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Abstract 
 

In this study, we address the interpretability issue in 
complex, black-box Machine Learning models applied to 
sequence data. We introduce the Model-Based tree Hidden 
Semi-Markov Model (MOB-HSMM), an inherently 
interpretable model aimed at detecting high mortality risk 
events and discovering hidden patterns associated with the 
mortality risk in Intensive Care Units (ICU). This model 
leverages knowledge distilled from Deep Neural Networks 
(DNN) to enhance predictive performance while offering 
clear explanations. Our experimental results indicate the 
improved performance of Model-Based trees (MOB trees) 
via employing LSTM for learning sequential patterns, 
which are then transferred to MOB trees. Integrating MOB 
trees with the Hidden Semi-Markov Model (HSMM) in the 
MOB-HSMM enables uncovering potential and 
explainable sequences using available information. 
 
Keywords: Interpretable machine learning, Machine 
learning interpretability, Hidden semi-markov models, 
Subgroup analysis, Temporal data mining, Process 
discovery 
 
1. Introduction 
 

Electronic Health Records (EHR) offer immense 
potential for deriving valuable insights into patients’ 
healthcare. Researchers increasingly leverage Machine 
Learning (ML) algorithms to diagnose patients, predict 
patients’ prognoses, identify symptom risk factors, and 
discover interactions between drugs and diseases using 
EHR data. The growing accessibility of high-performance 
computing resources enables the development of complex 
ML models capable of revealing intricate patterns from 
data and achieving high accuracy comparable to physicians 
[1]. However, these sophisticated models may produce 
correct outcomes for the wrong reasons–shortcut learning 
problems [2], and detecting such problems is challenging. 
Additionally, the tremendous number of internal 
parameters can render these models as so-called “black-

box” models, making them hard to interpret. These 
concerns are critical, especially when these models support 
high-stakes decision-making tasks like clinical diagnoses. 
In these contexts, model interpretability is as important as 
prediction accuracy. 

To address the issue of model interpretability, 
researchers have been developing explainer models to 
interpret such complex models [3], [4]. However, the 
fidelity of explainer models’ explanations of black-box 
models’ predictions remains questionable. These gaps 
could result in incorrect explanations, undermining trust in 
the explainer and original models. To tackle this issue and 
prevent potential misinterpretations of ML models, some 
researchers have proposed using inherently interpretable 
models instead of explaining black-box models [5]. These 
interpretable models can provide a more direct and 
transparent understanding of the factors driving their 
predictions without further explanations. Consequently, we 
aim to distill knowledge from unexplainable Deep Neural 
Networks (DNNs) and enhance interpretable ML 
algorithms to deliver accurate and explainable predictions.  

We propose an interpretable ML algorithm called the 
Model-Based tree Hidden Semi-Markov Model (MOB-
HSMM), a derivative of the Classification Tree Hidden 
Semi-Markov Model (CTHSMM) [6], for making 
inferences on sequence data. The proposed algorithm can 
adapt to various tasks by defining parametric models 
within tree nodes that help predicts future states or patterns 
based on existing information. The MOB-HSMM we 
propose is capable of the following: 

1. Making inferences on sequence data while 
providing straightforward explanations of predictions, 

2. Identifying hidden states (sequential patterns) to 
expose various relationships between predictors and 
outcomes, 

3. Inferring possible state sequences given observed 
sequential activities of subjects. 

The rest of this paper is structured as follows: The next 
section reviews related works and background on 
CTHSMM, MOB trees, and knowledge distillation, laying 
the groundwork for our proposed approach. Section 3 
introduces the proposed model, which leverages deep 



neural networks’ capabilities to construct more precise 
interpretable probabilistic models. Section 4 presents and 
discusses the experimental results of applying the proposed 
method to a real-world dataset. Finally, Section 5 
concludes the paper, summarizing the proposed model’s 
contributions. 
 
2. Background 
 

The rising accessibility of computing resources has led 
to a surge in the application of Deep Learning (DL) in 
Machine Learning (ML) algorithms [7]. Integrating 
Artificial Neural Networks (ANN) and representation 
learning enables DNN models to decipher complex and 
abstract patterns from data, surpassing traditional ML 
algorithms in handling sequence data [8]. However, the 
intricate architecture and various parameters of DNN 
models create difficulties in understanding these black-box 
models. Interpreting decision logic and predictions is vital 
for high-stakes tasks such as disease diagnosis. To 
overcome this interpretability challenge, explainer models, 
like Local Interpretable Model-Agnostic Explanations 
(LIME), have been designed to elucidate black-box models 
[9]. However, some researchers advocate for inherently 
interpretable models instead of relying on explanations for 
black-box models [5], [10]. They posit that explainer 
models might offer low fidelity in their explanations, as 
they cannot replicate the precise predictions of black-box 
models. 

In response to the interpretability challenge, Liu et al. 
suggest improving the predictive performance of ML 
models by distilling knowledge from Long Short-Term 
Memory (LSTM) to eXtreme Gradient Boosting 
(XGBoost) and interpreting XGBoost with Shapley 
Additive exPlanations (SHAP) [11], [12]. Knowledge 
distillation entails student models emulating the 
predictions of teacher models, allowing them to gain 
additional insights beyond the original features [13]. This 
response-based knowledge distillation strategy can 
demystify black-box models and enhance interpretability.  

Within this framework, we propose a novel approach 
known as the MOB-HSMM. Rather than using tree 
ensembles, we transfer the knowledge acquired from 
LSTM to a single MOB tree, which merges MOB trees and 
Hidden Semi-Markov Models (HSMM). MOB trees 
facilitate identifying interactions and relationships among 
independent variables and outcomes via recursive data 
partitioning, proving more effective in unearthing 
interactions than classification trees [14], [15]. 
Furthermore, MOB trees can be combined with various 
parametric models, such as Generalized Linear Mixed-
effects Models (GLMM), to identify moderators from 
longitudinal data [16], [17]. By harnessing the strengths of 
MOB trees and HSMM, our approach aims to provide 
interpretable predictions and insights into trends based on 
existing data. 

 
Figure 1. The framework of the MOB-HSMM. 

 
The proposed approach is inspired by the Classification 

Tree Hidden Semi-Markov Models (CTHSMM) [6], which 
utilize tree models with learned rules to define the 
parameters of HSMM. In our model, the observed 
sequence represents the outcomes of predictive models, 
and the leaf nodes of the trees signify hidden states. This 
arrangement allows us to construct the transition matrix, 
emission distribution, and sojourn distribution by 
measuring the length of identical states, thereby 
discovering more defined and specific states from the data. 
The fusion of MOB trees and HSMM bolsters our ability 
to infer patients’ future health states and augments the 
interpretability of the predictions. 

 
3. Model-Based tree Hidden Semi-Markov 
Model 
 

In this section, we illustrate our proposed approach, the 
Model-Based tree Hidden Semi-Markov Model (MOB-
HSMM), along with a two-stage model learning process 
designed to uncover hidden states or patterns for 
corresponding observed sequences of outcomes: which are  
(1) the training of MOB trees using a teacher-student 
framework, where knowledge is distilled from a high-
capacity teacher DNN, and (2) the construction of the 
HSMM using the MOB tree. The model learning process is 
shown in Figure 1.  

Take an example of a typical data application that 
predicts the risk of death in the ICU. During the first stage 
of learning a black-box teacher model, we employ LSTM 
to convert the binary indicator of death into predicted 
probabilities indicative of the risk of death. We 
hypothesize that LSTM can discern informative patterns 
from sequential data and encode this knowledge into 
predicted probabilities. This knowledge is subsequently 
transferred to student MOB trees, empowering them to 
effectively model the relationship between independent 
variables and the risk of death. We assess the performance 
of both the teacher LSTM and student models using two 
metrics. The Area Under the Receiver Operating 



Characteristic (AUROC) evaluates the extent of 
knowledge learned by LSTM. Cross-entropy between 
student models’ predictions 𝑦, and the LSTM’s predicted 
probabilities ysoft determines how effectively the student 
models can mimic LSTM. Upon selecting the optimal 
MOB tree, which exhibits the minimum cross-entropy loss, 
we proceed to the second stage and construct the HSMM 
with the selected MOB tree.  

In the second stage, we initialize an HSMM using the 
MOB tree selected during the first stage. By partitioning 
data with similar patterns into distinct subspaces, MOB 
trees facilitate the correlation of each subspace with 
different relationships between predictors and outcomes. 
Consequently, we can define hidden states with the 
partition rules of the MOB tree and assign observations to 
the corresponding states. We then establish the transition 
matrix of the HSMM by counting state transitions in 
sequences within the training data. The emission 
distribution of each state is determined by the mean value 
and standard deviation of the state’s outcomes, and each 
state’s sojourn density functions are estimated using kernel 
density estimation with the Gaussian kernel.  

Figure 2 shows an example of a MOB tree that partitions 
data with PEEP (positive end-expiratory pressure) and 
FiO2 (inspired fraction of oxygen) into three leaf nodes, 
each signifying a unique relationship between fluid balance 
and mortality risk. This MOB tree aids in identifying the 
differing relationships between fluid balance and the risk 
of mortality across various subgroups. The fluid balance 
exhibits a positive correlation with the risk of mortality in 
the right node but a negative correlation in the middle node. 
As shown in Figure 3, we can designate the corresponding 
states of each observation using the MOB tree, count the 
transitions from one state to another, and estimate the 
sojourn distribution with the duration. As we access the 
HSMM defined with MOB trees, we can further employ 
the HSMM inferring the most probable state sequence with 
the Viterbi algorithm or simply predict the following 
possible states based on the current state. In the next 
section, we illustrate the MOB-HSMM with a real-world 
dataset to provide a more comprehensive understanding of 
the proposed MOB-HSMM and its application in real-
world scenarios.  
 

 
Figure 2. A MOB tree with three states/nodes. 

 
Figure 3. An example of ICU data with 

corresponding states. 
 

Table 1. Variable summary 
Variable Type Variablea 

Demographic 
characteristics 
 

Age, gender, height, weight, BMI. 

Vital signs 
 

HR, ABPmean, BT_C. 

Laboratory tests PH, PO2, PCO3, HCO3, Na, K, Ca, 
lactate, glucose, BE, hematocrit, platelet, 
BNP, and CRP 
 

Pivotal treatment 
 

Indicators of ventilators (including 
invasive and non-invasive), PEEP, FiO2; 
indicators of Dopamine, Dobutamine, 
Epinephrine, Norepinephrine, and 
Vasopressin.  
 

Fluid balance 24h Urine output; fluid input, output, 
and balance. 

aAbbreviation: BMI body mass index, HR heart rate, ABPmean mean 
arterial blood pressure, BT_C body temperature in Celsius, BE base 

excess in the extracellular fluid compartment, BNP B-type natriuretic 
peptide, CRP C-reactive protein, PEEP positive end-expiratory pressure, 

FiO2 inspired fraction of oxygen 
 
4. Experiment and Discussion 
 

In this section, we demonstrate the application of the 
MOB-HSMM algorithm using a real-world dataset from 
the Kaohsiung Veterans General Hospital (KSVGH). The 
purpose is to predict mortality risk, explain the prediction, 
and identify hidden patterns or states corresponding to the 
risk. The dataset includes data from 1307 patients, 396 of 
whom died upon discharge from the ICU. It comprises 
198,681 observations and numerous variables such as 
demographic details, vital signs, laboratory tests, pivotal 
treatments, and fluid balance. These variables are 
summarized in Table 1.  

Health Information Systems (HIS) data often have 
missing values due to irregular recording and differing 
collection frequencies across variables. To maximize the 
utilization of available information, we used interpolation 
for accumulated variables and the Last Observation 
Carried Forward (LOCF) method to impute missing values 
for variables linked to vital signs and laboratory tests. We 
divided the patients randomly into two groups, alive or 
dead, and allocated 20% of patients from each group for 
testing while the remaining were used for training. This 
train-test split is depicted in Figure 4, consisting of 157,850 



observations in the training set and 40,831 observations in 
the testing set. 

The outcome variable “mortality” presents a significant 
class imbalance problem due to repeated patient 
recordings, with positive cases only appearing in a 
patient’s final observations. To solve this problem, we 
applied repeated oversampling of positive observations in 
the training set, randomly cropping sequences of deceased 
patients at varying lengths, as demonstrated in Figure 5. 
This process elevated the positive observations ratio from 
0.2% to 17.3%. Given the time-series nature of the data, we 
implemented an LSTM as the teacher model comprising 
three layers with 256, 64, and 8 neurons, respectively. We 
used the binary focal loss as the loss function to prioritize 
minor positive cases. The LSTM model achieved AUROCs 
of 0.98 and 0.75 for the training and testing sets, 
respectively. We postulate that the LSTM can identify 
important information about patients’ recoverable critical 
events from the data. Consequently, we utilized the LSTM 
to infer the training and testing sets, transferring 
knowledge to student models.  

We transformed the predicted probabilities into logits 
before training the student models to predict soft targets. 
This ensures that the students do not predict values outside 
the range of probabilities, which are constrained between 0 
and 1. We employed GLMM trees to capture patient 
heterogeneity, combining GLMM and MOB trees. This 
allows us to uncover interactions among GLMMs and other 
partition variables of the trees. We defined the balance of 
intravenous fluid input and outflow as the fixed effect, 
given that intravenous fluid therapy is a common treatment 
for critically ill patients in the ICU [18]. 

To ascertain that the models have adequately learned 
from the data, we used the sliding window approach to 
assess the models’ predictive capabilities [19]. This 
approach, a variant of the prequential block approach, can 
avoid the potential pitfall of training models with newer 
observations and subsequently evaluate them with older 
ones. The approach estimates model performance using the 
most recent data by depreciating earlier data folds. As a 
result, the prequential block sliding window approach can 
offer a more precise evaluation of model performance 
compared to traditional k-fold cross-validation. In our 

experiment, we divided each patient’s observations into 
five folds, training the models using the first four folds and 
evaluating their performance using the next fold, as 
illustrated in Figure 6. We assessed the models’ 
performance on the testing set for each fold and reported 
the average performance in Table 2. 

Table 2 compares the predictive performance of a 
GLMM tree and other models, including Random Forest 
(RF), eXtreme Gradient Boosting (XGBoost), 
Classification And Regression Tree (CART), and Mixed-
Effects Random Forest (MERF). The results suggest that 
GLMM trees can match the performance of ensemble 
models on training and validation sets. The comparison of 
cross-entropy among models indicates that GLMM trees 
can mimic the teacher LSTM as effectively as RF and 
XGBoost. This result implies that GLMM trees can adeptly 
use the mixed-effects design to learn patient differences.  

However, the AUROC of GLMM trees and MERF on 
the testing set underscores a weakness of mixed-effect 
models: they struggle to predict outcomes accurately for 
new patients with no information. All experiments were 
conducted in R version 4.2.2 [20] with packages glmertree 
[17], rpart [21], ranger [22], mhsmm [23], and xgboost 
[24]; and Python 3.8 [25] with Keras [26] and TensorFlow 
1.14 [27].  

 
Figure 4. Splitting observations into the training 

and testing sets according to the patient’s 
mortality. 

 

 
Figure 5. An example of over-sampling on 

observations with the minor class.  
 

Table 2. Performance comparison 
Model Cross-Entropy AUROC 

Train Valid Test Train Valid Test 
Random Forest 
(# of tree=500) 

0.1853 0.2174 0.2037 0.9152 0.8509 0.7079 

XGBoost 
(max_depth=4, eta=0.01, nround=6000) 

0.1789 0.2115 0.2081 0.9494 0.8878 0.7447 

CART 
(cp=0.001) 

0.1908 0.2231 0.2179 0.7626 0.7601 0.6200 

MERF 
(fluid balance as fixed effect, # of tree=500) 

0.1781 0.2134 0.2147 0.9438 0.8830 0.6999 

GLMM Tree 
(fluid balance as fixed effect, alpha=1e-30) 

0.1825 0.2079 0.2082 0.9259 0.8843 0.5603  



 

 
Figure 6. Sliding window approach to estimate 

model performance.  
 

 
Figure 7. An example of the most probable vital 
sign sequence given mortality risk within 150 

hours. 
 

GLMM trees can be transformed into IF-THEN rules 
for interpretability. Table 3 outlines the rules of the GLMM 
tree discussed in Table 2. These rules elucidate the criteria 
of each subgroup and the relationships among partition 
variables, fluid balance, and mortality risk. For instance, 
the first rule suggests that a patient with low PEEP, no 
pivotal treatments, appropriate blood pressure, and 
balanced fluid input and outflow may have a lower 
mortality risk. Our method also allows us to predict the 
future health status of patients with HSMM or to identify 
possible shifts in health states using the Viterbi algorithm 
based on a sequence of mortality risks. Figure 7 graphically 
depicts a patient’s potential state sequence, transitioning 
from high to lower risk and reverting to high risk. This 
fluctuating state sequence suggests that the patient, initially 
in state s8, briefly transitioned to state s2 before reverting 

to state 8. This sequence suggests that the patient initially 
received treatment with a higher PEEP and pivotal 
treatments like dopamine, briefly received treatment with 
lower PEEP and without pivotal treatment, and, as the risk 
escalated, reverted to treatment with higher PEEP and 
pivotal treatments. These potential health state inferences 
can assist clinicians in the early adjustment of their 
treatment plans, even though the projected state sequences 
may not perfectly match the actual states. 

In our study, we posited the teacher model could detect 
patient mortality, recognize patterns of critical conditions, 
and identify high-risk periods during hospitalization. 
However, this assumption may not align with conventional 
metrics designed to measure models’ predictive 
performance. As more high-risk periods are identified, the 
model’s performance metrics decrease apart from death. 
Therefore, employing more suitable metrics to evaluate the 
model’s ability to capture critical conditions other than the 
outcome could enhance the interpretability and reliability 
of the MOB-HSMM. 

 
5. Conclusion 
 

We introduce the Model-Based tree Hidden Semi-
Markov Model (MOB-HSMM), an innovative and 
interpretable solution for predicting mortality risk in ICU 
patients while offering transparent explanations. Our 
approach leverages MOB trees and hidden semi-Markov 
models to predict patients’ future health states. Using 
model-based recursive partitioning, we uncover latent 
states that reveal diverse relationships between 
independent variables and outcomes. Our results 
demonstrate that a single interpretable GLMM tree can 
perform comparably to other ensemble models by distilling 
knowledge from deep neural networks. Additionally, our 
approach is generalizable to different MOB tree 
algorithms. Most importantly, MOB-HSMM can offer 
insights into future scenarios based on available 
information by collaborating with Hidden Semi-Markov 
Models. 

 
Table 3. Observation matrix with state definition of the GLMM tree trained with fluid balance as fixed 

effects. 
State µY Intercept Coefficient State Rule 

s1 0.0147 0.0222 -0.0608 PEEP ≤ 6 & no pivotal treatments & Glucose ≤ 490 
s2 0.0143 0.0483 1.5669 PEEP ≤ 6 & no pivotal treatments & Glucose > 490 & ABPmean ≤ 91 
s3 0.0086 0.1868 -0.8007 PEEP ≤ 6 & no pivotal treatments & Glucose > 490 & ABPmean > 91 
s4 0.0152 0.0110 0.4385 PEEP ≤ 6 & have pivotal treatments & Lactate ≤ 8.8 
s5 0.0267 0.0148 3.0419 PEEP ≤ 6 & have pivotal treatments & Lactate > 8.8 
s6 0.0269 0.0246 -0.7774 PEEP > 6 & no pivotal treatments & CRP ≤ 1.38 
s7 0.0306 0.0558 0.6934 PEEP > 6 & no pivotal treatments & CRP > 1.38 
s8 0.0517 0.0103 2.2638 PEEP > 6 & have pivotal treatments & SEX = 0 & weight ≤ 45.8 
s9 0.0363 0.0478 0.0494 PEEP > 6 & have pivotal treatments & SEX = 0 & weight > 45.8 
s10 0.0339 0.0240 1.3682 PEEP > 6 & have pivotal treatments & SEX = 1 
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