes the paper.

II. FEDERATED LEARNING FOR DISTRIBUTED SPECTRUM
MONITORING

We employ FL to perform spectrum sensing, where a
signal classification model is trained using a multitude of
edge devices. Each device possesses access to local spectrum
data samples. These devices collect spectrum measurements

within their respective environments, characterized by varying
channel conditions. The collected data is then utilized to train a
local model on each device, which is subsequently transmitted
to a central server. The central server undertakes the task of
aggregating the local models and generating a global model.
This global model is then disseminated back to the edge
devices for further collaborative training, enabling the joint
detection and classification of wireless signals. The FL process
can be summarized as follows:

1) The server initiates the process by distributing the global
model network architecture and a copy of the current
model weight w to all clients.

2) Each client i trains its local model wi with its own data.
3) The clients transmit their local models to the server.
4) The central server aggregates the weight updates from

all the clients and computes a new global model weight
w by employing federated averaging [23]. This updated
model is then communicated back to the clients.

5) The clients repeat steps 2–4 until convergence or a
predetermined number of rounds is achieved.

The model trained by FL is for wireless signal classification.
We assume that the data transmission employs BPSK or QPSK
modulation schemes in the background. A group of spectrum
sensors, corresponding to a total of n clients in the FL system,
is responsible for collecting I/Q data from different locations.
The wireless channel introduces path loss, which is influenced
by the distance between the transmitter and receiver, as well
as random phase shifts. The client locations are assumed to
be randomly distributed, and the receiver experiences random
noise with a fixed power. From the I/Q data, a set of 16 phase
shifts and 16 powers, resulting in 32 features, is utilized to
construct a single sample at each client. The samples are then
labeled as either 0 (BPSK) or 1 (QPSK). The server’s objective
is to train a robust classifier capable of identifying BPSK or
QPSK signals that are obtained from diverse locations.

III. ATTACK AND DEFENSE FOR FEDERATED LEARNING

We consider the poisoning attack on FL. The attacker’s ob-
jective is to select specific clients and manipulate their training
data samples by altering the labels associated with the data.
This results in the generation of distorted model updates that
are incorporated into the global training process. The attacker
incurs a cost, denoted as cA, for each client that it successfully
poisons. To counteract this poisoning attack, we propose a
defense mechanism in the form of a client admission policy
that promotes resilient operation. Under this defense approach,
clients have the autonomy to individually decide whether to
participate in the FL process. Alternatively, the server can
actively select which clients are allowed to participate. The
goal is to ensure that only clients with unpoisoned data are
admitted, while those with poisoned data are excluded from
the FL training process. We consider a cost, denoted as cD,
associated with admitting each client. Fig. 1 shows the system
model for the poisoning attack and defense.

The clients and the server utilize a feedforward neural
network (FNN) architecture, characterized by the properties
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(a) Poisoning attack.
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Fig. 1. Poisoning attack and defense.

TABLE I
FNN PROPERTIES FOR WIRELESS SIGNAL CLASSIFIER.

Input size 32
Output layer size = 2, activation = SoftMax
Dense layers sizes = 128, 64, 32, activation = ReLU

Dropout layers dropout rate = 0.2
(after each dense layer)

Loss function Crossentropy
Optimizer RMSprop

Number of parameters 14,626

outlined in Table I. Each client possesses its own local
model within the FNN framework. For training, each client
contributes 1000 samples. To assess the performance of the
global model, an additional 1000 samples, encompassing data
from all sensors, are utilized. The accuracy of the FL-trained
global model is evaluated after 100 rounds.

Clients undergo a selection process to determine their
participation in FL, either by being admitted or declined.
The effectiveness of this admission policy in maintaining
resilience relies on the success in excluding poisoned clients
and including unpoisoned clients. Consider total of n clients,
m out of them are poisoned (a client is considered poisoned
if its training data samples are manipulated), and i out of
them are admitted (n− i of them are rejected). Let k denote
the number of poisoned clients out of admitted ones. For the
worst defense, clients poisoned are the ones admitted such
that k = min (m, i). For the best defense, clients not admitted
(n − i clients) cover poisoned clients (m clients) as much
as possible. If m ≤ n − i, then all poisoned clients are
rejected. If not, m − (n − i) poisoned clients are admitted
such that k = max (m− (n− i), 0). Overall, the best and
worst defenses would select the admitted clients such that the
number of clients poisoned out of admitted clients is given by

k =

{
max (m− (n− i), 0) , for best defense,
min (m, i) , for worst defense.

(1)

Let Uk|i represent the classification accuracy, which serves
as the reward, in the context of FL when i clients are admitted
and k out of these i clients are affected by poisoning. The
classification accuracy Uk|i for various combinations of k and
i is shown in Figure 2. As the number of poisoned clients
k increases, Uk|i decreases for a given number of admitted

clients i. Conversely, for a fixed value of k, Uk|i increases with
a larger number of admitted clients i since more unpoisoned
clients are included in the FL process. The defense utility is
defined as Uk|i − i cD, where cD is the cost of admitting one
client.
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Fig. 2. Classification accuracy under poisoning attack.

Fig. 3 shows the defense utility as a function of the total
number of clients n. For a given n, the utility is optimized
over the selection of the number of admitted and poisoned
clients for either the best or worst defense case. These results
define the upper and lower limits for the defense utility. In the
following sections, we will delve into the analysis of game
performance within these established bounds.
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Fig. 3. The best and worst defense utilities achieved against the poisoning
attack.

IV. POISONING ATTACK-DEFENSE GAME FOR TWO
CLIENTS

We start with two potential clients available for FL. These
clients use DL for signal classification. Each client trains
its model and sends its parameters to the server. The server
processes all local models and broadcasts the global model
updates to clients. There is an attacker which selects whether
to attack and/or which client(s) to attack. The server decides
which clients to accept or reject as a defense method. We for-
mulate the attack and the defense as a non-cooperative game.



The defense of excluding some clients’ model parameters from
the global model update decreases the system performance so
it cannot be used all the time. Assume the probability of a
server’s admitting client i to FL is qi. Let q denote the vector
of admission probabilities. The probability of the attacker’s
attacking client i is pi. Let p denote the vector of attack
probabilities.

We assume the server makes independent decisions for the
admittance and rejection of each client. Similarly, each client
may decide independently on whether to participate in FL, or
not. If client i = 1, 2 participates in FL, its utility is given by

UN
i (q−i,p) = q−i(pip−i(U2|2 − cD)

+pi(1− p−i)(U1|2 − cD) + (1− pi)p−i(U1|2 − cD)

+(1− pi)(1− p−i)(U0|2 − cD))

+(1− q−i)(pi(U1|1 − cD) + (1− pi)(U0|1 − cD)), (2)

where −i corresponds to user other than i.
If client i = 1, 2 does not participate in FL, its utility is

UD
i (q−i,p) = q−i(p−iU1|1 + (1− p−i)U0|1) (3)

+(1− q−i)U0|0

From (2)-(3), client i’s average utility (averaged over its
strategy qi) is

Ui(q,p) = qiU
N
i (q−i,p) + (1− qi)U

D
i (q−i,p). (4)

For given q−i and p, the objective of each client i = 1, 2
is to maximize its average utility at a given time such as

max
qi: 0≤qi≤1

qiU
N
i (q−i,p) + (1− qi)U

D
i (q−i,p) (5)

or, equivalently

min
qi: 0≤qi≤1

−
(
qiU

N
i (q−i,p) + (1− qi)U

D
i (q−i,p)

)
. (6)

The solution to the optimization problem in (6) should sat-
isfy the Karush-Kuhn-Tucker (KKT) conditions, which would
ensure a local minimum. The Lagrangian is given by

L(qi;µ1
i , µ

2
i ) = −

(
qiU

N
i (q−i,p) + (1− qi)U

D
i (q−i,p)

)
(7)

−µ1
i qi + µ2

i (qi − 1).

The KKT conditions for i = 1, 2 are given by

−UN
i (q−i,p) + UD

i (q−i,p)− µ1
i + µ2

i = 0, (stationarity)
0 ≤ qi, qi ≤ 1, (primal feasibility)
µ1
i ≥ 0, µ2

i ≥ 0, (dual feasibility)
µ1
i qi = 0, µ2

i (qi − 1) = 0. (complementary slackness) (8)

The optimal choice of qi should satisfy the KKT conditions.
The solution when µ1

i = µ2
i = 0 is given by UN

i (q−i,p) =
UD
i (q−i,p). From (2) and (3), if we assume the symmetric

case with pi = p and qi = q, i = 1, 2, we obtain

q(p2(U2|2 − 2U1|2 + U0|2)

+p(2U1|2 − 2U0|2 − U1|1 + U0|1) + U0|2 − cD − U0|1)

+(1− q)(p(U1|1 − U0|1) + U0|1 − cD − U0|0) = 0 (9)

The attacker can choose one of the four different options at
a given time: attack both of the clients simultaneously, attack
only Client 1, attack only Client 2, or attack none of the clients.
The utility of the attacker for case 1 when it decides to attack
both of the clients simultaneously is given by

U2
A(q1, q2) = q1q2(−U2|2 − 2cA) + (10)

q1(1− q2)(−U1|1 − 2cA) +

(1− q1)q2(−U1|1 − 2cA) +

(1− q1)(1− q2)(−U0|0 − 2cA).

The utility of the attacker for case 2 when it decides to
attack only Client 1 is given by

U1
A,1(q1, q2) = q1q2(−U1|2 − cA) + (11)

q1(1− q2)(−U1|1 − cA) +

(1− q1)q2(−U0|1 − cA) +

(1− q1)(1− q2)(−U0|0 − cA).

The utility of the attacker for case 3 when it decides to
attack only Client 2 is given by

U1
A,2(q1, q2) = q1q2(−U1|2 − cA) +

q1(1− q2)(−U0|1 − cA) +

(1− q1)q2(−U1|1 − cA) + (12)
(1− q1)(1− q2)(−U0|0 − cA).

The utility of the attacker for case 4 when it decides not to
attack is given by

U0
A(q1, q2) = q1q2(−U0|2) + q1(1− q2)(−U0|1)

+ (1− q1)q2(−U0|1) + (1− q1)(1− q2)(−U0|0).
(13)

By averaging over the utilities (10)-(13) for four cases, the
attacker’s average utility is given by

UA(q,p) = p1p2U
2
A + p1(1− p2)U

1
A,1 + p2(1− p1)U

1
A,2

+(1− p1)(1− p2)U
0
A. (14)

Given the defender strategy q, the objective of the attacker
is to maximize its total utility

U∗
A(q,p) = max

p:0≤p≤1
p1p2U

2
Ap1(1− p2)U

1
A,1 + (15)

+p2(1− p1)U
1
A,2 + (1− p1)(1− p2)U

0
A.

(15) can be written as a minimization problem as

U∗
A(q,p) = min

p:0≤p≤1
−(p1p2U

2
A + p1(1− p2) ∗ U1

A,1 (16)

+p2(1− p1)U1
A,2 + (1− p1)(1− p2)U

0
A).

The solution to the optimization problem in (16) should
also satisfy the Karush-Kuhn-Tucker (KKT) conditions. The
Lagrangian is given by

L(p;µ1, µ2, µ3, µ4) = −(p1p2U
2
A + p1(1− p2)U

1
A,1

+p2(1− p1)U1
A,2 + (1− p1)(1− p2)U

0
A)

−µ1p1 + µ2(p1 − 1)− µ3p2 + µ4(p2 − 1). (17)



The KKT conditions are given by

−p2U
2
A − (1− p2) ∗ U1

A,1 + p2U
1
A,2

+(1− p2)U
0
A − µ1 + µ2 = 0, (stationarity)

−p1U
2
A + p1 ∗ U1

A,1 − (1− p1)U
1
A,2 + (1− p1)U

0
A

−µ3 + µ4 = 0, (stationarity)
0 ≤ p1, 0 ≤ p2, p1 ≤ 1, p2 ≤ 1, (primal feasibility)
µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0, (dual feasibility)
µ1p1 = 0, µ2(p1 − 1) = 0, (complementary slackness)
µ3p2 = 0.µ4(p2 − 1) = 0.(complementary slackness) (18)

The optimal choice of p should satisfy the KKT conditions.
When µ1 = µ2 = µ3 = µ4 = 0, the solution for the symmetric
case of p1 = p2 = p and q1 = q2 = q is given by

−pq2U2|2 − q2U1|2 − qU1|1 + q2U1|1 − qU0|1 (19)

+q2U0|1 − cA − q2U0|0 + 2pq2U1|2 + q2U0|2 + 2qU0|1

−2q2U0|1 + q2U0|0 − pq2U0|2 = 0.

In Nash equilibrium, (9) and (19) hold. Fig. 4 and Fig. 5
show the attack and defense utilities and strategies, respec-
tively, as a function of the attack and defense cost. The clients
are more declined to participate in FL (i.e., they do not
contribute to the global model) with the increasing defense
cost. Thus, the defense probability decreases. This triggers
more attacks to increase the impact of the attack. As a result,
the attack utility does not decrease with the increasing cost.

V. POISONING ATTACK-DEFENSE GAME FOR MORE THAN
TWO CLIENTS

In this section, we increase the number of potential clients
to participate in FL. Assume there are n clients in total and
each may or may not participate in FL. The defender selects
i out of n clients to admit to participate in FL (n − i clients
are declined from FL). The attacker randomly selects m clients
out of n clients to poison. The utility UA(i,m) for the attacker
consists of two penalties:

• the first penalty is associated with the corresponding FL
reward, and

• the second penalty is for the cost of poisoning m clients
(the cost is cA for poisoning one client), namely m cA
(note that this cost is associated with the data poisoning
attack targeting each client separately).

To compute the first penalty, we need to compute the reward
of FL when i out of n clients are admitted and m out of
n clients are poisoned (namely, m ≤ n). When the attacker
selects m clients to poison, it selects those clients out of n
clients uniformly randomly. We express this reward in terms
of Uk|i which is the FL reward when i out of n clients are
admitted and k out of i clients are poisoned (namely, k ≤ i).
If m clients are selected out of n clients, some clients are from
the set of i admitted clients and the rest are from the set of
other n−i clients that are not admitted. The contribution from
Uk|i to the first penalty UA(i,m) occurs with the probability
(i
k)(

n−i
m−k)

(n
m)

, since there are
(
n
m

)
ways of selecting m poisoned
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Fig. 4. Attack and defense utilities per client.
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Fig. 5. Attacker and defender strategies.

clients from n clients, there are
(
i
k

)
ways of selecting k of

poisoned clients from the i admitted clients and there are(
n−i
m−k

)
ways of selecting the rest of (m− k) poisoned clients

from the clients that are not admitted. Then, the attack utility
is given by

UA(i,m) =

min(m,i)∑
k=0

−
(
i
k

)(
n−i
m−k

)(
n
m

) Uk|i −m cA. (20)

The utility UD(i,m) for the defender consists of one reward
and one penalty:

• the reward is associated with the corresponding FL re-
ward, i.e., the first penalty of the attacker becomes the
reward of the defender), when i clients participate in FL
and m out of these i clients are poisoned, and

• the penalty is for the cost of admitting i clients for FL
(the cost is cD for admitting each client to FL), namely
icD (note that this cost is associated with the information
exchange requirement of the server for each client).

Then, the defense utility is given by

UD(i,m) =

min(m,i)∑
k=0

(
i
k

)(
n−i
m−k

)(
n
m

) Uk|i − i cD. (21)
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Fig. 6. Attack and defense utilities in Nash Equilibrium as we increase the
number of clients.

We define the best response of the attacker to the defender
strategy admitting i clients to FL as

BA(i) = argmax
0≤m≤n

UA(i,m). (22)

Similarly, we define the best response of the defender to the
attacker strategy poisoning m clients as

BD(m) = argmax
0≤i≤n

UD(i,m). (23)

From (20)-(23), Nash equilibrium strategies (i∗,m∗) are com-
puted by solving

(i∗,m∗) ∈ (BD(m∗), BA(i
∗)) . (24)

Fig. 6 shows the attack and defense utilities, UA(i
∗,m∗)

and UD(i∗,m∗), in Nash Equilibrium as a function of the
number of clients n. As n increases, the defense utility
per client decreases as it is easier to poison some of the
increasing number of clients and it becomes costly to admit
more clients. In response, the attack utility increases. As we
increase the attack and defense cost, the attack utility decreases
as it becomes more costly to attack. This decrease helps
the defender compensate the increase of its own cost and
eventually increase its utility for resilient FL.

VI. CONCLUSION

We considered the poisoning attack on FL systems for
wireless signal classification in NextG communications and
analyzed the attack-defense interactions in a game setting to
characterize resilient operation modes for FL. In the poisoning
attack, training data of any client may be poisoned to mislead
the training process for the global model. The defense may
select between admitting or rejecting clients with the ultimate
goal of eliminating poisoned clients. We formulated a non-
cooperative game played between the attacker and the defender
to quantify the performance due to the conflicting interests.
After deriving the attack and defense performance bounds,
we determined the attack and defense strategies and utilities
in Nash equilibrium for two clients and extended the analysis
to an arbitrary number of clients. This analysis has led to
novel resilient operation modes identifying how to protect FL
against poisoning attacks in NextG communication systems.
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