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Abstract

In the last few years, generative adversarial networks
(GAN) have shown tremendous potential for a number of
applications in computer vision and related fields. With the
current pace of progress, it is a sure bet they will soon be
able to generate high-quality images and videos, virtually
indistinguishable from real ones. Unfortunately, realistic
GAN-generated images pose serious threats to security, to
begin with a possible flood of fake multimedia, and mul-
timedia forensic countermeasures are in urgent need. In
this work, we show that each GAN leaves its specific finger-
print in the images it generates, just like real-world cameras
mark acquired images with traces of their photo-response
non-uniformity pattern. Source identification experiments
with several popular GANs show such fingerprints to repre-
sent a precious asset for forensic analyses.

1 Introduction

Generative adversarial networks are pushing the limits
of image manipulation. A skilled individual can easily gen-
erate realistic images sampled from a desired distribution
[19, 8, 1], or convert original images to fit a new context
of interest [21, 9, 23, 12, 3]. With progressive GANs [10],
images of arbitrary resolution can be created, further im-
proving the level of photorealism.

There is widespread concern on the possible impact of
this technology in the wrong hands. Well-crafted fake mul-
timedia add further momentum to the already alarming phe-
nomenon of fake news, if “seeing is believing”, as they say.
Although today’s GAN-based manipulations present often
artifacts that raise the suspect of observers, see Fig.1(top),
this is not always the case (bottom), and it is only a mat-
ter of time before GAN-generated images will consistently
pass visual scrutiny. Therefore, suitable multimedia foren-
sic tools are required to detect such fakes.

In recent years, a large number of methods have been
proposed to single out fake visual data, relying on their se-

(a) (b) (c)

Figure 1. Sample images generated by Pro-GAN (a),
Cycle-GAN (b), Star-GAN. Top: easily detected bad re-
sults. Bottom: photorealistic results.

mantic, physical, or statistical inconsistencies [7].
Statistical-based approaches, in particular, rely on the

long trail of subtle traces left in each image by the acqui-
sition devices, traces that can be hardly disguised even by a
skilled attacker. In fact, each individual device, due to man-
ufacturing imperfections, leaves a unique and stable mark
on each acquired photo, the photo-response non-uniformity
(PRNU) pattern [13], which can be estimated and used as a
sort of device fingerprint. Likewise, each individual acqui-
sition model, due to its peculiar in-camera processing suite
(demosaicking, compression, etc.), leaves further model-
related marks on the images, which can be used to extract
a model fingerprint [5]. Such fingerprints can be used to
perform image attribution [13, 2], as well as to detect and
localize image manipulations [2, 5], and represent one of
the strongest tools in the hands of the forensic analyst.

GANs have little in common with conventional acqui-
sition devices, and GAN-generated images will not show
the same camera-related marks. Still, they are the outcome
of complex processing systems involving a large number of
filtering processes, which may well leave their own distinc-
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Figure 2. Cycle-GAN o2a (top) and Pro-GAN kitchen (bottom) fingerprints estimated with 2, 8, 32, 128, 512 residuals.

tive marks on output images. So the question1 is: do GANs
leave artificial fingerprints? That is, do the images gener-
ated by a given GAN share a common and stable pattern
that allows to establish their origin? And, if this is the case,
how reliable will such a fingerprint be? How robust to de-
fensive measures? And how discriminative about the image
origin?

In this paper we investigate on this interesting issue, and
provide a first answer to the above questions. Our experi-
ments with several popular GAN architectures and datasets,
show that GAN do leave specific fingerprints on the image
they generate, which can be used to carry out reliable foren-
sic analyses.

2 Related Work

Recently there has been a growing interest in distinguish-
ing GAN-generated images from real ones. As shown in
Fig.1, the current state of the art in GANs is far from per-
fection, and often generated images exhibit strong visual ar-
tifacts that can be exploited for forensic use. For example,
to detect fake faces, [15] exploits visual features regarding
eyes, teeth and facial contours. Tellingly, the authors ob-
serve that in GAN-generated images the color of left and
right eye are often inconsistent. Color information is also
used in [16, 11]. In particular, [16] proposes to use some
features shared by different GAN architectures, related to
the synthesis of RGB color channels. Other methods rely
on deep learning. Several architectures have been tested
so far [14, 17, 20] showing a good accuracy in detecting
GAN-generated images, even on compressed images. Un-
fortunately, if a network is trained on a specific architecture,

1Winking at P.K.Dick novel: “Do androids dream of electric sheep?”

its performance degrades sharply when used to detect im-
age generated by another architecture [4]. This observation
suggests the presence of different artifacts peculiar of each
specific GAN model. Recently, it has also been shown [22]
that a deep network can reliably discriminate images gen-
erated with different architectures. However, the network
requires intensive training on an aligned dataset, and there
is no hint, let alone exploitation, of the presence of GAN-
induced fingerprints.

3 Exposing GAN fingerprints

In this Section we show evidence on the existence of
GAN fingerprints. This goal is pursued in a minimal exper-
imental setting, considering only two GANs, a Cycle-GAN
trained to convert orange images into apple images and a
Progressive-GAN (Pro-GAN) trained to generate kitchen
images, call them GAN A and B, from now on. Lacking any
statistical model, we consider an extraction pipeline similar
to that of the PRNU pattern. For the generic image Xi gen-
erated by a given GAN, the fingerprint represents a distur-
bance, unrelated with the image semantics. Therefore, we
first estimate the high-level image content, X̂i = f(Xi),
through a suitable denoising filter f(·), then subtract it from
the original image to extract the noise residual

Ri = Xi − f(Xi) (1)

Then, we assume the residual to be the sum of a non-zero
deterministic component, the fingerprint F , and a random
noise component Wi

Ri = F +Wi (2)



Figure 3. True energy and fitting curve for the Cycle-
GAN and Pro-GAN fingerprints of Figure 2.

Figure 4. Autocorrelation matrices of the Cycle-GAN
and Pro-GAN fingerprints (N=512) of Figure 2.

Accordingly, the fingerprint is estimated by a simple aver-
age over the available residuals

F̂ =
1

N

N∑
i=1

Ri (3)

Fig.2 shows (suitably amplified) the fingerprints of the two
GANs, estimated over a growing number of residuals, N =
2, 8, 32, 128, 512. Of course, for low values on N , the es-
timates are dominated by image-related noise. However,
as N grows, the additive noise component tends to vanish
and both estimates converge to stable quasi-periodical pat-
terns, which we regard as accurate approximations of the
true GAN fingerprints. In Fig.3 we show the energy E(N)
of these estimated fingerprints as a function of N , together
with the best fitting curve of the type

Ê(N) = E∞ + E0 × 2−N (4)

The fitting is clearly very accurate for large values ofN , and
the E∞ value estimates the energy of the limit fingerprint,
0.0377 and 0.0088, respectively. Fig.4, instead, shows the
autocorrelation functions of the two estimates for N=512,
with clear quasi-periodical patterns providing further evi-
dence of the non-random nature of these signals.

We now take a more application-oriented point of view,
looking for these fingerprints’ ability to tell apart images of

Figure 5. Correlation of Cycle-GAN (left) and Pro-GAN
(right) residuals with same/cross-GAN fingerprints.

different origin. Based on image-to-fingerprint correlation
or similar indicators, meaningful fingerprints should allow
one to decide which of the two GANs generated a given
image.

Let
corr(X,Y ) = X̃ � Ỹ (5)

be the correlation index between images X and Y , where
X̃ is the zero-mean unit-norm version ofX and� indicates
inner product. For both GANs under analysis, we regard the
estimates obtained with N = 29 as the “true” fingerprints,
FA and FB , respectively. Then, we compute the correlation
indices between residuals RA

i , i = 1, . . . ,M generated by
GAN A (and not used to estimate the fingerprint), and the
same-GAN (FA) and cross-GAN (FB) fingerprints, that is

ρAi,same = corr(RA
i , FA) (6)

and
ρAi,cross = corr(RA

i , FB) (7)

Fig.5(left) shows the histograms of same-GAN (green)
and cross-GAN (red) correlations. Cross-GAN correlations
are evenly distributed around zero, indicating no correlation
between generated images and the unrelated fingerprint. On
the contrary, same-GAN correlations are markedly larger
than zero, testifying of a significant correlation with the cor-
rect fingerprint. The behavior is very similar when GAN-
B residuals are considered and the roles are reversed, see
Fig.5(right). Moreover, in both cases the two distributions
are well separated, allowing reliable discrimination. The
corresponding receiver operating curves (ROC) are nearly
perfect with area under curve (AUC) 0.990 and 0.998, re-
spectively.

We carried out similar experiments for many other
GANs, differing for architecture and/or training set, obtain-
ing always similar results. These results provide a convinc-
ing answer to our fundamental question, showing that each
GAN leaves a distinctive mark on each image generated by
it, which can be legitimately called fingerprint.



4 Source identification experiments

Let us now consider a more challenging experimental
setting, to carry out larger-scale source identification tests.
We consider three GAN architectures, Cycle-GAN, Pro-
GAN, and Star-GAN. Cycle-GAN was proposed in [23] to
perform image-to-image translation. The generator takes an
input image of the source domain and transforms it into a
new image of the target domain (e.g., apples to oranges).
To improve the photorealism of generated images, a cy-
cle consistency constraint is enforced. Here, we consider
several Cycle-GAN networks, trained by the authors on
different source/target domains. The second architecture,
Progressive-GAN [10], uses progressively growing gener-
ator and discriminator to create images of arbitrary-size
which mimic images of the target domain. In this case too,
six different target domains are considered. Like Cycle-
GAN, Star-GAN [3] performs image-to-image translation,
but adopts a unified approach such that a single generator
is trained to map an input image to one of multiple target
domains, which can be selected by the user. By sharing the
generator weights among different domains, a dramatic re-
duction of the number of parameters is achieved. Finally,
we include also two sets, from the RAISE dataset [6], of
images acquired by real cameras, so as to compare the be-
havior of real-world and GAN fingerprints. Table I lists all
networks and cameras, with corresponding abbreviations.
For each dataset A, we generate/take 1000 RGB images of
256×256 pixels, extract residuals, and use N=512 of them
to estimate the fingerprint FA, and the remaining M=488,
{RA

1 , . . . , R
A
M} for testing.

Architecture Target / Camera model Abbreviation

Cycle-GAN

apple2orange C1
horse2zebra C2
monet2photo C3
orange2apple C4
photo2Cezanne C5
photo2Monet C6
photo2Ukiyoe C7
photo2VanGogh C8
zebra2horse C9

Pro-GAN

bedroom G1
bridge G2
church G3
kitchen G4
tower G5
celebA G6

Star-GAN

black hair S1
blond hair S2
brown hair S3
male S4
smiling S5

n/a Nikon-D90 N1
Nikon-D7000 N2

Table 1. Cameras and GANs used in the experiments

Figure 6. Average residual-fingerprint correlations.

First of all we compute the average correlation between
all sets of residuals and all fingerprints, that is

〈ρ〉AB =
1

M

M∑
i=1

corr(RA
i , FB) (8)

with A,B spanning all sets. Fig.6 shows a false-color rep-
resentation of all such correlations. It appears that diag-
onal entries are much larger, in general, than off-diagonal
ones, confirming that residuals of a dataset correlate well
only with the fingerprint of the same dataset, be it GAN
or natural. There is also a clear block structure, show-
ing that some (weaker) correlation exists between residu-
als of a dataset and fingerprints of “sibling” datasets, as-
sociated with the same GAN architecture. This holds es-
pecially for the Star-GAN datasets, since the weights of a
single generator are shared among all target domains. Fi-
nally, as expected, no significant correlation exists between
real and GAN-generated images, which can be told apart
easily based on their respective fingerprints.

We now perform camera attribution. For each image, we
compute the distance between the corresponding residual
and all fingerprints, attributing the image with a minimum-
distance rule. In Fig.7 we show the resulting ROCs, and in
Fig.8 the confusion matrix (entries below 1% are canceled
to improve readability). Despite the 2× zooming, the ROC
figure is hard to read as all curves amass in the upper-left
corner. On the other hand, this is the only real message we
wanted to gather from this figure: attribution is very accu-
rate in all cases, with the only exception of the Star-GAN
male and smiling networks. This observation is reinforced



Figure 7. One-vs.-all source identification ROCs.

by the confusion matrix, showing almost perfect attribution
in all cases (with the same exceptions as before), and with a
slightly worse performance for the real cameras, character-
ized by a lower-energy PRNU. Since real cameras usually
compress images at high quality to save storage space, we
also repeated the attribution experiment after JPEG com-
pressing all GAN-generated images at QF=95, observing a
negligible loss in accuracy, from 90.3% to 90.1%.

We conclude this Section by reporting very briefly on
the results obtained in the “Forensics GAN Challenge” [18]
organized in June-July 2018 by the US National Institute
of Standards and Technology in the context of the Medifor
program. The goal was to classify as real or GAN-generated
1000 images of widely different resolution, from 52×256
to 4608×3072 pixels. As baseline method we used a deep
network trained on a large number of images retrieved from
the InterNet. However, we also tested the GAN fingerprint
idea, following the scheme outlined in Fig.9. We computed
fingerprints for several popular GANs and, eventually, iden-
tified a large cluster of size-1024×1024 images generated
with the same GAN. This allowed us to improve the deep
net accuracy by a simple fusion rule, for a final 0.999 AUC.

5 Conclusions and future work

The goal of this work was to demonstrate the existence
of GAN fingerprints and their value for reliable forensic
analyses. We believe both facts are supported by a suffi-
cient experimental evidence. This answers our fundamental
question, but introduces many more questions and interest-
ing topics which deserve further investigation.

First of all, it is important to understand how the finger-
print depends on the network, both its architecture (num-
ber and type of layers) and its specific parameters (filter
weights). This may allow one to improve the fingerprint
quality or, with the attacker’s point of view, find ways to
remove the fingerprint from generated images as a counter-
forensic measure. Along the same path, our preliminary
results suggest that training the same architecture with dif-
ferent datasets gives rise to well distinct fingerprints. Is this
true in general? Will fine-tuning produce similar effects?

Under a more practical point of view, further studies
are necessary to assess the potential of GAN fingerprints
in multimedia forensics. Major aims, besides source iden-
tification, are the discrimination between real and GAN-
generated images, and the localization of GAN-generated
material spliced in real images. It is also important to study
the robustness of such fingerprints to subsequent process-
ing, such as JPEG compression, resizing, blurring, noising.
Finally, it is worth assessing the dependence of performance
on the number and size of images used for fingerprint esti-
mation, with blind attribution and clustering as an interest-
ing limiting case.
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[13] J. Lukàš, J. Fridrich, and M. Goljan. Digital camera iden-
tification from sensor pattern noise. IEEE Transactions on
Information Forensics and Security, 1(2):205–214, 2006.

[14] F. Marra, D. Gragnaniello, G. Poggi, and L. Verdoliva. De-
tection of GAN-Generated Fake Images over Social Net-
works. In IEEE Conference on Multimedia Information Pro-
cessing and Retrieval, pages 384–389, April 2018.

[15] F. Matern, C. Riess, and M. Stamminger. Exploiting visual
artifacts to expose deepfakes and face manipulations. In
IEEE Winter Conference on Applications of Computer Vi-
sion, 2019.

[16] S. McCloskey and M. Albright. Detecting GAN-
generated Imagery using Color Cues. arXiv preprint
arXiv:1812.08247v1, 2018.

[17] H. Mo, B. Chen, and W. Luo. Fake Faces Identification via
Convolutional Neural Network. In Proc. of the 6th ACM
Workshop on Information Hiding and Multimedia Security,
June 2018.

[18] National Institute of Standards and Technology. Me-
dia Forensics Challenge. https://www.nist.gov/itl/iad/mig/
media-forensicschallenge-, 2018.

[19] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved Techniques for Train-
ing GANs. In Advances in Neural Information Processing
Systems, pages 2234–2242, 2016.

[20] S. Tariq, S. Lee, H. Kim, Y. Shin, and S. Woo. Detecting
both machine and human created fake face images in the
wild. In Proc. of the 2nd International Workshop on Multi-
media Privacy and Security, pages 81–87, 2018.
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