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Abstract

Recent advances in computer vision has led to a growth
of interest in deploying visual analytics model on mobile
devices. However, most mobile devices have limited com-
puting power, which prohibits them from running large
scale visual analytics neural networks. An emerging ap-
proach to solve this problem is to offload the computation
of these neural networks to computing resources at an edge
server. Efficient computation offloading requires optimiz-
ing the trade-off between multiple objectives including com-
pressed data rate, analytics performance, and computation
speed. In this work, we consider a “split computation”
system to offload a part of the computation of the YOLO
object detection model. We propose a learnable feature
compression approach to compress the intermediate YOLO
features with light-weight computation. We train the fea-
ture compression and decompression module together with
the YOLO model to optimize the object detection accuracy
under a rate constraint. Compared to baseline methods
that apply either standard image compression or learned
image compression at the mobile and perform image de-
compression and YOLO at the edge, the proposed system
achieves higher detection accuracy at the low to medium
rate range. Furthermore, the proposed system requires sub-
stantially lower computation time on the mobile device with
CPU only.

1. Introduction

Offloading visual analytics computations (such as object
detection) from images captured by mobile devices to an
edge server can reduce the computation time and the power
consumption of the mobile device. Reduced computation
time is critical for real-time applications such as navigation
and robot control, while reduced power consumption can
extend the battery life of the mobile device. Research in this

direction has proposed two broad approaches. In one, a mo-
bile device directly compresses images which are then de-
compressed by the edge server for visual analytics [1, 2, 3].
The second approach is to perform a part of the visual ana-
lytics task on the mobile device and compress intermediate
features; the server then decompresses these features and
completes the remainder of the analytics task [4, 5, 6, 7, 8].
This approach is commonly known as the “split computa-
tion.”

In either approach, compression can be performed using
conventional, non-learnable compression methods. Such
approaches may have practical advantages because they can
leverage existing hardware and software for compression,
but the impact of compression on the analytics task perfor-
mance cannot be controlled directly. Using a learnable com-
pression module allows one to directly optimize the rate-
analytics trad-off. Furthermore, the “split-computation”
framework with learnable compression has the potential
to achieve a better rate-analytics trade-off, because it only
needs to generate and compress the features that are use-
ful for the analytics task. The split computation approach
can also reduce the computation at the server, which could
be important for applications where the server has resource
constraints.

In this paper, we propose a “split computation” system
with learnable feature compressor and decompressor. To
compress the multi-channel features at the split point of the
YOLO model, we perform channel reduction to reduce the
number of channels and furthermore decorrelate the result-
ing channels. We use the hyperprior idea of [9] to encode
the reduced features by introducing additional hyperprior
encoder and decoder. Our system is developed and evalu-
ated for object detection using the YOLOv5 model architec-
ture [10]. However, the general methodology is applicable
for other visual analytics tasks and other object detection
model architectures.

We evaluate the performance of the proposed system for
a common object detection task: detecting 80 object classes
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in the COCO dataset (testing set). Compared to applying
a state-of-the-art image compression method (BPG) [11]
or the learned image compression model optimized for im-
age reconstruction [9], followed by the pretrained YOLOv5
model on the decompressed images, the proposed method
was able to achieve higher detection accuracy over a large
rate range. Compared to jointly refining the learned im-
age compression [9] and the YOLOv5 detection models, the
proposed method was able to achieve better performance at
the low to medium rate regime. We further show that when
only a limited set of objects (e.g. people, vehicle, traffic
lights, etc.) are relevant for a specific application (e.g. traf-
fic monitoring), the proposed approach provides substantial
gain over the entire rate range, because the relevant features
can be captured by a very small number of channels. In ad-
dition to the rate-detection trade-off, the computation com-
plexity at the mobile device is a critical factor for mobile ap-
plications. We demonstrate that our model has significantly
lower computation runtime per image than the baselines,
both at the mobile side, as well as the total computation
time.

2. Related Works

2.1 Analytics-aware Image Compression

One approach to computation offloading is to compress
the captured image at the mobile device and send the com-
pressed bitstream for analysis at the edge server. But lossy
compression of an image will invariably result in artifacts
that degrades analytics performance. There have been mul-
tiple works which proposed methods to alleviate this loss in
performance.

A task-aware JPEG compression model was proposed
in [1]. The work proposes to use a convolutional network
to predict the quantization table for DCT coefficients for
JPEG compression. Images compressed using the predicted
quantization table achieved better performance than when
the standard table was used. In [2, 3], the learned image
compression model with hyperprior [9] was used to com-
press images then feed the compressed image to a detection
or segmentation model. By end-to-end joint training of the
compression model and the task model, some of the per-
formance loss due compression is recovered. These prior
works require large convolutional networks to operate on
the mobile device, which still require substantial computa-
tion time and battery consumption.

2.2 Analytics-aware Feature Compression

Another approach to computation offloading is to split
the computation required for the analytics task between the

mobile device and the edge server. The intermediate fea-
ture at the point of split is compressed at the mobile side
and sent to the edge server. Intermediate feature compres-
sion using standard image/video codec was studied in [4, 5]
with HEVC, and in [6] with JPEG and additional dimen-
sionality reduction. Using standard codecs for feature com-
pression in general did not achieve good performance, as
the codecs were designed for compression of images and
not features. Feature compression with learned image com-
pression model was proposed in [7]. The hyperprior com-
pression model was used and the network was end-to-end
trained. However, the split point considered by [7] was at
the very end of the original deep learning model, so that
the mobile device still has to do majority of the computa-
tion task. In [8], knowledge distillation was used to teach a
light-weight student network to compress the intermediate
features of a large teacher detection network.

3. Method

3.1 The Overall System Architecture

We propose a split computing system to offload compu-
tation for the YOLO detection model. We split the YOLO
model into two parts: the first part runs on the mobile de-
vice and the second part runs on the edge server. The feature
maps generated by the first part will be compressed by a fea-
ture compressor, also running on the mobile device. At the
edge server, the received bits are decoded by a feature de-
compressor and then sent to the second part of the detection
model. See Fig. 1 for the overall system architecture.

To choose the point of split we have to consider the trade-
off between the mobile-side computation complexity and
the compressed feature rate. In general, feature maps that
are later in the detection model becomes more sparse and
easier to compress. However, compressing later into the
model requires more computation performed by the mobile
device, defeating the purpose of split computing. Further-
more, in a pyramidal model architecture like the YOLO,
shown in Fig. 1, there are skip connections which con-
nect various layers in the “Backbone” to the “Head” of the
model. Compressing features after a skip connection would
require removal of that skip connection. This can limit the
detection performance, even though the bit rate is lower.
We experimented with two points of split: 1) after the 3rd
downsampling layer (designated as D3), and 2) after the 4th
downsampling layer (D4), as illustrated in Fig. 1. Since
the 4th downsampling layer is after a skip connection, we
first removed the skip connection and finetuned the detec-
tion model before joint training for rate-constrained detec-
tion. We note that this has the effect of removing the high
resolution information into the object detection branch, re-
ducing the detectability of very small objects.



Figure 1: Overview of the proposed system. The YOLO network is split into two parts that separately runs on the mobile
device and the edge server. A feature compression model is used to compress the intermediate features at D3. Another split
point (D4) considered in our experiments is also labeled. When splitting at D4, the first skip connection of the YOLO model
has to be removed. The notation ↓2 and ↑2 refers to downsample by a factor of 2 and upsample by a factor of 2 respectively.

In our feature compressor, we first employ a channel re-
duction layer to both reduce the spatial dimension and the
number of feature channels and to decorrelate the remain-
ing channels. We further adopt the hyperprior idea of [9],
to assist the entropy coding of the quantized feature maps
after the channel reduction layer. The decoded hyperprior
features are used to estimate the probability distribution pa-
rameters of the feature maps. Both the bits for the quantized
main features and those for the quantized hyperprior fea-
tures are sent to the edge server. The general architecture of
feature compressor and feature decompressor is illustrated
in Fig. 1.

3.2 Channel Reduction and Expansion

The YOLO model uses a pyramidal architecture to ex-
tract features at different scales. At each downsampling
layer, the spatial dimension is reduced and the channel di-
mension is increased. While having a large number of chan-
nels help improve object detection, it creates redundancy
among the channels which can be seen in the inter-channel
correlation matrix, as shown in Figure 2.

To reduce the inter-channel correlation, we introduce a
channel reduction layer in the feature compressor, and cor-
respondingly a channel expansion layer in the feature de-
compressor. The channel reduction layer reduces the num-
ber of channels fromN toNr < N . The channel expansion
layer takes the compressed features and expands it back to

N channels. The channel reduction is implemented by a
1 × 1 convolution layer, which transforms N features at
each pixel to Nr features. The channel expansion is imple-
mented by a reversal 1 × 1 convolution layer, mapping Nr

features at each pixel to N features. The channel reduction
layer does not use nonlinear activation, while the channel
expansion layer uses the SiLU activation as in the original
YOLO model. This is because we want the reduced fea-
tures to follow a Gaussian distribution to facilitate the en-
tropy coding, while the SiLU activation would produce a
single-sided feature values distribution. If the split point is
D3, we also employ a stride-2 convolution layer to reduce
the spatial resolution, before the 1× 1 convolution layer for
channel number reduction.

3.3 Rate-constrained Model Training

In the learned compression framework proposed by [12],
an input image x is transformed into a latent feature y,
which depend on x and model parameter θ. We express
this dependency by writing y as y(x; θ). The quantized
latent feature ŷ is decoded back to a reconstructed image
x̂(ŷ; θ). The compression model is trained through mini-
mizing a rate-distortion loss,

L = LR + λ · LD

LR = Ex∼px
[− log2 p(ŷ(x; θ))]

LD = Ex∼px
[d(x, x̂(ŷ; θ))]

(1)



where λ is a hyper-parameter that controls the rate-
distortion trade-off, ŷ is the quantized latent, and d(x, x̂) is
the distortion between the original image x and the decoded
image x̂. The distortion metric d(·, ·) for image compres-
sion is typically Mean-Squared-Error (MSE) or MS-SSIM.

In our framework, y is the feature generated at the split
point of the YOLO network, which is further reduced to z
by the channel reduction layer. We use θ to denote YOLO
model parameters, and use φ to indicate the channel re-
duction and expansion layer parameters. Thus, we write
z(y(x; θ);φ) to indicate these dependencies. We modify the
rate-distortion loss in Eq. (1) to perform end-to-end training
of the entire system including the YOLO detection model
(parameterized by θ) and the feature compressor and de-
compressor (parameterized by φ) inserted at the split point,
for detection-aware compression. One approach of training
would be to use a distortion measure, such as MSE, between
the original feature y and the decompressed feature ŷ. How-
ever, minimizing such distortion may not bring optimal de-
tection performance under a constrained bit rate. Instead,
we replace the distortion loss by a detection loss Ldet that
directly measures the detection accuracy of the model’s out-
put:

L = LR + λ · Ldet

LR = Ex∼px [− log2 p(ẑ(y(x; θ);φ))]

Ldet = Lobj + Lclass + Lbox.

(2)

Ldet is the loss used for training the uncompressed YOLO
model, and it consists of the object detection loss Lobj , ob-
ject class loss Lclass, and bounding box loss Lbox, which
will depend on ŷ(ẑ;φ) and θ. A combination of rate and
detection loss allows us to perform end-to-end training of
the entire model including both the compression and detec-
tion components.

Instead of directly performing entropy coding on the
quantized version of the reduced feature ẑ, we follow the
hyperprior idea proposed in [9] to generate the hyperprior
feature that help the entropy coding of ẑ. As shown in Fig 1,
the hyperprior encoder generates quantized hyperprior fea-
ture ẑh, from ẑ. The hyperprior decoder predicts the mean
and variance of each element in ẑ, in the Gaussian model
used for entropy coding of ẑ. The additional rate for ẑh is
included in the rate loss LR.

Through our experiments, we find that it is necessary to
perform a pre-training step of the channel reduction and ex-
pansion layers, along with YOLO model, using only the de-
tection loss. This step does not invoke quantization (through
adding random noise) on the reduced feature z, nor the hy-
perprior encoder and decoder. Pre-training allows the model
to reach an acceptable detection performance from the re-
duced feature channels before training with the compres-
sion objective, which involves adding noise to the reduced
features that can negatively affect detection performance.

4. Results

4.1 Experimental Settings

We adopted the Ultralytics YOLOv5 implementation to
perform our experiments [10]. We chose the smaller model
size YOLOv5s with 7.2M parameters for faster training and
inference. When performing pretraining to the models with-
out rate constraint, we initialized the model with weights
from [10], which were trained with the images in the entire
COCO dataset (training set only). All the original images
were resized to 640 × 640. All models were trained using
SGD with a learning rate of 1 × 10−4 and a momentum of
0.937. We used a batch size of 96 when training the traffic-
specific models and a batch size of 120 when training the
full COCO dataset models. We evaluated the achievable
performance by varying the split position (D3 vs. D4), the
number of channels after channel reduction (Nr), and λ in
the loss function, for a chosen split position and Nr. We
show the Pareto front of these various settings that achieves
the highest detection performance under the same bit rate.

We compare the performance of the proposed approach
with the following benchmarks: 1) Using the popular BPG
image compression algorithm [11] to compress the input
image, and then applying the original YOLO model for ob-
ject detection. The BPG implements the HEVC intra coding
algorithm and provides leading compression performance
among standard public codecs; 2) Using the pretrained
learned compression model of [9] to compress the input im-
age, followed by the original YOLO model for object detec-
tion; 3) Training the learned compression model of [9] and
the YOLO model jointly, using the same detection-aware
loss function in Eq. (2).

4.2 Detection vs. Rate Performance using the Full
COCO Dataset

First, we show that the channel reduction module was
able to reduce the correlation between channels. As shown
in Figure 2, the off-diagonal elements of the correlation ma-
trix becomes more sparse as the number of channels af-
ter reduction decrease, which means there is less correla-
tion among channels. Secondly, the variance plots show
that only a few channels have a large variance magnitude.
This suggests that it is possible reduce the number of feature
channels to a small value without losing much information
in the feature.

The rate vs. detection accuracy curves of our feature
compression model and the benchmark methods are shown
in Figure 3 (a). The detection accuracy is measured by
the mean Average Precision under the Intersection over
Union threshold of 50 (mAP50). Our method performed
better than the baselines of image compression followed by
YOLO detection over the entire rate range considered, al-



Figure 2: Inter-channel correlation matrix (top row) and the
variance of each channel (bottom row) for the intermediate
feature map at the D3 split point.

though the difference is small at the higher rates. Com-
pared to jointly training the image compression model [9]
and the YOLO model for rate-constrained object detection,
our method is still better at the lower rate regime. We expect
that with more exhaustive search of the hyper parameters in
our feature compression layer, our method can be on-par
with this benchmark over the higher rate range.

(a) Full COCO Dataset (80 object classes)

(b) COCO-Traffic Datset (9 object classes)

Figure 3: Detection performance under various bitrates for
the full COCO dataset and the COCO-Traffic dataset.

4.3 Performance using the COCO-Traffic Dataset

The original YOLO model was trained with the COCO
dataset [13], which aims to detect 80 classes of objects
from various environments. However, in many practical use
cases, it is not necessary to consider such a wide variety
of classes, but rather to focus on detecting a small set of
objects. We hypothesize that in such a targeted use case,
we can significantly reduce the bit rate without sacrificing
the detection accuracy. Specifically, we consider a situa-
tion where only object classes that are relevant for traffic
surveillance or navigation applications need to be detected.
From the COCO dataset we picked 9 relevant classes, in-
cluding Person, Car, Bus, Truck, Motorcycle, Traffic Light,
Fire Hydrant, Stop Sign, Parking Meter. All images with
occurrence of at least one of these 9 classes are drawn into
a dataset called the COCO-Traffic dataset. Since the person
class appears in many images with non-traffic related sce-
narios, we additionally require images containing the per-
son class to be coupled with at least one other traffic-related
classes for those images to be drawn. Using the COCO-
Traffic dataset, we perform the same experiments as for the
full COCO dataset and the results are shown in Figure 3(b).

For this experiment, we only evaluated models at the D4
split point and focused on the low bitrate region. By fo-
cusing on a more specific set of objects, the features can
be compressed to very low bitrates while still maintaining
high mAP. The results are significant for settings with low
communication bandwidth and require compression into
extremely low bitrates. It is possible to deploy a split de-
tector in these settings to have high detection performance
while using low bandwidth transmission.

4.4 Mobile and edge computing time

We performed an analysis of the runtime for each model
under a mobile-edge split computing setting. For the mo-
bile device we used a 2.9GHz CPU processor to perform
the computations from input image to encoded bit-stream.
For the edge server, we used the powerful RTX8000 GPU
to decode the received bitstream and run the detection net-
work.

As shown in Table 1. Our method has a clear advantage
against the baselines in both the mobile computation time as
well as the total runtime. For example, with splitting at D3,
compared to using the learned image compression model
[9], the mobile computing time is reduced by 6.58x. The
server computing time is also reduced, as part of the YOLO
model is already executed by the mobile, resulting a total
runtime saving of 6.06x. Compared to using the BPG image
coder, the mobile runtime is reduced by 2.91x, while the
total computation time is reduced by 3.93. It turned out that
GPU is not efficient for running the BPG decoder, which
requires sequential operation. The proposed method is the



[9] + YOLO BPG + YOLO C4 D3 C4 D4 YOLO on Mobile

Mobile Device
(CPU) Image Compression 415.46 183.87

YOLO Pre-split 55.18 67.37
2791Feature Compression 8.32 8.88

Edge Server
(GPU)

Image Decompression 1.82 84.39 Feature Decompression 0.27 0.25 0
YOLO 7.39 7.39 YOLO Post-split 6.60 5.30

Total time on Mobile 415.46 183.87 63.50 76.25 2791
Total time on Server 9.207 91.78 6.87 5.55 0

Table 1: Breakdown of runtime (milliseconds) per image (640 × 640 pixels) for proposed model and baselines. C4 D3 and
C4 D4 refer to models with channel reduction to Nr = 4 and split point at D3 and D4, respectively. The results here are
similar regardless of bitrate and the channels Nr.

only solution that can enable object detection at a speed that
is faster than 10 frames per second (requiring total runtime
≤ 100 ms), required for most practical applications.

5. Conclusions

This paper proposed an approach for offloading deep-
learning based object detection by split computing be-
tween the mobile device and the edge server. We pro-
pose a light-weight trainable feature compression and
decompression architecture, that includes feature chan-
nel reduction/expansion and hyperprior-based entropy cod-
ing/decoding. With end-to-end training of the feature com-
pressor and object detector using rate-detection loss, our
approach can achieve higher detection accuracy at low to
medium rate range, than baseline methods that perform im-
age compression at the mobile device and object detection
on the server. Furthermore, our approach has significantly
lower runtime at the mobile device than the baseline meth-
ods.
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