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Sensor-based monitoring has become ubiquitous in modern society, supporting a number of
applications in environmental sciences, urban/city sensing and digital agriculture. AI-based
techniques (e.g., machine learning) are effective at extracting actionable information from
data generated through such sensors. An example is an automated water irrigation system that
uses AI-based techniques on soil quality data to decide how to best distribute water.
Unfortunately, these AI-based techniques are costly in terms of hardware resources, and
Internet-of-Things (IoT) sensors are resource-constrained with respect to processing power,
energy and storage capacity. These limitations can compromise the security, performance and
reliability of sensor-driven applications. To address these concerns, cloud computing services
can be used by sensor applications for data storage and processing. However cloud-hosted
sensor applications that require real-time processing, such as medical applications (e.g., fall
detection and stroke prediction), are vulnerable to issues such as network latency due to the
sparse and unreliable networks between the sensor nodes and the cloud server [1]. As users
approach the edge of a communication network, latency issues become more severe and
frequent. A promising alternative is edge computing, which provides cloud-like capabilities
at the edge of the network by pushing storage and processing capabilities from centralized
nodes to edge devices that are closer to where the data is gathered, resulting in reduced
network delays [2, 3].

The most common machine learning approach used in cloud-based applications is
Centralized Learning (as shown in Fig. 1(a)) where datasets from different clients are sent to
a central cloud for storage and to train a machine learning model. A model trained in this
centralized manner is potentially the most accurate model as it has been trained on all of the
dataset(s). However, centralized training introduces challenges associated with transferring
data to the cloud, such as data privacy and communication overheads.
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Conversely, local learning is an alternative where machine learning models are developed
directly on devices where the data are hosted, using their own local computing resources (Fig.
1(b)). Since data are not shared among clients or with the server, local learning overcomes
privacy and communication overheads of centralized learning. However, local learning alone
can struggle with machine learning bias. This is an emergent problem since data at these
devices are often non-independent and identically distributed (iid). For instance, many data
patterns sensors collect are geographically-related. Thus, sensors from different locations will
likely collect different types of data. Learning independently can result in models that do not
generalize well which can afflict the knowledge extraction across the entire system.

A third alternative is to apply the Federated Learning (FL) paradigm for distributed learning
(Fig. 1(c)). FL is a distributed machine learning technique that enables multiple clients (e.g.,
mobile devices, IoT devices) to collaboratively train a shared global model without needing
their raw data transmitted to the cloud. Instead, local models are trained on each client using
their own data, similar to local learning. Where FL diverges from local learning is that the
server will periodically collect model updates from client devices and aggregate them to
update the global model, which is then redistributed to client devices for further training. FL
has shown to work well in the face of non-iid data distributions which are common in sensor
applications. Therefore, FL is a promising solution for several challenges associated with
decentralized machine learning, such as data privacy, communication efficiency, scalability,
data unavailability or heterogeneity, system heterogeneity in terms of computation power,
storage, and energy availability, computation efficiency and better model performance [4, 5].

Fig. 1. Comparison of Centralized, Local, and Federated Learning Architectures. Federated
learning enables collaborative learning among multiple edge devices without compromising
data privacy. Centralized learning relies on a central server to train a global model on data
from all devices, while local learning trains multiple local models on disjoint subsets of data

Standard FL (Fig. 2(a)) involves sharing model updates with a central server, which can
result in high communication costs, especially if the communication quality (i.e., low data
transfer rate, unreliable connection) between sensors and the central server is poor. This can
cause problems for individual sensors and application performance, especially if the sensor
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application has power constraints and limited connectivity [6]. One possible solution is to
expand the infrastructure and use hierarchical FL. Under hierarchical FL, there are additional
aggregation nodes that may have stronger connections to nearby sensors. These aggregation
nodes also participate in additional levels of aggregation to make sure knowledge is learned
throughout the entire system. Hierarchical FL overcomes some of these issues by allowing
data to remain on edge devices, such as sensors and user owned devices. It enables
optimization of computational and communication overheads that can be customized to suit
the needs of specific applications and networks.

Fig. 2. Illustration of (a) standard FL and (b) hierarchical federated learning; and their
interaction between IoT devices, edge and cloud servers. The aggregation nodes are where
the local model updates from the participating devices or intermediary nodes are combined to
form a global model

Different approaches of hierarchical FL can be employed by making use of available
networking hubs, such as a cloud server that is accessed over the internet and edge servers,
which are computer servers located closer to devices that it serves at the network edge (Fig.
2(b)). One option is to aggregate models within a cloud server, while other options can
involve hierarchical aggregation at the edge server which sends model updates to the cloud
for further aggregation or storage. This allows local processing power and storage capacity to
perform distributed learning without relying solely on a central server, resulting in improved
scalability, reduced latency and privacy preservation of sensitive data.

While hierarchical FL has shown potential in various domains, including precision
agriculture and environmental monitoring, [4] points out that very few production FL
applications have been reported, with most work being proof-of-concept prototypes. The
paradigm itself is relatively new and its implementation requires careful consideration of
various issues such as data inequality [7 - 8] and malicious attacks [9 - 11]. Another
important challenge to overcome with FL is the cost of adoption and the incentives to
incorporate FL into existing systems. In FL, devices must contribute their computational
resources and data to train a model. However, some organizations may be reluctant to
participate due to the computational resources needed to participate and data transfer and
communication costs. Furthermore, there may not be the right incentives to join if a benefit
from the global model's performance is not properly recognized. For example, an industry
leader may be less incentivized to adopt multi-organizational FL if they are already the
primary source of data as their marginal benefit would be significantly lower.
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Various methods have been proposed to address these challenges to incentivize participation
in FL. These methods include providing monetary or non-monetary rewards for contributing
data, ensuring that the global model's performance benefits all participants, and providing
greater control over the use of data by participants. For example, [12] proposed a
reward-based mechanism that provides tokens to devices that contribute data to the FL
model, which can then be used to purchase services or products. [13] propose a
privacy-preserving FL model that allows participants to retain control over their data and
provides incentives for contributing high-quality data.

In this article, we present a case study of the feasibility and benefits of FL for precision
agricultural spraying and extend it to a larger conceptual hierarchical FL architecture for
smart farming. We also discuss ongoing efforts to improve hierarchical FL systems using
standardized quality frameworks to systematically identify and prioritize the efforts. Finally,
we cover open problems associated with this technology and highlight its potential to
transform numerous domains such as precision agriculture, environmental monitoring,
healthcare, and smart infrastructure. Our goal is to provide a roadmap for further
development of hierarchical FL in instrumentation and measurement.

Federated Learning for Precision Spraying
In the previous section, we discussed the different types of learning architectures that can be
applied to edge devices. In this section, we present a case study involving precision spraying
in agriculture (see Fig. 3) to highlight the benefits of FL.

Fig. 3. Precision spraying prototype using edge federated learning. 

Traditional spraying methods often apply pesticides uniformly across an entire field, leading
to waste and potential harm to crops. In contrast, precision spraying uses cameras, optical
sensors, and GPS receivers to provide accurate location data, enabling robots to apply spray
only where necessary. However, the advanced data processing and machine learning required
for precision spraying can be resource-intensive, making it challenging to perform all
operations on the sensor or robot alone.

Data collected from sensors can be processed using cloud computing relying on connectivity,
but this can be a challenge in remote environments. By relying on computational resources at
the edge server, data can be processed in real-time or limited-time to accelerate the
decision-making process. FL can further improve spray precision by enabling learning from
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different data sources (e.g., across different locations with different distributions of
plant/weed species) while preserving data privacy and security. This is particularly important
for farmers who are concerned about data privacy and potential cyberattacks. Furthermore,
FL can be flexibly performed on a network of edge devices potentially of different types,
which can scale up or down to meet the needs of different agricultural operations, making it a
valuable tool for precision spraying.

In this feasibility study, we limit the discussion to a single source of information, which is a
near-infrared hyperspectral imaging system that is used to guide the operations of a mobile
precision pesticide spraying robot at each of the three pasture sites (Site A, B and C). Each
robot processes the input information using a local machine learning model (e.g., an image
classifier implemented by a Convolutional Neural Network). The intent is to have the robot
apply spray to a plant only if the plant is classified as a weed, ensuring minimal impact on
crops. Storing a machine learning model locally ensures that spray operations can continue in
areas without network coverage. Although the local model is trained using local data (~71
Megabytes), it periodically receives updates (~0.04 Megabytes) from the server via FL to
incorporate knowledge learned from other pasture sites. With FL, communication is
significantly reduced from 71 Megabytes to 0.04 Megabytes. Different forms of computation
resources reside in each pasture site, with the model potentially being trained on the robot
using single-board computational devices such as Raspberry Pi or Jetson Nano. The
locally-trained models from each pasture site are then aggregated using Federated Averaging
[14], a popular aggregation algorithm in FL. The pasture sites are interconnected using
communication infrastructure for sharing information and enabling FL.

The dataset used during our evaluation consisted of four labelled classes: three species of
pastoral weed and a background class of grass (see Table 1). The evaluation results for our
case study with different machine learning methods (discussed in the previous section and
Fig. 1) are shown in Fig. 4, whereby FL achieves 96% accuracy, a result that is comparable to
centralized learning where all the data are present, and a marked improvement compared to
local learning where only local data are present. Our result confirms that FL is capable of
addressing the dilemma between network latency, bandwidth limitations, data privacy and
data sharing while providing comparable model performance.

Table 1. Pasture Image Dataset with Imbalanced Class Distributions and Disparate Volumes
of Data Across Sites

Pasture Site A B C

Number of labelled samples 60072 30240 6232

Number of labelled classes (W: pastoral weeds,
G: background grass)

4 (3W+G) 4 (3W+G) 2 (1W+G)
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Fig. 4. Classification accuracy comparison between centralized, local, and federated machine
learning approaches trained on dataset described in Table 1.

A Hierarchical Federated Learning Architecture for Smart Farming
We now consider broadening the precision spraying use case to a larger conceptual
hierarchical FL architecture for smart farming. Precision agriculture often involves gathering
heterogeneous data from various sensors within a farm. By leveraging FL, farmers can
benefit from insights gained from other farms without compromising the privacy of their own
raw data. This will enable them to enhance crop yields and minimize wastage.

Fig. 5 illustrates the physical, cyber and networked (interconnected) view of a precision
agriculture robot at work. Fig. 5(a) shows the "physical world" where the robot has sensors
on board and navigates to perform tasks such as harvesting, weeding, and spraying. Fig. 5(b)
represents the "cyber world" where the robot processes input information from its sensors
using a local machine learning model to perform high priority tasks that must continue even
when the communication fails (i.e. navigation). The robot also monitors the quality of service
for communication and decides whether to pass on further information or receive information
from the cloud. Fig. 5(c) is the "interconnected world" where a group of robots is connected
via a communication infrastructure for FL to share knowledge and improve their respective
local machine learning models based on collective learned experiences.
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Fig. 5. Illustration of hierarchical federated learning in precision agriculture.

The types of sensor systems used for smart farming are heterogeneous. For example, a smart
farm may rely heavily on IoT sensors and cameras to collect and process data related to soil
quality and plant visual information. Additionally, smart farms may use multiple data sources
to optimize farming operations. These data sources may include historical data, real-time
sensor data, and publicly available data to predict soil water levels and future weather
patterns with machine learning models. Fig. 6 illustrates an example of a hierarchical FL
architecture for smart farming to train lightweight machine learning models on edge devices.

In this example, the architecture uses Apache Kafka, a popular distributed event streaming
platform. Kafka is used to collect data from IoT devices and sensors located at the edge of the
network, enabling real-time processing and response to changing conditions. Instead of
waiting for large amounts of data to be collected and sent to a remote, central server, data
streaming enables the sensor devices to transmit the local models to the edge servers in
real-time—thus reducing latency and facilitating more efficient use of available network
bandwidth. Hierarchical FL allows for adaptive clustering of the edge devices involved in the
FL process, whereby groups of devices can be divided into smaller clusters for the training
depending on device availability, scalability and power requirements. By making use of
Kafka clusters to facilitate communication between the edge devices and the FL framework,
fault tolerance can be incorporated with multiple brokers running on different machines to
ensure high availability and data replication.
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Fig. 6. Illustration of a hierarchical federated learning architecture for smart farming

FuncX [15] is a federated function-as-a-service platform that enables computation,
represented as programming functions, to be dispatched for execution on edge resources.
FuncX is used here to manage the deployment of the machine learning models to the edge
devices and to invoke the models for inference and training. FuncX uses the Parsl [16]
parallel programming library to manage the parallel execution of the federated learning tasks
on edge devices. It is worth noting that this simple architecture can be easily extended to
include heterogeneous resources such as Raspberry Pis and Nvidia Jetsons with GPUs, which
can be deployed near the sensors for more local data processing. This introduces interesting
research questions on the implicit trade-offs related to such system heterogeneity.

Overall, using a hierarchical FL architecture for edge devices has the potential to
revolutionize smart farming by enabling more efficient and effective data sharing, processing
and decision-making, resulting in improved crop yields and reduced water waste. It is also
resilient against issues such as unreliable network connectivity, which is an important
consideration as limited network coverage is commonly encountered in agricultural land.

Similar architectures can be developed for other applications such as:

● Environmental monitoring. Hierarchical FL could enable better analysis of data
collected from remote sensors and devices, leading to better understanding and
management of natural resources.

● Healthcare. Medical sites can collaborate and share machine learning models to
improve the accuracy of diagnosis and treatment without having to share sensitive
patient information.

● Wearable monitoring devices. IoT devices are integrated into devices to monitor
human biometric data such as heart rate, temperature and movement patterns aiming
to identify potential safety hazards and improve worker safety in the hazardous work
environment.
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Application Requirements for Hierarchical Federated Learning
Hierarchical FL systems have great potential to realize new sensor-driven applications, as
discussed in the previous section. However, the technology faces numerous challenges due to
the diverse nature of these applications, and the equally diverse performance requirements.
Some of these requirements can conflict with one another. To address the needs of these
systems systematically, we recommend using two widely recognized standards for software
quality and data quality, which are the ISO/IEC 25012 [17] and ISO/IEC 25010 [18]
frameworks respectively. By applying these frameworks, we can identify and prioritize the
requirements, design appropriate performance metrics, and develop techniques and
algorithms that optimize the trade-offs between conflicting requirements. This will help
ensure that hierarchical FL systems are reliable, efficient, and effective, and can be deployed
in a wide range of real-world applications.

● Functionality is a crucial metric that measures the system's ability to perform
consistently and accurately over time. This metric is closely related to data quality
since poor-quality data can result in unreliable and inaccurate machine learning
models. Optimizing hierarchical FL parameters, applying model personalization and
transfer learning techniques, and adapting the models to the specific characteristics of
each device can help improve functionality.

● Reliability is important for edge devices, which often operate under intermittent
connectivity, mobility, and resource-constrained conditions [19]. These challenges can
make it difficult to develop efficient and reliable FL systems. To overcome these
challenges, researchers are exploring techniques such as task offloading [20], adaptive
sampling [21], and reinforcement learning to optimize the system performance and
adapt to changing edge computing environments [22]. Redundancy can be introduced
by configuring the edge devices into different clusters, which may improve reliability
in hierarchical FL.

● Performance efficiency can be evaluated by quantifying the computation and
communication overheads. In hierarchical FL systems, the edge server acts as a
coordinator, responsible for aggregating and processing the data from multiple edge
devices [23]. This can create a huge computational and communication burden on the
edge server, which can result in high latency, reduced system performance, and
increased communication costs. To mitigate these challenges, researchers are
exploring techniques such as partitioning and scheduling to distribute the computation
and communication load across multiple edge servers and among cloud and edge
servers [6]. The use of data streaming techniques helps to further reduce
communication overheads while also increasing the reliability of the edge systems.
Furthermore, due to resource constraints, mobility, and varying edge computing
environments, engineers should consider metrics like system scalability, cost/benefit
balance, and application size on the edge device to evaluate resource utilization.
Techniques like task offloading, adaptive sampling, and reinforcement learning can
further optimize system performance and adapt to changing edge computing
environments. The convergence rate of the learning process is also a critical
consideration.

● Compatibility is essential in terms of device heterogeneity, where edge devices may
not have the same type of sensors and may run on different operating systems and
software. Edge devices used in FL systems may differ in terms of their hardware
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capabilities, such as CPU processing power, memory, and battery life, as well as their
software configurations, such as operating systems and libraries. This heterogeneity
can lead to statistical heterogeneity in the data collected from the devices, making it
challenging to develop models that generalize well across all devices [24]. To
overcome this challenge, researchers are exploring methods such as transfer learning
[25] and model personalization [26] that can adapt the models to the specific
characteristics of each device.

● Security is a significant concern for hierarchical FL systems. FL provides some level
of privacy, but to protect data and models from malicious actors, techniques like
secure aggregation, differential privacy, blockchain, and homomorphic encryption can
be applied. Hierarchical FL systems may have edge servers from different sources,
which makes the system more vulnerable to security threats such as data leakage,
model poisoning, and inference attacks [23]. To address these challenges, researchers
are exploring techniques such as secure aggregation [27], differential privacy [28],
and homomorphic encryption [29] to ensure that the data and models are protected
from malicious actors. Metrics like confidentiality, currentness, and reliability can be
used to evaluate the severity of security challenges, as defined by the ISO/IEC 25010
standard for data security and accessibility.

● Dynamic infrastructure is a common problem in hierarchical FL systems. In these
settings, the aggregation nodes are not necessarily static or fixed over time. It may be
necessary for the aggregation node to change over time if a node is rendered offline
due to low battery or a poor communication channel. This makes ensuring stable
hierarchical FL difficult. Strategies to prevent this can be resource-aware real-time
decision-making where edge devices coordinate among themselves to decide how
communication should be done among them.

● Software support. Currently, common FL frameworks (e.g., Flower, PySyft) do not
natively support hierarchical FL, especially for highly dynamic systems where
infrastructure may change over time.

Opportunities and Open Problems
The opportunities and future research directions for using FL for sensing and measurement
can be organized along three key axes: (i) resource management and coordination of devices
that make up the FL system; (ii) data management and access; (iii) application-specific
considerations, such as the use of UAVs [30] and Internet of Medical Things [23]. In this
section, we elaborate on the first two axes, which have general applicability across different
domains. The third is domain-specific and thus not included in this general roadmap.

Resource Management & Coordination

FL opens up new methods for supporting fault tolerance of IoT devices. The use of multiple
IoT devices increases the completeness of data and facilitates the detection and correction of
erroneous readings and faults. An FL system capable of supporting multiple heterogeneous
devices and able to recover from faults is reported in [31]. A hierarchical FL system able to
account for the hierarchy of edge servers may result in multiple memberships for IoT devices
requiring recovery and adaptation at several levels.
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Another direction is the integration of self-adaptivity into IoT devices using hierarchical FL.
IoT devices become self-adaptive by learning from their past operations and performance
data, and can detect changes in environmental conditions, predict equipment failure and
automatically adjust device parameters [32]. As IoT devices collect knowledge about their
environment, they must share knowledge to better understand their environment and its
dynamics. However, a collective system of self-aware devices does not have a centralized
knowledge base. FL could facilitate sharing of knowledge between devices as a collective.
Unlike context-aware systems, which typically assume a ground-truth-based environmental
context that is true for all IoT devices, it is explicitly acknowledged that self-aware devices in
the collective systems will have different experiences of a shared environment [33]. A
federated system can be expanded to incorporate information for edge servers to provide
self-adaptiveness for different branches of the edge computing infrastructure, and to provide
context on how the information was gathered.

Hierarchical FL architectures are inherently resilient against network latency and bandwidth
limitations – opening up new opportunities for network optimization due to the heterogeneity
of edge environments. For example, network routing needs to be dynamically adapted and
optimized to traffic patterns and topologies to improve network throughput and latency.
Meanwhile, new network designs and paradigms can be introduced, such as Software-defined
Networking and Blockchain.

New algorithms and techniques that are specifically designed to optimize resource
allocation in edge computing environments can dynamically allocate computational and
communication resources to different tasks based on their priority and application-specific
requirements. This allows for real-time balancing of multiple objectives. For example, a
healthcare application using a large number of medical sensors to collect, adapt and react to
medical information in real-time requires security robustness and resource optimization for
computational and communication tasks [34]. The energy consumption of IoT devices and
edge computing infrastructure can be optimized by dynamically adapting the computational
workload and communication overhead to the available energy and power constraints.

Exploring multi-objective optimization techniques such as evolutionary algorithms and
Pareto optimization is another direction of research that is crucial due to the complexity of
hierarchical FL systems. There is a need to balance multiple objectives and constraints, such
as communication overhead, energy consumption, privacy preservation, and security while
creating a global machine learning model with limited and heterogeneous resources. This
requires the coordination of multiple clients and servers at different layers of the system,
creating a complex interaction network. Additionally, the underlying technologies used, such
as wireless communication, data storage and processing, and machine learning algorithms,
introduce their sets of constraints and trade-offs that need to be considered in the optimization
process, where not only performance but scalability needs careful consideration when
optimizing these conflicting objectives.

Data Management & Access

While FL adds a layer of privacy around user data by eliminating the need to share data with
others, sharing model updates do not offer privacy guarantees as individual data points can be
reconstructed [35]. To address this issue, privacy-preserving FL can be expanded using
techniques such as differential privacy, homomorphic encryption and digital signatures
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[23][36]. These techniques enable FL in edge computing environments while preserving the
privacy of data and participants. For instance, differential privacy provides privacy
guarantees for medical image analysis. In unstable edge computing environments, such as
smart healthcare, a privacy protection scheme is proposed that provides gradient privacy and
resistance to collusion and replay attacks for Internet of Medical Things (IoMT) [23]. A
privacy protection technique for a hierarchical FL system needs to be computationally
efficient and adaptable to the underlying learning algorithms with an ability to effectively
scale to a large number of clients and servers.

Fig. 7 summarises some of the opportunities presented by hierarchical FL that make it an
exciting area of research for engineers and academicians in the field of instrumentation and
measurement.

Fig. 7. Future directions for hierarchical federated learning in sensor applications

Conclusion
Sensor-based data collection has continued to increase over recent years, primarily due to the
availability of low-cost sensing environments and increasing integration of sensing with
Cloud-hosted analytics. However, latency constraints between sensing and analytics can limit
benefits, thus requiring the availability of edge clouds, capable of undertaking partial analysis
in proximity to sensing devices. Such infrastructure provides additional opportunities to
deploy machine learning closer to where data is captured, providing initial analysis at lower
computational cost and at lower latency. Challenges in realising such a machine learning
environment are investigated, along with the benefits and limitations of realising this in
practice. Hierarchical federated learning is an emerging technology that enhances the
intelligence of sensor systems in many applications such as environmental quality
management, personalized healthcare devices, and precision agriculture. Secure, resilient and
robust sensor systems that support real-time, data-driven decision-making are valuable
infrastructure for helping us reduce carbon emissions (SDG 13 - Climate Action), promote
sustainable urbanization (SDG 11 - Sustainable Cities and Communities) and improve
healthcare outcomes (SDG 3 - Health and Well-being). We urge researchers and practitioners
to collaborate on the opportunities and open problems presented in this article to realize the
full potential of this technology.
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