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Abstract—Keyword extraction is a fundamental task in natural
language processing that facilitates mapping of documents to
a concise set of representative single and multi-word phrases.
Keywords from text documents are primarily extracted using
supervised and unsupervised approaches. In this paper, we
present an unsupervised technique that uses a combination of
theme-weighted personalized PageRank algorithm and neural
phrase embeddings for extracting and ranking keywords. We
also introduce an efficient way of processing text documents and
training phrase embeddings using existing techniques. We share
an evaluation dataset derived from an existing dataset that is used
for choosing the underlying embedding model. The evaluations
for ranked keyword extraction are performed on two benchmark
datasets comprising of short abstracts (Inspec), and long scientific
papers (SemEval 2010), and is shown to produce results better
than the state-of-the-art systems.

I. BACKGROUND AND INTRODUCTION

Keywords are single or multi-word linguistic units that
represent the salient aspects of a document. In this paper, we
use the term keyword uniformly to represent both single and
multi-word phrases. Keywords are useful in many tasks such
as indexing documents [1], summarization [2], clustering [3],
ontology creation [4], classification [5], auto-tagging [6] and
visualization of text [7]. Due to its widespread use, keyword
extraction has received a lot of attention from researchers.

In order to push the state-of-the-art performances of key-
word extraction systems, the research community has been
hosting shared tasks like SemeEval 2010 Task 5 [8] and Se-
mEval 2017 Task 10 [9]. However, the task is far from solved
and the performances of the present systems are worse in
comparison to many other NLP tasks [10]. Some of the major
challenges are varied length of the documents to be processed,
their structural inconsistency and developing strategies that can
perform well in different domains [11].

Methods for automatic keyword extraction are mainly di-
vided into two categories: supervised and unsupervised. Super-
vised methods approach the problem of keyword extraction as
a binary classification problem [11], whereas the unsupervised
methods are mostly based on TFIDF, clustering, and graph-
based ranking [12]. On presence of domain-specific data,
supervised methods have shown better performance than the
unsupervised methods. The unsupervised methods have the
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advantage of not requiring any training data and can produce
results in any domain. However, the assumptions of unsuper-
vised methods do not hold for every type of document.

With recent advancements in deep learning techniques ap-
plied to natural language processing, the latest trend is to
represent words as dense real-valued vectors obtained by
training a shallow neural network on a fixed vocabulary. These
distributional representation of words are popularly known
as word embeddings. These neural representations have been
shown to equal or outperform other methods (e.g. LSA, SVD)
[13]. The vector representation of words, are supposed to
preserve the semantic and syntactic similarities between them.
They have been shown to be useful for several natural language
processing (NLP) tasks, like part-of-speech tagging, chunking,
named entity recognition, semantic role labeling, syntactic
parsing, and speech processing, among others [14]. Some of
the most popular approaches for generating word embeddings
are Word2Vec [15], Glove [16] and Fasttext [17].

Word embeddings have already shown promising results
in the process of keyword extraction from scientific articles
[18], [19]. However, Wang et al. did not use domain-specific
word embeddings and had suggested that training them might
lead to improvements. This motivated us to experiment with
domain-specific embeddings on scientific articles. In this work,
we represent candidate keywords extracted from a scientific
article by domain-specific phrase embeddings and rank them
using a theme-weighted PageRank algorithm [20], such that
the thematic weight of a candidate keyword indicate how
similar it is to the thematic representation of the article, which
is also constructed using the embeddings. To our knowledge,
using multi-word phrase embeddings for constructing thematic
representation of a given document and to assign thematic
weights to phrases have not been used for ranked keyword
extraction, and this work is the first attempt to do so. Table 1.
shows keywords extracted by using our method from a sample
research article abstract.

We not only aim at extracting the keywords that are statisti-
cally relevant for the given document, as mostly attempted by
previous studies [11], but also to rightly identify meaningful
phrases that are most semantically related to the main theme
of the document. We are motivated by the following properties



Title: Identification of states of complex systems with estimation of
admissible measurement errors on the basis of fuzzy information.

Abstract: The problem of identification of states of complex systems on the
basis of fuzzy values of informative attributes is considered. Some estimates
of a maximally admissible degree of measurement error are obtained that
make it possible, using the apparatus of fuzzy set theory, to correctly identify
the current state of a system.

Automatically identified keywords: complex systems, fuzzy information,
admissible measurement errors, fuzzy values, informative attributes
measurement error, maximally admissible degree, fuzzy set theory

Manually assigned keywords: complex system state identification,
admissible measurement errors, informative attributes, measurement errors
fuzzy set theory

TABLE I: Keywords extracted by using our method from a sample
research article abstract.

for the top-K keywords that we select, as mentioned in [21].

o Understandability - The ranked keywords should be
understandable to readers, which is made possible by
chosing grammatically correct and meaningful phrases
that possess the characteristic of high readability by
humans (Section II-A). For example, the phrase scientific
articles has more understandability than the individual
words scientific and articles.

e Relevancy - The top-K keywords should be semantically
related to the central theme of the document (Section
1I-D).

e Good Coverage - The keywords should cover all the
major topics discussed in the document (Section II-F).

This intrigued us to look at the route of training phrase
embeddings as presented in this paper, rather than first training
embedding models for unigram words and then combining
their dense vector representations to obtain similar represen-
tations for multi-word phrases.

The major contributions of this paper are,

o Efficient processing of text for training neural phrase
embeddings using existing techniques for training word
embeddings.

o Thematic representation of text documents using phrase
embeddings and assignment of thematic weights to can-
didate keywords.

o Theme-weighted personalized PageRank algorithm for
automatic ranking of candidate keywords extracted from
a text document.

Next, we give a detailed description of our methodology.

II. METHODOLOGY

In our framework we primarily use three steps: candidate
selection, candidate scoring, and candidate ranking. All the
steps depend on a phrase embedding model that we train, and
the choice of our text processing steps. We explain them next
and give a detailed description of their implementations.

A. Text Processing

It has been shown [15], that the presence of multi-word
phrases intermixed with unigram words increases the perfor-
mance and accruacy of the embedding models trained using
techniques such as Word2Vec. However, in our framework
we take a different approach in detecting meaningful and

cohesive chunk of phrases while preparing the text samples
for training. Instead of relying on measures considering how
often two or more words co-occur with each other, we rely on
already trained dependency parsing and named entity extrac-
tion models provided by Spacy'. We split a text document into
sentences, tokenize a sentence into unigram tokens, as well as
identify noun phrases and named entities from it. During this
process if a named entity is detected at a particular offset in
the sentence then a noun phrase appearing at the same offset
is not considered.

We take steps in cleaning the individual single word and
multi-word tokens that we obtain. Specifically, we filter out
the following tokens.

o Noun phrases and named entities that are fully numeric.

« Named entities that belong to the following categories
are filtered out : DATE, TIME, PERCENT, MONEY,
QUANTITY, ORDINAL, CARDINAL. Refer, Spacy’s
named entity documentation® for details of the tags.

o Standard stopwords are removed.

« Punctuations are removed except -’.

We also take steps to clean leading and ending tokens of a
multi-word noun phrase and named entity.

o Common adjectives and reporting verbs are removed
if they occur as the first or last token of a noun
phrase/named entity.

o Determiners are removed from the first token of a noun
phrase/named entity.

o First or last tokens of noun phrases/named entities be-
longing to following parts of speech: INTJ Interjection,
AUX  Auxiliary, CCONJ Coordinating Conjunction,
ADP Adposition, DET Interjection, NUM Numeral,
PART Particle, PRON Pronoun, SCONJ Subordinating
Conjunction, PUNCT Punctutation, SYM Symbol, X
Other, are removed. For a detailed reference of each of
these POS tags please refer Spacy’s documentation®.

« Starting and ending tokens of a noun phrase/named entity
is removed if they belong to a standard list of english
stopwords.

« Starting and ending tokens of a noun phrase/named entity
is removed if they belong to a standard list of english
functional words.

Apart from relying on Spacy’s parser we use hand crafted
regexes for cleaning the final list of tokens obtained after
the above data cleaning steps. The regexes are obtained from
Textacy*, which is a text mining library built on top of Spacy.

o Get rid of leading/trailing junk characters.

« Handle dangling/backwards parentheses. We don’t allow
(" or ’)’ to appear without the other.

« Handle oddly separated hyphenated words.

« Handle oddly separated apostrophe’d words.

« Normalize whitespace.

Thttps://spacy.io
https://spacy.iofusage/linguistic-features#section-named-entities
3https://spacy.io/api/annotation#pos-tagging
“https://github.com/chartbeat-labs/textacy/blob/master/textacy/text_utils.py



% ) | split into sentences

Donald Trump is the 45% president of United States.

Named Entity Extraction

Donald Trump [PErsoN | is the 45th president of | United States [Gpe

the 45t president NN || of  IN || United States NNP

Text
Document

Donald Trump | NNP is VvBZ

Merge named entities and noun phrases after applying phrase cleaning heuristics ‘

Donald Trump || 45th president | United States

Fig. 1: Text processing pipeline

The resultant unigram tokens and multi-word phrases are
merged in the order they appeared in the original sentence.
Figure 1, shows an example of how the text processing pipeline
works on an example sentence for preparing the training
samples that act as an input to the embedding algorithm.

B. Embedding Model Selection

In this section, we build on our previous work [22] and train
our embeddings using popular techniques. For implementing
our framework, a phrase embedding model is needed that can
be used for constructing semantically aware representations of
phrases, sentences and textual content that forms as a basis for
calculating similarities. We are mainly interested in capturing
three kinds of similarities phrase-phrase, sentence-sentence
and phrase-sentence, respectively. Although, we don’t use
phrase-phrase similarity, yet it is fundamental towards under-
standing the quality of the trained models and also acts as a
building block for the other types of similarity calculations. In
order to evaluate the models for the above criterias, we needed
an evaluation dataset. We created three datasets from an
exsiting dataset’, originally developed for evaluating document
representations that capture document similarities [23].

1) Evaluation Dataset: The first dataset consists of 106
triplets, which is a subset of manually curated triplets provided
in the original dataset. It consists of three phrases in a triplet
for evaluating phrase-phrase similarity, where the first phrase
is semantically closer to the second phrase than it is closer
to the third phrase. For example, Deep learning is closer
to Machine learning than Computer network or September
is closer to October than June. The second dataset consists
of 6247 triplets, which is also a subset of automatically
generated triplets shared in the original dataset. The triplets
are phrases that are titles of Wikipedia articles and are also
used for evaluating phrase-phrase similarity. The first phrase
is supposed to be closer to the second than the third, on the
basis, that the first and second phrases are titles of articles
belonging to the same category in Wikipedia, unlike the third
phrase, which is the title of an article from Wikipedia that
belongs to a different category. Contrary to the original dataset
that uses the full content of the Wikipedia articles mapped to
these triplets for evaluating document similarities, we only use
the title phrases.

Shttp://cs.stanford.edu/ quocle/triplets-data.tar.gz

The third dataset consists of 6,353 triplets that we derive
from the first two datasets and original articles automatically
collected from Wikipedia. The triplets are phrase-sentence
combinations intended for evaluating phrase-sentence and
sentence-sentence similarities. We combine the triplets from
first two datasets and collect all the Wikipedia articles mapped
to them using a crawler. Each part of the triplet consists of
a combination of a phrase, which is the title of a Wikipedia
article, and the first sentence of the article that mentions that
phrase. The first phrase is supposed to be semantically more
similar to the sentence associated with it than the sentence
associated with the second or the third phrase. For example,
Deep learning is closer to “Deep learning (also known as deep
structured learning, hierarchical learning or deep machine
learning) is a class of machine learning algorithms that:
use a cascade of many layers of nonlinear processing units
for feature extraction and transformation”, than “A computer
network or data network is a telecommunications network
which allows nodes to share resources”, which is a sentence
about computer network. Also, the first sentence is closer
to the second sentence (Machine learning is the subfield of
computer science that, according to Arthur Samuel in 1959,
gives “computers the ability to learn without being explicitly
programmed.”) than the third sentence. Additionally, we au-
tomatically collect full content of 17,326 Wikipedia articles
mapped to the titles of the triplets provided in the original
dataset, which we use for training different configurations of
phrase embedding models that are further used for carrying out
the similarity evaluation tasks. The entire evaluation dataset is
publicly shared®.

2) Training: We process the text of the Wikipedia articles
as explained in Section II-A and prepare the dataset for
training phrase embeddings. In order to select the model con-
figurations that would best capture the underlying similarities
between different textual units, we train phrase embedding
models using skipgram and continuous bag of words schemes
as implemented in Word2Vec” and Fasttext® toolkits. The vo-
cabulary size of all our models is 3,000,664 unique phrases. In
this work, we use negative sampling for all the schemes, with
the number of negative samples fixed to 5. We also fix the size
of the context window to 5 and number of epochs to 10. For
producing the vector representations of larger blocks of text,
like sentences, we average out the vectors of individual phrases
extracted from it. The accuracies of the trained models for
different dimensions (10 - 1000) on three different similarity
tasks phrase-phrase, sentence-sentence and phrase-sentence
are reported in Tables II, III and IV, respectively.

The models that we train in this section is not used directly
for the downstream process of ranked keyword extraction. We
perform these training and evaluations in order to narrow down
to an optimal set of parameter configurations and scheme for
training the main phrase embedding model that we use for

www.example.com

https://radimrehurek.com/gensim/models/word2vec.html
Shttps://github.com/facebookresearch/fastText



Model |Dataset| 10 25 50 75 100 | 500 | 1000
Word2Vec [ manual |, (o |94 609, | 83.52% | 83.52% | 87.86% | 87.86% | 84.60%
Skipgram | triples

zf;;(e); 62.48% | 64.98% | 64.89% | 64.60% | 64.98% | 66.29% | 64.77%
Word2Vec | manual
CBOW | triples | 63-04% | 80.26% | 83.52% | 81.34% | 80.26% | 81.34% | 79.17%
I‘ZZ[I‘;S 60.70% | 62.10% | 60.11% | 61.50% | 61.42% | 61.08% | 61.50%
Fasttext || manual | 0 17| 6g 950, 92 179 | 94.39% | 90.04% | 86.95% | 90.04%
Skipgram | triples
r;‘u")’lzb 64.85% | 67.05% | 67.65% | 67.18% | 68.28% | 64.12% | 67.90%
Fasttext | manual
CBOW | miples | 73:73% | 8243% | 88.95% | 85.69% | 90.04% | 86.95% | 83.52%
t;’;;’e’v 62.14% | 65.32% | 64.89% | 65.19% | 64.68% | 64.12% | 63.41%

TABLE 1II: Accuracies of phrase embedding models for
phrase-phrase similarity task.

Model 10 25 50 75 100 | 500 | 1000
Word2Vec| o 110, 1 65.63% | 66.56% | 65.74% | 66.36% | 66.25% | 65.98%
Skipgram
nggy‘fc 60.52% | 62.69% | 63.78% | 63.93% | 63.85% | 64.03% | 63.79%
Fasttext | o5 5001 60.05% | 70.04% | 70.51% | 70.94% | 70.95% | 71.03%
Skipgram
Fcalzt(t)“i’;,t 63.65% | 66.67% | 67.79% | 67.92% | 67.77% | 68.01% | 67.40%

TABLE III: Accuracies of phrase embedding models for
sentence-sentence similarity tasks.

implementing our framework. We are interested to try out
many other tools and configurations and study the effects on
the quality of the phrase embeddings, as a part of our future
work. We believe that the dataset developed and shared in
this paper would allow us and the community at large for
carrying out such studies. From the table we can clearly see
that the models trained using Fasttext performs better than the
models trained using Word2Vec on all the three tasks. After
analyzing the accuracies of the models, we decided to use
100 dimensional phrase embeddings trained using skipgram
method and negative sampling, as implemented in the Fasttext
toolkit’. In the future sections these configurations should be
assumed for the underlying phrase embedding model.

C. Training Embedding Model

Since this work deals with the domain of scientific articles
we train our phrase embedding model on a collection of
more than million scientific documents. We collect 1,147,000

9https://fasttext.cc/

Model 10 25 50 75 100 | 500 | 1000
Word2Vec | 5 110, 176 40% | 76.75% | 76.98% | 76.96% | 76.75% | 76.58%
Skipgram
W&‘;‘g“,{fc 61.27% | 64.67% | 66.37% | 67.37% | 68.58% | 68.44% | 69.11%
Fasttext 1o, 290, | 90.08% | 93.25% | 94.36% | 94.71% | 96.18% | 96.27%
Skipgram
%‘;t(t)i,v’“ 78.05% | 85.89% | 89.73% | 91.01% | 92.22% | 93.99% | 93.92%

TABLE IV: Accuracies of phrase embedding models for
phrase-sentence similarity task.

Topic Distribution of Arxiv Dataset

Astrophysics
Nuclear Experiment

Computer Science
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Mathematical Physics

Quantum Physics
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High Energy Physics
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Fig. 2: Frequency distribution of topics in the arxiv dataset used
for training phrase embeddings.

Phrase Top 5 Similar Phrases

cnn, feature_representations,
deep_convolutional_neural_network,
deep_neural_network, scene_recognition

convolutional_neural_network

dm, dark_matter_particle,
non-baryonic_dark_matter,
dark_energy,
self-interacting_dark_matter

dark_matter

nlp, language_processing,
machine_translation,
named_entity_recognition,
sense_disambiguation

natural_language_processing

blstm, long_short-term_memory,
Istms, handwritten_documents,

mn recurrent_neural_network,
Istm
support_vector_machine,
svm support_vector_machines, random_forest,

svms, naive_bayes

TABLE V: Top 5 similar phrases to a given phrase as produced by
the phrase embedding model trained on the arxiv dataset using
Fasttext (SkipGram).

scientific abstracts related to different areas from arxiv.org!®.
For collecting data we use the API provided by arxiv.org that
allows bulk access of the articles uploaded to their portal. A
distribution of scientific abstracts from different topics present
in our dataset is shown in Fig 2. We also add the scientific
documents present in the benchmark datasets (Sections III).
After processing the text of 1,149,244 scientific documents
as mentioned in Section II-A, we train our model using the
configurations chosen in the previous section. Table V. shows
top 5 similar phrases for five different phrases as produced by
the trained phrase embedding model. We use this model as
the underlying phrase embedding model.

D. Candidate Selection

This step aids in chosing candidate keywords from the
set of all phrases that can be extracted from a document,
and is commonly used in most of the automated ranked
keyword extraction systems. Not all the phrases are considered
as candidates. Generally, unwanted and noisy phrases are
eliminated in this process by using different heuristics. We use
Spacy for splitting a document into sentences and to extract

Onttp://arxiv.org



noun phrases and named entities as described in Section II-A.
As an output of this step we get a set of unique phrases
(Cq, = {c1,¢2,...,cn}q,) for a document d; to be used later
for scoring and ranking in the next two steps.

E. Candidate Scoring

In this step we assign a theme vector (7g,) to a document
(d;). The theme vector can be tuned according to the type of
documents that are being processed and the type of keywords
that we want to get in our final results. In this work, we extract
a theme excerpt from a given document and further extract a
unique set of thematic phrases comprising of named entities,
noun phrases and unigram words (Ty, = {t1,t2, ..., tm }td;)
from it. For the Inspec dataset we use the first sentence of the
document that contains the title of the abstract, and for the
SemEval dataset we use the title and the first ten sentences
extracted from the beginning of the document, as the theme
excerpts, respectively. The first ten sentences of a document
from the SemFEval dataset essentially captures the abstract and
sometimes first few sentences of the introduction of a scientific
article. We get the vector representation (tAj) of each thematic
phrase extracted from the theme excerpt using the phrase
embedding model that we trained and perform vector addition
in order to get the final theme vector (g, = Zylzl t}) of the
document. The phrase embedding model is then used to get
the vector representation (¢;; k € {1...n}) for each candidate
keyword in Cy;,.

We calculate the cosine distance between the theme vector
(7g,) and vector for each candidate keyword (¢x) and assign
a score (k(Z,4) — [0,1]) to each candidate, with 1 indicating
a complete similarity with the theme vector and 0 indicating
a complete dissimilarity. For getting the final thematic weight
(wi’f‘) for each candidate w.r.t given document (d;) the candi-
date scores are scaled again between O and 1 with a score of
1 assigned to the candidate semantically closest to the main
theme of the document and O to the farthest.

F. Candidate Ranking

In order to perform final ranking of the candidate keywords
we use weighted personalized PageRank algorithm. A directed
graph Gy, is constructed for a given document (d;) with Cy,
as the vertices and E, as the edges connecting two candidate
keywords if they co-occur within a window size of 5, before
performing the text processing steps. The edges are bidirec-
tional. Weights are calculated for the edges using the semantic
similarity between the candidate keywords obtained from the
phrase embedding model and their frequency of co-occurrence,
as used by Wang et al. [18], and shown in equation 1. We

use the combination of cosine distance (——————) and
1—cosine(c;*,c;*)

Point-wise Mutual Information (PM1I(c] i i) for calcu-
lating semantic(cgl,czi) and cooccur(c? , ), respectively.
The main intuition behind calculating semantic relatedness by
using a phrase embedding model is to capture how well two
phrases are related to each other in general. Whereas, the co-
occurrence score captures the local relationship between the
phrases within the context of the given document.

sr(c?i,cg) = semantic( ;i , Z ) X cooccur( ji 7czi) €))

Given graph G, if s(cd') be the set of all edges incident on
the vertex 07 , and w? is the thematic weight of c as cal-
culated in the candzdate scoring step, then the final PageRank
score R(cj ) of a candidate keyword cj is calculated using
equation 2, where d = 0.85 is the damping factor and out(czi)
is the out-degree of the vertex cZi.

sr(c;li o)

’ )R(Cki) 2

>

d; d;
et €5(cj1)

R(c;i) = (l—d)w(‘if +dx

‘out(ck”‘)

Next, we evaluate the performance of our system on two
different benchmark datasets and compare the results against
some state-of-the-art systems known to perform well on these
datasets.

III. EXPERIMENTS AND RESULTS

The final ranked keywords obtained using our methodology
as described in the previous section is evaluated on the popular
Inspec and SemEval 2010 datasets. The Inspec dataset [24]
is composed of 2000 abstracts of scientific articles divided
into sets of 1000, 500, and 500, as training, validation and
test datasets respectively. Each document has two lists of
keywords assigned by humans - controlled, which are assigned
by the authors, and uncontrolled, which are freely assigned by
the readers. The controlled keywords are mostly abstractive,
whereas the uncontrolled ones are mostly extractive [18]. The
Semeval 2010 dataset [8] consists of 284 full length ACM
articles divided into a test set of size 100, training set of size
144 and trial set of size 40. Each article has two sets of human
assigned keywords: the author-assigned and reader-assigned
ones, equivalent to the controlled and uncontrolled categories,
respectively of the Inspec dataset. We only use the test datasets
for our evaluations and combine the annotated controlled and
uncontrolled keywords.

The ranked keywords are evaluated using exact match
evaluation metric as used in SemEval 2010 Task 5. We match
the keywords in the annotated documents in the benchmark
datasets with those generated by our method, and calculate
micro-averaged precision, recall and F-score (8 = 1), re-
spectively. In the evaluation, we check the performance over
the top 5, 10 and 15 candidates returned by our system.
The performance of our system on the metrics is shown
in Table VI. Tables VII and VIII shows a comparison of
our system with some of the state-of-the-art systems giving
best performances on the Inspec and SemEval 2010 datasets,
respectively.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for automatic
extraction and ranking of keywords. We showed an efficient
way of training phrase embeddings using existing techniques,



Micro Avg. Micro Avg. | Micro Avg. Micro Avg. Micro Avg. | Micro Avg. Micro Avg. Micro Avg | Micro Avg
Precision@5 Recall@5 F1@5 Precision@10 Recall@10 F1@10 Precision@15 Recall@15 F1@15
Inspec 61.78 25.67 36.27 57.58 42.09 48.63 55.90 50.06 52.82
SemEval 41 14.37 21.28 35.29 24.67 29.04 34.39 32.48 33.41

TABLE VI: Performance of our system over combined controlled and uncontrolled annotated keyphrases for Inspec and
SemEval 2010 datasets.

Inspec Wang et al,, | Liu et al., .
(Combined) Key2Vec 2015 2010 SGRank TopicRank
Micro Avg.

F1@10 48.63 44.7 45.7 33.95 279

TABLE VII: Comparison of Our System with some
state-of-the-art systems [25], [18], [21], [26], for F1@10 on
Inspec dataset .

SemEval 20 ,
Con J)w Our System | SGRank | HUMB | TopicRank
Avg F1@10 29.04 607 | 2250% (A

TABLE VIII: Comparison of Key2Vec with some
state-of-the-art systems for F1@10 on SemEval 2010 dataset
[27].

and showed its effectiveness in constructing thematic repre-
sentation of text documents and assigning thematic weights
to candidate keywords. We also introduced theme-weighted
personalized PageRank to rank the candidate keywords. Exper-
imental evaluations confirm that our proposed system produces
state-of-the-art results on benchmark datasets. In the future,
we plan to use our methodology in multimodal datasets for
extraction and generation of keywords for scientific images
associated with the documents, for the purpose of automatic
tagging and indexing. We would also like to explore other
embedding methods and other ranking strategies.
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