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Abstract

Graph Neural Networks (GNN) has demonstrated the supe-
rior performance in many challenging applications, including
the few-shot learning tasks. Despite its powerful capacity to
learn and generalize the model from few samples, GNN usu-
ally suffers from severe over-fitting and over-smoothing as
the model becomes deep, which limit the scalability. In this
work, we propose a novel Attentive GNN to tackle these chal-
lenges, by incorporating a triple-attention mechanism, i.e.,
node self-attention, neighborhood attention, and layer mem-
ory attention. We explain why the proposed attentive mod-
ules can improve GNN for few-shot learning with theoretical
analysis and illustrations. Extensive experiments show that
the proposed Attentive GNN model achieves the promising
results, comparing to the state-of-the-art GNN- and CNN-
based methods for few-shot learning tasks, over the mini-
ImageNet and tiered-ImageNet benchmarks, under ConvNet-
4 and ResNet-based backbone with both inductive and trans-
ductive settings. The codes will be made publicly available.

Introduction
Deep neural networks, e.g., Convolutional Neural Networks
(CNNs), have been widely applied and achieved the supe-
rior results on computer vision tasks such as image classifi-
cation, segmentation, etc. The conventional approach is by
supervised learning over a large-scale labeled dataset for the
task, thanks to the scalability of CNNs. However, for some
tasks with only a few samples available, training a highly-
flexible deep model may result in over-fitting and thus fail
to generalize. Such a challenge presents in few-shot learn-
ing (Fei-Fei, Fergus, and Perona 2006), in which a clas-
sifier is learned to predict the labels of the query samples
using only a few labeled support samples of each class, as
well as the training set contains only data of classes that
are different from testing. Various methods have been re-
cently proposed for few-shot learning (Vinyals et al. 2016;
Snell, Swersky, and Zemel 2017; Sung et al. 2018; Sator-
ras and Estrach 2018), including the popular meta-learning
framework (Vinyals et al. 2016) based on episodic training.
Meta-learning splits the training set into a large number of
sub-tasks to simulate the testing task, which are used to train
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a meta-learner to adapt quickly to novel classes in few gradi-
ent updates. Moreover, methods (Vinyals et al. 2016; Snell,
Swersky, and Zemel 2017; Sung et al. 2018) based on metric
learning were proposed to learn a general feature embedding
to exploit correlation between samples and classes.

Most of the existing few-shot learning methods are based
on CNNs, which are effective at modeling image local prop-
erties. However, in few-shot learning tasks, it is more impor-
tant to exploit the intra- and inter-class relationships among
samples. Therefore, more recent works focused on learn-
ing the Graph Neural Network (GNN) (Satorras and Estrach
2018; Liu et al. 2019; Kim et al. 2019; Yang et al. 2020) or
Graph Convolutional Networks (GCN) (Zhang et al. 2020b;
Ye et al. 2020), to perform node or edge feature aggrega-
tion from neighbor samples by graph convolution. However,
several works (Li, Han, and Wu 2018; Rong et al. 2019)
reported the over-fitting and over-smoothing issues when
learning deeper GNN models (i.e., poor scalability), as ap-
plying GCN or GNN is a special form of Laplacian smooth-
ing, which averages the neighbors of the target nodes. Very
recent work (Rong et al. 2019) attempted to alleviate these
obstacles via randomly dropping graph edges in training,
showing improvement for node classification. To the best of
our knowledge, no work to date has addressed these issues
for few-shot learning using graph attention mechanism.

In this work, we propose a novel Attentive GNN for
highly-scalable and effective few-shot learning. We incor-
porate a novel triple-attention mechanism, i.e., node self-
attention, neighborhood attention, and layer memory at-
tention, to tackle the over-fitting and over-smoothing chal-
lenges towards more effective few-shot image classification.
Specifically, the node self-attention exploits inter-node and
inter-class correlation beyond CNN-based features. Neigh-
borhood attention modules impose sparsity on the adja-
cency matrices, to attend to the most related neighbor nodes.
Layer memory attention applies dense connection to earlier-
layer “memory” of node features. Furthermore, we explain
how the attentive modules help GNN generate discrimina-
tive features, and alleviate over-smoothing and over-fitting,
with feature visualization and theoretical analysis. We con-
duct extensive experiments showing that the proposed At-
tentive GNN achieves comparable results to the state-of-the-
art methods over the mini-ImageNet and tiered-ImageNet
datasets, under both inductive and transductive settings.
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Related Work
GNN for Few-shot Learning. GNN (Bruna et al. 2013;
Defferrard, Bresson, and Vandergheynst 2016) was first pro-
posed for learning with the graph-structured data, and has
been proved as a powerful technique for aggregating infor-
mation from the neighboring vertices. GNN was first used
for few-shot learning (Satorras and Estrach 2018), which
aims to learn a complete graph network of nodes with both
feature and class information. Based on the episodic train-
ing mechanism, meta-graph parameters were trained to pre-
dict the label of a query node on the graph. Later, TPN (Liu
et al. 2019) introduced the transductive setting into few-shot
learning and constructed a top-k graph with a close-form la-
bel propagation based on node relationship. Besides node
label information, EGNN (Kim et al. 2019) exploits edge
information for directed graph by defining both class and
edge labels for fully exploring the internal information of
the graph. Moreover, DPGN (Yang et al. 2020) constructs a
dual complete graph network to combine instance-level and
distribution-level relations.

Attention Mechanism. Attention Mechanism (Vaswani
et al. 2017) aims to focus more on regions which are more
related for tasks and less on unrelated regions by learn-
ing a mask matrix or a weighted matrix. In particular, self-
attention (Cheng, Dong, and Lapata 2016; Parikh et al.
2016) considers the inherent correlation (attention) of the in-
put features itself, which is mostly applied in graph model.
For node classification, GAT (Veličković et al. 2018) used
a graph attention layer to learn a weighted parameter vec-
tor based on entire neighborhoods to update node represen-
tation. SAGPool (Lee, Lee, and Kang 2019) selected the
top kN nodes to generate mask matrix for graph pooling.
Moreover, attention mechanism is also utilized for few-shot
learning. CAN (Hou et al. 2019) generated cross attention
maps for each pair of nodes to highlight the object regions
for classification. Inspired by non-local block, Binary At-
tention Network (Ke et al. 2020) considered a non-local at-
tention module to learn the similarity globally. Considering
the attention between query sample with each support class,
CTM (Li et al. 2019a) found task-relevant features based
on both intra-class commonality and inter-class uniqueness.
FEAT (Ye et al. 2020) utilized Transformer to learn task-
specific adaptive instance embeddings.

Attentive Graph Neural Networks
Preliminaries
GNN (Sperduti and Starita 1997; Bruna et al. 2013; Deffer-
rard, Bresson, and Vandergheynst 2016) are the neural net-
works based on a graph structure G = (V,E) with nodes
V and edges E. Similar to the classic CNNs that exploit the
local features (e.g., image patch textures, sparsity) for rep-
resentation, GNN is developed to mimic the behaviour of
CNNs to deal with graph structured data which regards each
sample (e.g., image) as a vertex on the graph, and focuses
on mining the important neighborhood information of each
node, which is critical to construct discriminative and gen-
eralizable features for many tasks, e.g., node classification,
few-shot learning, etc. To be specific, considering a multi-

stage GNN model, following (Kipf and Welling 2017) the
output of the k-th GNN layer can be represented as:

X(k+1) = Fk(X(k), W(k)) = ρ (Â(k) X(k) W(k)) (1)

where X(k) ∈ RV×dk denotes the input feature and x
(k)
i

denotes the feature of node i in the k-th layer, with V and
dk being the number of nodes and feature dimension at the
k-th layer. Besides, Â(k) ∈ RV×V is called the weighted
adjacency matrix, W(k) ∈ Rdk×dk+1 is the trainable lin-
ear transformation, and ρ denotes a non-linear function, e.g.,
ReLU or Leaky-ReLU.

There are different ways to construct the adjacency
matrix A(k), e.g., A

(k)
i,j indicates whether node i and j

are directly connected in the classic GCN (Bruna et al.
2013). Besides, A(k)

i,j can be the similarity or distance be-

tween node i and j (Vinyals et al. 2016), i.e., A
(k)
i,j =

fθ(φ
(
x
(k)
i

)
, φ
(
x
(k)
j

)
), where φ denotes the node feature

embedding, and the parameter θ can be fixed or learned.
One popular example is to apply cosine correlation as
the similarity metric, while a more flexible method is to
learn a multi-layer perceptron (MLP) as the metric, i.e.,
fθ(x

(k)
i , x

(k)
j ) = MLP

(∣∣∣x(k)
i − x

(k)
j

∣∣∣), where |·| denotes
the absolute function. More recent works applied Gaus-
sian similarity function to construct the adjacency, e.g.,
TPN (Liu et al. 2019) proposed the similarity function as
Ai,j = exp (−0.5d (φ (xi) /σi, φ (xj)σj)), with σ being
an example-wise length-scale parameter learned by a rela-
tion network of nodes used for normalization.

Different from the classic GNNs, the recently proposed
GAT (Veličković et al. 2018) exploited attention mechanism
amongst all neighbor nodes in the feature domain, after the
linear transformation W(k) and computes the weights α’s
based on attention coefficients for graph update as:

x
(k+1)
i = ρ

(∑
j∈Ni

αijx
(k)
j W(k)

)
(2)

where Ni denotes the set of the neighbor (i.e., connected)
nodes of xi. GAT considers self-attention on the nodes after
the linear transformation W. With a shared attention mech-
anism, GAT allows all neighbor nodes to attend on the target
node. However, GAT only considers the relationship among
neighbors in the same layer while it fails to utilize the layer-
wise information, which may lead to over-smoothing.

What We Propose: Attentive GNN

We propose an Attentive GNN model which contains three
attentive mechanisms, i.e., node self-attention, neighbor-
hood attention, and layer memory attention. Fig. 1 shows
the pipeline of Attentive GNN for the few-shot learning, and
Fig. 2 illustrates the details of one Attentive GNN layer. We
discuss each of the attention mechanisms, followed by how
Attentive GNN is applied for few-shot learning.



Node Self-Attention. Denote the feature of each sample i
(i.e., node) as xi ∈ Rd, and the one-hot vector of its corre-
sponding label as yi ∈ RN , where d is the feature dimen-
sion, N is the total number of classes, and 1 ≤ i ≤ V . The
one-hot vector sets only the element corresponding to the
ground-truth category to be 1, while the others are all set to
0. We propose the node self-attention to exploit the inter-
class and inter-sample correlation at the initial stage. Denote
the sample matrices and label matrices as:

X = [x1,x2, . . . ,xV ]
T ∈ RV×d,

Y = [y1,y2,, . . . ,yV ]
T ∈ RV×N .

(3)

The first step is to calculate the sample and label correlation
matrices as:

Cx = softmax(XXT �M), Cy = softmax(YYT ). (4)

Here, M is the normalization matrix defined as M(i, j) =(
‖xi‖2 ‖xj‖2

)−1
, � denotes a point-wise product operator,

and softmax(·) denotes a row-wise softmax operator for the
sample and label correlation matrices. Take the sample cor-
relation as an example, and let P = XXT ∈ RV×V . The
row-wise softmax operator is defined as:

CX(i, j) = exp {P(i, j)} /
∑

k∈Ni

exp {P(i, k)} (5)

where Ni denotes the set of nodes that are connected to the
i-th node.

The proposed node self-attention module exploits the cor-
relation amongst both sample features and label vectors,
which should share the information from different perspec-
tives for the same node. Thus, the next step is to fuse Cx and
Cy using trainable 1× 1 kernels as:

Cf = fusionτ ([Cx,Cy]) ∈ RV×V (6)
where [Cx,Cy] denotes the attention map concatenation,
and τ is the kernel coefficients. This fusion function fusionτ
is equivalent to Cf = w1C

x + w2C
y , where the weighted

parameters w1, w2 are learned adaptively. With the fused
self-attention map, both the feature and the label vectors are
updated on the nodes:

X̃(1) = CfX , Y(1) = αY + (1− α)CfY (7)

where α ∈ [0, 1] is a weighting parameter. Different from
the feature update, the label update preserves the initial la-
bels, which are the ground truth, in the support set, using the
weighting parameter α to regularize the label update. The
updated sample features X̃(1) and labels Y(1) are concate-
nated to form the node features X(1).

Graph Neighbor Attention via Sparsity. Similar to var-
ious successful GNN framework, the proposed Attentive
GNN applies a MLP to learn the adjacency matrix Aij for
feature updates. When the GNN model becomes deeper, the
risk of over-smoothing increases as GNN tends to mix in-
formation from all neighbor nodes and eventually converge

to a stationary point in training. To tackle this challenge, we
propose a novel graph neighbor attention via sparsity con-
straint to attend to the most related nodes:

Â(k) = arg minA(k)

∥∥A(k) −U(k)
∥∥
F

s.t. U(k)(i, j) = MLP(k)
(∣∣∣x(k)

i − x
(k)
j

∣∣∣),∥∥∥A(k)
i

∥∥∥
0
≤βV.

(8)
Here, A(k)

i ∈ R1×V denotes the i-th row of A(k), β ∈ (0, 1]
denotes the ratio of nodes maintained for feature update, and
V is the number of graph nodes. With the `0 constraint, the
adjacency matrix Â(k) has up to βV non-zeros in each row,
corresponding to the attended neighbor nodes. The solu-
tion to (8) is achieved using the projection onto a `0 unit
ball, i.e., keeping the βV elements of each U

(k)
i with the

largest magnitudes (Wen, Ravishankar, and Bresler 2015).
Since the solution to (8) is non-differentiable, we apply al-
ternating projection for training, i.e., in each epoch U(k)’s
are first updated using back-propagation, followed by (8) to
update Â(k) which is constrained to be sparse. For simplic-
ity, we keep the top-k value for each row of U(k) and set the
others to 0 to construct the sparse matrix with k = βV .

Layer Memory Attention. To avoid the over-smoothing
and over-fitting issues due to “over-mixing” neighboring
nodes information, another approach is to attend to the “ear-
lier memory” of intermediate features at previous layers. In-
spired by DenseNet (Huang et al. 2017), JKNet (Xu et al.
2018), GFCN (Ji et al. 2020) and few-shot GNN (Satorras
and Estrach 2018), we densely connect the output of each
GNN layer, as the intermediate GNN-node features main-
tain the consistent and more general representation across
different GNN layers.

The proposed attentive GNN applies the transition func-
tion based on (1). In addition, we utilize graph self-loop i.e.,
identity matrix I to utilize self information as:

Fk(X(k), W(k)) = ρ (
[
Â(k) X(k)‖ IX(k)

]
W(k)) (9)

where ‖ means row-wise feature concatenation and W(k) ∈
R2dk×m. Furthermore, instead of using Fk(X(k),W(k)) ∈
RV×m directly as the input node feature at the (k+1)-th
layer, we propose to attend to the “early memory” referring
to (Satorras and Estrach 2018) by concatenating the node
feature at the k-th layer as:

X(k+1) =
[
X(k),Fk

(
X(k),W(k)

)]
∈ RV×(d+N+km) .

(10)
However, as the number of GNN layers k increases, the

time and memory complexity will continue to increase. In
order to reduce the memory complexity, we use label feature
concatenation to replace dense connection as:

X(k+1) =
[
Fk

(
X(k),W(k)

)
,Y(1)

]
∈ RV×(m+N) .

(11)
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Figure 1: Illustration of the proposed Attentive GNN framework for the few-shot learning task. In the support set and query
sample, the color and shape of the sample represent its corresponding class.
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Figure 2: Illustration of k-th layer of Attentive GNN module.

where Y(1) is the new label feature updated by (7).
For these two memory attention mechanisms, there is only

V × m new features introduced in a new layer, while the
other features (node feature of earlier layer X(k) or label
feature Y(1) ) are attended to the early memory.

Application: Few-Shot Learning Task
Problem Definition. We apply the proposed Attentive
GNN for the few-shot image classification tasks: Given a
large-scale and labeled training set with classes Ctrain, and
a few-shot testing set with classes Ctest which are mutually
exclusive, i.e., Ctrain ∩ Ctest = ∅, we aim to train a classi-
fication model over the training set, which could be applied
to the test set with only few labeled information. Such test
is called the N -way K-shot task T , where K is the number
of labeled samples which is often set from 1 to 5, i.e., the
testing set contains a support set S which is labeled, and a
query set Q to be predicted, denoted as T = S ∪ Q. The N
and K are both very small for few-shot learning.

Attentive Model for Few-Shot Learning. Following the
same strategy of episodic training (Vinyals et al. 2016) and
meta-learning framework, we simulate N -way K-shot tasks
which are randomly sampled from the training set, in which
the support set includes K labeled samples (e.g., images)
from each of the N classes and the query set includes unla-
beled samples from the same N classes. Each task is mod-
eled as a complete graph (Satorras and Estrach 2018), in
which each node represents an image sample and its label.
The objective is to learn the parameters of Attentive GNN
using the simulated tasks, which is generalizable for an un-
seen few-shot task.

Loss Function. For each simulated few-shot task Ttrain
with its query set Q = {(xi, yi)}Qi=1, the parameters of

the backbone feature extractor, self-attention block τ , and
the GNNs {MLP(k),W(k)} are trained by minimizing the
cross-entropy loss of classes over all query samples as:∑

k∈Ni

LTtrain = −
∑

Q

i=1
yi logP (ŷi = yi|T ) (12)

where ŷi and yi denote the predicted and ground-truth labels
of the query sample xi, respectively. We evaluate the pro-
posed Attentive GNN for few-shot task using both inductive
and transductive settings, which correspond to Q = 1, and
Q = Nq with q > 1, respectively. And for each query sam-
ple in N-way K-shot task, we initialize the one-hot feature y
with uniform distribution (i.e., each value is set to 1/N ) or
all 0 (i.e., each value is set to 0).

Why it works
Discriminative Sample Representation. It is critical to ob-
tain the initial feature representation of the samples that are
sufficiently discriminative (i.e., samples of different classes
are separated) for the GNN models in few-shot tasks. How-
ever, most of the existing GNN models work with generic
features using CNN-based backbone, and fail to capture
the task-specific structure. The proposed node self-attention
module exploits the cross-sample correlation, and can thus
effectively guide the feature representation for each few-shot
task. Fig. 3 compares two examples of the graph features
for 5-way 1-shot transductive learning using t-SNE visual-
ization (Maaten and Hinton 2008), using the vanilla GNN
and the proposed Attentive GNN. The vanilla GNN gener-
ates node representation that are “over-smoothed” due to bad
initial feature using CNN-based backbone. On the contrary,
the node self-attention module can effectively generate the
discriminative features, which lead to the more promising
results using the Attentive GNN.

Alleviation of Over-Smoothing and Over-Fitting prob-
lems. Over-fitting arises when learning an over-parametric
model from the limited training data, and it is extremely se-
vere as the objective of few-shot learning is to generalize
the knowledge from training set for few-shot tasks. On the
other hand, over-smoothing phenomenon refers to the case
where the features of all (connected) nodes converge to sim-
ilar values as the model depth increases. We provide theoret-
ical analysis to show that the proposed triple-attention mech-
anism can alleviate both over-fitting and over-smoothing in



(a) Vanilla GNN (b) Attentive GNN

Figure 3: t-SNE visualization (Maaten and Hinton 2008) of the graph features under 5-way 1-shot transductive setting using (a)
vanilla GNN, and (b) Attentive GNN. Samples of different classes are color-coded. Leftmost plots: the initial feature embedding;
Rightmost plots: final output; Middle plot of (b): output by the node self-attention.

GNN training. For each of the result, the proof sketch is pre-
sented, while the corresponding full proofs are included in
the Appendix.

Lemma 1 The node self-attention module is equivalent to a
GNN layer if α = 0 as

X(k) = [X,Y] , A(k) = Cf , W(k) = I . (13)

Proof Sketch The feature and label vector updates using
(7) is similar to multiplying with an adjacency matrix in (1),
while such matrix is obtained in a self-supervised way.

Proposition 1 Applying the node self-attention module to
replace a GNN layer in Attentive GNN, reduces the
trainable-parameter complexity fromO{d(d+L)} toO{1},
where L denotes the depth of MLP for generating the adja-
cency metric.

Proof Sketch The trainable parameters in a GNN layer (1)
are mainly the linear transformation W(k) and the MLP(k),
which scale asO{d2} andO{dL}, respectively. On the con-
trary, the graph self-attention only involve the 1× 1 kernels
that are trainable.

Lemma 1 and Proposition 1 prove that the node self-
attention module involves much fewer trainable parameters
than a normal GNN layer. Thus, applying node self-attention
instead of another GNN layer will reduce the model com-
plexity, thus lowering the risk of over-fitting.

Next we show that using graph neighbor attention can
help alleviate over-smoothing for training GNN. The anal-
ysis is based on the recent works on dropEdge (Rong et al.
2019) and GNN information loss (Oono and Suzuki 2020).
They proved that a sufficiently deep GNN model will always
suffer from “ε-smoothing” (Oono and Suzuki 2020), where
ε is defined as the error bound of the maximum distance
among node features. Another concept is the “information
loss” (Oono and Suzuki 2020) of a graph model G, i.e., the
dimensionality reduction of the node feature-space after T
layers of GNNs, denoted as ΘT,G. We use these two con-
cepts to quantify the over-smoothing issue in our analysis.

Theorem 1 Denote the same multi-layer GNN model with
and without neighbor attention as G̃ and G, respectively.
Besides, denote the number of GNN layers for them to en-
counter the ε-smoothing (Oono and Suzuki 2020) as T (G̃, ε)
and T (G, ε), respectively. With sufficiently small β in the

node self-attention module, either (i) T (G̃, ε) ≤ T (G, ε),
or (ii) ΘT (G,ε),G > ΘT (G̃,ε),G̃, will hold.

Remarks The result shows that the GNN model with graph
neighbor attention (i) increases the maximum number of lay-
ers to encounter over-smoothing, or if the number of layers
remains, (ii) the over-smoothing phenomenon is alleviated.

Experiments
Datasets. We conducted extensive experiments to evalu-
ate the effectiveness of the proposed Attentive GNN model
for few-shot learning, over two widely-used few-shot im-
age classification benchmarks, i.e., mini-ImageNet (Vinyals
et al. 2016) and tiered-ImageNet (Ren et al. 2018).
Mini-ImageNet contains around 60000 images of 100
different classes extracted from the ILSVRC-12 chal-
lenge (Krizhevsky, Sutskever, and Hinton 2012). We used
the proposed splits by (Ravi and Larochelle 2017), i.e., 64,
16 and 20 classes for training, validation and testing, re-
spectively. Tiered-ImageNet dataset is a more challenging
data subset from the ILSVRC-12 challenge (Krizhevsky,
Sutskever, and Hinton 2012), which contains more classes
that are organized in a hierarchical structure, i.e., 608 classes
from 34 top categories. We follow the setups proposed
by (Ren et al. 2018), and split 34 top categories into 20 (resp.
351 classes), 6 (resp. 97 classes), and 8 (resp. 160 classes),
for training, validation, and testing, respectively. For both
datasets, all images are resized to 84× 84.

Implementation Details. We follow most of the DNN-
based few-shot learning schemes (Snell, Swersky, and
Zemel 2017; Satorras and Estrach 2018) and first apply
the popular ConvNet-4 as the backbone feature extractor,
with 3 × 3 convolution kernels, numbers of channels as
[64, 96, 128, 256] at corresponding layers, a batch normal-
ization layer, a max pooling layer, and a LeakyReLU acti-
vation layer. Besides, two dropout layers are adapted to the
last two convolution blocks to alleviate over-fitting (Satorras
and Estrach 2018). Furthermore, to compare with the more
complicated CNN-based methods, we also apply ResNet-12
as the backbone, following the similar setup in (Oreshkin,
López, and Lacoste 2018). On this basis, a fully-connected
layer with batch normalization is added to the end for dimen-
sionality reduction. We conducted both 5-way 1-shot, and
5-way 5-shot experiments, under both inductive and trans-



mini-ImageNet tiered-ImageNet

Model Trans 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Proto-Net (Snell, Swersky, and Zemel 2017) % 46.14 65.77 48.58 69.57
Matching-Net (Vinyals et al. 2016) % 46.60 55.30 - -
Reptile (Nichol, Achiam, and Schulman 2018) % 47.07 62.74 48.97 66.47
Relation-Net (Sung et al. 2018) % 50.44 65.32 - -
MRN-Zero (He, Liu, and Hong 2020) % 51.62 67.06 55.22 73.37
SAML (Hao et al. 2019) % 52.22 66.49 - -
E3BM (Liu, Schiele, and Sun 2020) % 53.20 65.10 52.10 70.20
FEAT (Ye et al. 2020) % 55.15 71.61 - -

GNN based methods
GNN (Satorras and Estrach 2018) % 50.33 66.41 54.97 70.92
EGNN (Kim et al. 2019) % 52.86 66.85 - 70.98
Ours % 54.81 69.85 57.47 72.29

MAML (Finn, Abbeel, and Levine 2017) BN 48.70 63.11 51.67 70.30
Reptile (Nichol, Achiam, and Schulman 2018) BN 49.97 65.99 52.36 71.03
MAML (Finn, Abbeel, and Levine 2017) ! 50.83 66.19 53.23 70.83
DN4 (Li et al. 2019b) ! 51.24 71.02 - -
Relation-Net (Sung et al. 2018) ! 51.38 67.07 54.48 71.31
Dynamic-Net (Gidaris and Komodakis 2018) ! 56.20 72.81 - -
TEAM (Qiao et al. 2019) ! 56.57 72.04 - -
FEAT (Ye et al. 2020) ! 57.04 72.89 - -
MRN (He, Liu, and Hong 2020) ! 57.83 71.13 62.65 74.20

GNN based methods
TPN] (Liu et al. 2019) ! 51.94 67.55 59.91 73.30
TPN (Liu et al. 2019) ! 53.75 69.43 57.53 72.85
GNN\ (Satorras and Estrach 2018) ! 54.14 70.38 65.11 76.40
EGNN (Kim et al. 2019) ! 59.18 76.37 63.52 80.15
Ours (Normalized) ! 59.87 74.46 66.87 79.26
Ours ! 60.14 72.41 67.23 79.55

Table 1: Few-shot classification accuracy averaged over mini-ImageNet and tiered-ImageNet with the ConvNet-4 backbone.
The best and second best results under each setting and dataset are highlighted as Red and Blue, respectively. “BN” denotes
that the batch normalization where query statistical information is used instead of global batch normalization.

tiered-ImageNet

Model Backbone 5-way 1-shot 5-way 5-shot

Meta-Transfer (Sun et al. 2019) ResNet12 65.62± 1.80 80.61± 0.90
Proto-Net (Snell, Swersky, and Zemel 2017) ResNet12 65.65± 0.92 83.40± 0.65
MetaOptNet (Lee et al. 2019) ResNet12 65.99± 0.72 81.56± 0.53
CTM (Li et al. 2019a) ResNet18 68.41± 0.39 84.28± 1.73
Meta-Baseline (Chen et al. 2020) ResNet12 68.62± 0.27 83.29± 0.18
CAN (Hou et al. 2019) ResNet12 69.89± 0.51 84.23± 0.37
FEAT (Ye et al. 2020) ResNet12 70.80± 0.23 84.79± 0.16
DeepEMD (Zhang et al. 2020a) ResNet12 71.16± 0.87 86.03± 0.58
CAN+Trans (Hou et al. 2019) ResNet12 73.21± 0.58 84.93± 0.38

GNN based methods
TPN (Liu et al. 2019) ResNet12 59.91± 0.94 73.30± 0.75
DPGN (Yang et al. 2020) ResNet12 72.45± 0.51 87.24± 0.39
Ours ResNet12 73.15± 0.27 84.96± 0.12

Table 2: Few-shot classification accuracy averaged over
tiered-ImageNet with the ResNet backbone. The best (sec-
ond best resp.) results are highlighted as Red (Blue resp.).

ductive settings (Liu et al. 2019). We use only one query
sample for the inductive, and 5 (15 resp.) query samples
per class for the transductive experiments on ConvNet-4
(ResNet12 resp.) backbone. Our models are all trained using
Adam optimizer with an initial learning rate of 1×10−3. For
ConvNet-4 backbone, the weight decay is set to 10−6 and
the mini-batch sizes are set to 100 / 40 and 30 / 20, for 1-shot
/ 5-shot inductive and transductive settings, respectively. We
reduce the learning rate to half every 15K and 30K epochs,

over mini-ImageNet and tiered-ImageNet, respectively. For
ResNet12 backbone, the weight decay is 10−5 and the mini-
batch sizes are set to 28. We cut the learning rate to 0.1 every
15K epochs. The output feature dimension of two backbones
is 128 and the number of GNN layers is set to 3.

Results. We compare the proposed Attentive GNN to
the state-of-the-art CNN- and GNN-based methods, using
the ConvNet-4 and ResNet backbone, and Table 1 and Ta-
ble 2 list the average accuracy of the few-shot image clas-
sification, respectively. For the same algorithm, the accu-
racy of transductive learning is typically better than that
of the inductive learning, by further exploiting the corre-
lation amongst the multiple query samples. Different from
the standard transductive setting which applies 5 query sam-
ples per class, EGNN (Kim et al. 2019) uses 15 query sam-
ples which is more “advantageous”. The proposed Atten-
tive GNN has achieved promising results under different
settings, comparing to the various state-of-the-art few-shot
learning methods.

Ablation Study. We investigate the effectiveness of each
proposed attention module by conducting an ablation study.
Fig. 4 plots the image classification accuracy over the tiered-
ImageNet dataset, with different variations of the proposed
Attentive GNN, by removing the node self-attention (self
att) and layer memory attention (memory att) modules. Be-
sides, instead of applying layer memory attention which at-



Figure 4: Ablation study: Classification accuracies using At-
tentive GNN (4 to 10 layers) and its variations, over tiered-
ImageNet.

Figure 5: Inductive test accuracy vs. β over mini-ImageNet.

tends to the concatenated early feature, we try another vari-
ation by concatenating only the label vectors (label concat).
It is clear that all variations generate degraded results, and
some even suffer from more severe over-smoothing, i.e.,
accuracy drops quickly as the number of GNN layers in-
creases. We show that the label concatenation is a reason-
able alternative to replace layer memory attention which re-
quires less memory complexity. Furthermore, we study the
influence of the graph neighbor attention for few-shot learn-
ing by varying the hyper-parameter β. Fig. 5 plots the in-
ductive image classification accuracy by applying Attentive
GNN with varying β (i.e., ratio of elements maintained in
A) in the graph neighbor attention module. When β = 1,
it is equivalent to removing the graph neighbor attention at
all. By choosing the optimal β ∈ [0, 1]’s for 5-way 1-shot
and 5-way 5-shot settings, respectively, the graph neighbor
attention can further boost the classification results.

Hyper-Parameters. There are two hyper-parameters in
the proposed Attentive GNN, namely α and β, correspond-
ing to the ratio for label fusion, and the sparsity ratio in
the neighbor attention module. Table 3 shows how varying
these two parameters affects the inductive learning for image
classification averaged over tiered-ImageNet. Both α and β
range between 0 and 1. Besides, we also test the model when
the label fusion mechanism is totally removed, denoted as
“-” in the table. The empirical results demonstrate the effec-
tiveness of label fusion with α = 0.5 to be a reasonable ratio.
Besides, for 5-way 1-shot learning, the best result is gener-

Hyper-Parameter Setting Accuracy

β α 5-way 1-shot 5-way 5-shot

1.0 - 54.97 70.92
0.7 - 57.18 70.58
1.0 0 57.41 72.03
1.0 0.5 57.68 71.03
0.7 0.5 57.47 72.29

Table 3: Inductive accuracy on tiered-ImageNet with differ-
ent settings. “-” means NOT applying node self-attention.

Model Random Uniform

Vanilla GNN (Satorras and Estrach 2018) 59.77 65.11
Vanilla GNN w/ Neighbor Att. 60.18 65.49

Attentive GNN 61.39 67.23

Table 4: Effect of query samples distribution on tiered-
ImageNet for 5-way 1-shot task under transductive setting.
The total number of query samples for two settings is fixed.

ated when β = 1, which is equivalent to remove the graph
neighbor attention. It is because the total number of nodes
is small for 5-way 1-shot learning, thus imposing sparsity
leads to too restrictive model.

Robustness in Transductive Learning. While the query
samples are always uniformly distributed for each class
in the conventional transductive learning setting (Liu et al.
2019), such assumption may not hold in practice, e.g., query
set contains samples with random labels. We study how
robust the proposed Attentive GNN is for such setting by
comparing to the baseline GNN method (Satorras and Es-
trach 2018) and GNN with only neighbor attention (e.g., w/
Neighbor Att.). In the training, we simulate the query set
with samples with random labels correspondingly for Atten-
tive GNN and all competing methods under such setting. Ta-
ble 4 shows the image classification accuracy with 5-way 1-
shot transductive learning, averaged over tiered-ImageNet.
With the query-set samples of “random” labels, the proposed
Attentive GNN can still generate significantly better results
comparing to the vanilla GNN. Table 4 shows that the pro-
posed graph neighbor attention module contributes to the ro-
bustness. As the sparse adjacency matrix can attend to the
related nodes (i.e., nodes with the same class) in an adaptive
way, preventing “over-mixing” with all nodes.

Conclusion
In this paper, we proposed a novel Attentive GNN model for
few-shot learning. The proposed Attentive GNN makes full
use of the relationships between image samples for knowl-
edge modeling and generalization By introducing a triple-
attention mechanism, Attentive GNN model can effectively
alleviate over-smoothing and over-fitting issues when apply-
ing deep GNN models. Extensive experiments are conducted
over popular mini-ImageNet and tiered-ImageNet, show-
ing that our proposed Attentive GNN achieving promising
results comparing to the state-of-the-art few-shot learning
methods. We plan to apply Attentive GNN for other chal-
lenging applications in future work.



Appendix
Here we present the detailed proofs of the results for the
proposed Attentive GNN, i.e., Lemma 1 and Theorem 1.

Proofs of the results for Attentive GNN
We prove the main results regarding the proposed atten-
tive GNN. First of all, we analyze the proposed node self-
attention, whose feature and label vector updates are

X̃(1) = CfX , Y(1) = αY + (1− α)CfY , (14)

where Cf denotes the attention map, X and Y (resp. X(1)

and Y(1)) denote the input (resp. output) feature and label
vectors, respectively.

We prove Lemma 1 which shows that the proposed
node self-attention can alleviate Over-fitting by reducing the
model complexity comparing to adding more GNN layer.
The output of the k-th GNN layer can be represented as

X(k+1) = Fk(X(k), W(k)) = ρ (Â(k) X(k) W(k)) (15)

Lemma 1 The node self-attention module is equivalent to a
GNN layer if α = 0 as

X(k) = [X,Y] , Â(k) = Cf , W(k) = I , (16)

Proof 1 (Proof of Lemma 1) With the condition for equiv-
alence, the output of the k-th GNN layer becomes

X(k+1) = Fk(X(k), I) = Cf X(k) I = Cf X(k) . (17)

Thus, (17) is equivalent to putting the node self-attention
to replace the k-th GNN layer, with X(k+1) = X(1) and
X(k) = [X,Y].

Next, we prove Proposition 1 which shows the model
complexity decrease from a trainable GNN layer to the pro-
posed node self-attention module.

Proposition 1 Applying the node self-attention module to
replace a GNN layer in Attentive GNN, reduces the
trainable-parameter complexity fromO{d(d+L)} toO{1},
where L denotes the depth of MLP for generating the adja-
cency metric.
Proof 2 (Proof of Proposition 1) For a GNN layer follow-
ing (1), both W(k) and the MLP(k) are trainable, corre-
sponding to free parameters scale as O{d2} and O{dL},
respectively. On the contrary, based on Lemma 1, the pro-
posed node self-attention is equivalent to a GNN layer, with
the W(k) and the MLP(k) fixed. The only trainable parame-
ters are the 1 × 1 kernels to fuse the CX and CY, with the
complexity scales as O{1}.

Next we show that using graph neighbor attention can
help alleviate over-smoothing for training GNN. We first
quantify the degree of over-smoothing using the definitions
from (Rong et al. 2019) and (Oono and Suzuki 2020).

Definition 1 (Feature Subspace) Denote the M - dimen-
sional subspace M = {UΣ |U ∈ RV×M , UTU =
IM , Σ ∈ RM×d} as the feature space, with M ≤ V .

Definition 2 (Projection Loss) Denote the operator of pro-
jection X ∈ RV×d onto a M -dimensional subspace as
PM : RV×d → RV×d as

PM(X) = arg min
Z∈M

‖X− Z‖F . (18)

Denote the projection loss θM(X) as

θM(X) = ‖X− PM(X)‖F = min
Z∈M

‖X− Z‖F . (19)

Definition 3 (ε-smoothing) The GNN layer that suffers
from ε-smoothing if θM(X) < ε. Given a multi-layer GNN
G with each the feature output of each layer as X(k), we
define the ε-smoothing layer as the minimal value k that en-
counters ε-smoothing, i.e.,

T (G, ε) = min
k
{θM(X) < ε} (20)

Definition 4 (Dimensionality Reduction) Suppose the di-
mensionality reduction of the node feature-space after T
layers of GNNs is denoted as ΘT,G = d− T (G, ε).

With these definitions from (Rong et al. 2019) and (Oono
and Suzuki 2020), we can now prove Theorem 1 for the
graph neighbor attention as

Â(k) = arg minA(k)

∥∥A(k) −U(k)
∥∥
F

s.t. U(k)(i, j) = MLP(k)
(∣∣∣x(k)

i − x
(k)
j

∣∣∣),∥∥∥A(k)
i

∥∥∥
0
≤βV.

(21)
Here, A(k)

i ∈ R1×V denotes the i-th row of A(k), β ∈ (0, 1]
denotes the ratio of nodes maintained for feature update, and
V is the number of graph nodes. Besides, U(k) is the original
adjacency matrix with the graph neighbor attention.
Theorem 1 Denote the same multi-layer GNN model with
and without neighbor attention as G̃ and G, respectively.
Besides, denote the number of GNN layers for them to en-
counter the ε-smoothing (Oono and Suzuki 2020) as T (G̃, ε)
and T (G, ε), respectively. With sufficiently small β in the
node self-attention module, either (i) T (G̃, ε) ≤ T (G, ε),
or (ii) ΘT (G,ε),G > ΘT (G̃,ε),G̃, will hold.

Proof 3 (Proof of Theorem 1) Given the original U(k), the
solution to (8) is achieved using the projection onto a `0 unit
ball, i.e., keeping the βV elements of each U

(k)
i with the

largest magnitudes (Wen, Ravishankar, and Bresler 2015),
i.e.,

Â
(k)
i (j) =

{
U

(k)
i (j) , j ∈ ΩiβV
0 , j ∈ Ω̄iβV

(22)

Here, the set ΩiβV = supp(Â
(k)
i ) indexes the top-βV ele-

ments of largest magnitude in U
(k)
i , and Ω̄iβV denotes the

complement set of ΩiK . When Â
(k)
i (j) = 0, it is equivalent

to remove the edge connecting the i-th node and j-th node.
Thus, |Ω̄iβV | equals to the number of edges been dropped by
the node self-attention, and |Ω̄iβV | → V as β → 0.

Therefore, when β is sufficiently small, there are sufficient
number of edges been dropped by the node self-attention.
Based on the Theorem 1 in (Rong et al. 2019), we have ei-
ther of the two to alleviate over-smoothing phenomenon:



• The number of layers without ε-smoothing increases by
node self-attention, i.e., T (G̃, ε) ≤ T (G, ε).

• The information loss (i.e., dimensionality reduction by
feature embedding) decreases by node self-attention, i.e.,
ΘT (G,ε),G > ΘT (G̃,ε),G̃
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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