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Abstract

Atmospheric Turbulence (AT) correction is a challenging
restoration task as it consists of two distortions: geomet-
ric distortion and spatially variant blur. Diffusion models
have shown impressive accomplishments in photo-realistic
image synthesis and beyond. In this paper, we propose a
novel deep conditional diffusion model under a variational
inference framework to solve the AT correction problem. We
use this framework to improve performance by learning la-
tent prior information from the input and degradation pro-
cesses. We use the learned information to further condition
the diffusion model. Experiments are conducted in a com-
prehensive synthetic AT dataset. We show that the proposed
framework achieves good quantitative and qualitative re-
sults.

1. Introduction

Atmospheric Turbulence is an issue in real-life long-
range imaging caused by slight perturbations in atmo-
spheric conditions (e.g., temperature), and it can cause se-
vere blur and perceptual degradation. This, in turn, could
severely effect performance in the subsequent downstream
vision tasks, such as detection, recognition, and so on. Un-
like other imaging inverse problems, atmospheric turbu-
lence degradation contains a mixture of geometrical distor-
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tion, spatially variant blur, and noise, which makes AT more
challenging to mitigate.

Earlier works in AT correction mainly focus on optics
and lucky imaging algorithms [21]. These algorithms are
often computationally expensive. In recent years, with the
development of deep-learning (DL) algorithms for solving
various inverse problems [18], some works have proposed
DL-based AT removal methods [9, 13]. With [8] proposing
a fast AT simulation algorithm, large-scale data-driven DL
training for AT correction becomes possible [9]. In this pa-
per, we also adopt the simulation method in [8] to construct
our training and testing datasets.

Recently, deep diffusion models have been proposed and
developed for image generation [5]. As a likelihood-based
algorithm, it is more stable during training than generative
adversarial networks (GAN) and does not suffer from mode
collapse. Diffusion models have shown significant success
in various vision problems, like image synthesis [14] and
super-resolution [14, 16]. In a very recent work, diffusion
models are used for the atmospheric turbulence restoration
of faces [12]. However, no published work has addressed
the use of diffusion models in generic scenes AT correction.
In this paper, we propose a diffusion model to remove atmo-
spheric turbulence in generic scenes, producing results with
great visual quality. In addition, we refer to a variational
inference image restoration framework [17] to learn the la-
tent features related to task-specific prior information from
the input and the degradation process; we then inject this
learned knowledge as a condition into the diffusion models.
Therefore, the diffusion model is trained to adjust its be-
havior according to both the input degraded image and the
task-specific prior information, which further enhances its
performance.

In summary, our main contributions are: 1) We are the
first to use diffusion models to solve the AT correction prob-
lem in generic scenes. 2) We propose to include a varia-
tional inference framework to provide a task-specific condi-
tion to the diffusion models. 3) We show that our proposed
AT variational deep diffusion (AT-VarDiff) model gener-
ates results with outstanding visual quality evaluated both
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quantitatively and qualitatively.

2. Method

In this section, we present the proposed AT-VarDiff
model. We explain our model’s conditional denoising dif-
fusion process in Section 2.1. In Section 2.2 we introduce
the variational framework used to obtain the condition en-
coding task-specific information. Finally, in Section 2.3 we
illustrate the inference during testing.

2.1. Conditional Diffusion Model

Our training dataset contains N image pairs {yi, xi}Ni=1,
where yi represents the AT degraded image and xi the cor-
responding ground-truth image. As shown in Figure 1, our
model aims at learning the data distribution p(x|y, c) by a
stochastic iterative refinement process, which maps the in-
put degraded image y and the learned latent prior informa-
tion c to the ground-truth image x. The forward/diffusion
process (from right to left) gradually adds Gaussian noise,
denoted by q(xt|xt−1). Our goal is to reverse the dif-
fusion process (from left to right) by gradually recover-
ing the image from the input Gaussian noise with condi-
tions, which corresponds to learning the reverse process of
a fixed Markov Chain of length T conditioned on y and c.
More specifically, starting from a pure Gaussian noise im-
age xT ∼ N (0, I), the model learns the conditional tran-
sition distribution pθ(xt−1|xt, y, c) and iteratively denoises
the image for T steps, generating the target image x0 in the
end, such that x0 ∼ p(x|y, c).

The overall training framework of the AT-VarDiff model
is shown in Figure 2. Following the model design in de-
noising diffusion probabilistic model (DDPM) [5], the ar-
chitecture of our conditional diffusion module is a U-Net
[15] based on a wide ResNet [19], denoted as ϵθ. Training
is performed by optimizing the usual variational bound on
the negative log-likelihood, and the corresponding objective
function can be simplified to [5, 14]:

Ldiff = Ex,y,c,ε,t[∥ϵ− ϵθ(xt, t, y, c)∥22], (1)

with t is uniformly sampled from {1, ..., T}. According to
Equation 1, ϵθ takes as input the noisy target image xt, time
step t, the AT degraded image y, and the learned latent prior
information c to provide an estimate of the noise ϵ. The
details of obtaining c are discussed in the following Section.

2.2. Variational Inference Framework

The current conditional diffusion models used for solv-
ing image restoration tasks like super-resolution [16, 14],
and face AT correction [12] only use the input degraded
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Figure 1. Conditional denoising diffusion pro-
cess.
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Figure 2. Training framework of AT-VarDiff
model.

image as the condition. No work in the literature has em-
ployed any other task-specific prior information or domain-
knowledge to further enhance the conditioning progress.
According to [17], providing additional information can be
interpreted as dividing a complex distribution into simpler
sub-distributions that will eventually make network train-
ing easier and the results more accurate, since the number
of possible solutions would be reduced. In this paper, we
propose to use a variational inference framework to extract
the latent task-specific prior information from the input and
the degradation process and use the extracted feature as an
additional condition to guide the diffusion model.

As shown in Figure 2, we refer to a variational autoen-
coder (VAE) based framework [17] to learn the latent fea-
ture c from the input degraded image y and the AT degrada-
tion parameters. To achieve this goal, the objective we use
here contains three parts: the VAE loss, the adversarial loss,
and the AT degradation parameters’ loss.

The VAE loss contains the fidelity term and the recon-
struction term, that is,

Lvae = DKL(qeψ (c|y)||p(c)) + ||y − ŷ||22. (2)

The first term is the fidelity term; it measures the fidelity
of c extracted from the encoder eψ , whose input is the de-
graded image y. It is represented as the KL divergence
of the approximate posterior qeψ (c|y) from the prior p(c).
We select the prior p(c) as a standard Gaussian distribution.
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Figure 3. Testing framework of AT-VarDiff
model.

The second term is the reconstruction term, and we adopt
the pixel-wise mean squared error (MSE) distance between
the input degraded image y and the output ŷ of the decoder
dφ. In addition, we utilize a GAN [3] to better learn the in-
put degraded image distribution, in which an additional dis-
criminator is jointly trained to discriminate the generated ŷ
and the true degraded image y. Therefore, we also include
an adversarial loss

Ladv = −log(D(ŷ)), (3)

and the corresponding loss for the discriminator D is

Ldisc = −log(D(y))− log(1−D(ŷ)). (4)

Finally, we would like the latent feature c to contain knowl-
edge from the AT degradation process. Therefore, we add a
degradation loss defined as:

Ldegrad = ||ϕat − ϕ̂at||22, (5)

where ϕat represents the ground-truth AT degradation pa-
rameters from the pre-trained AT simulator [8]. ϕ̂at =
Param(c) represents the estimated AT degradation param-
eters, and is the output of a small network (parameter esti-
mation module) Param(·) taking c as input, as shown in
Figure 2.

Therefore, the final objective used for training our AT-
VarDiff model is defined as

L = Ldiff + λ1Lvae + λ2Ladv + λ3Ldegrad, (6)

where λ1, λ2, λ3 are hyper-parameters.

2.3. Inference

The testing framework of our model is shown in Fig-
ure 3. During testing, we followed the DDPM’s denoising
sampling procedure (Algorithm 2 in [5]) conditioned on the
input degraded image y and the learned task-specific latent
feature c to generate the output restored image. During both
training and testing, we perform the conditioning via con-
catenation, and we set T = 1000 for all the experiments.

Table 1. LPIPS & FID metrics comparison on
simple-DDPM, AT-VarDiff, and AT-DDPM [12].

AT-DDPM [12] Simple-DDPM AT-VarDiff (Ours)
LPIPS ↓ 0.2150 0.1923 0.1094

FID ↓ 80.05 60.87 32.69

3. Experiments

3.1 Experimental Settings

We use the AT simulator in [8] to simulate the effect of
AT on the REDS dataset [11], and the hyper-parameter of
the simulator (D/r0) is chosen randomly in the range [0.5,
2.0]. Our synthetic training dataset has one million AT de-
graded and clean image pairs. We use another 2500 syn-
thetic AT degraded images as the testing dataset.

For our encoder module, we use 5 2D-convolution (2D-
conv) layers with ReLU activation and one down-sampling
layer after the first conv layer. For the decoder module, we
use 5 2D-conv layers with ReLU activation and one up-
sampling layer after the first conv layer. For our param-
eter estimation module, we simply use 2 2D-conv layers
with LeakyReLU activation. The discriminator is formed
by 11 2D-conv layers with LeakyReLU activation and spec-
tral normalization [10].

During training, we augment the training data by random
cropping (160×160), random vertical and horizontal flips,
and random transposing. We train our model for 200 epochs
with 1500 iterations per epoch, and we set the batch size to
16. We use the Adam optimizer [6] with a weight decay of
0, and we set the initial learning rate to 1e − 4 and gradu-
ally reduced it to 5e− 6 during training utilizing the cosine
annealing schedule [7]. The hyper-parameters λ1, λ2, and
λ3 used in our final training objective (Equation 6) are set
to 0.1, 0.1, and 0.5, respectively.

3.2 Results

To evaluate our model, we use the Fréchet Inception Dis-
tance (FID) [4] and the Learned Perceptual Image Patch
Similarity (LPIPS) [20] metrics, which are measures of sim-
ilarity between two sets of images. These two metrics are
shown to correlate well with the human judgment of vi-
sual quality. In Table 1, we show the quantitative results
of our proposed AT-VarDiff model and compare it to us-
ing a pure conditional DDPM-based diffusion model like
the approach used in [12], i.e., this simple-DDPM model
is only built with the conditional diffusion module and is
only conditioned on the input degraded image y. We can
see that our AT-VarDiff model improves on both metrics,
demonstrating the effectiveness of our proposed variational
conditional diffusion framework. We also compare with the
pre-trained AT-DDPM model from [12] in the table. As can
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Figure 4. Visual comparisons of AT-DDPM
[12], simple-DDPM, and AT-VarDiff.

be seen in Figure 4, our proposed approach achieves much
better visual clarity, far fewer artifacts, and higher quality.

4. Conclusions

In this paper, we propose the variational deep diffu-
sion model AT-VarDiff to restore images degraded by atmo-
spheric turbulence. We propose to use the diffusion process
to remove AT in generic scenes, and we use a variational
inference framework to extract the latent task-specific prior
information from the input and the AT degradation. We
further inject extracted features as an additional condition
to guide the diffusion model. We show that the proposed
method achieves good results and outstanding visual qual-
ity, outperforming the current state-of-art. In the future, we
will use more advanced diffusion techniques to further en-
hance the performance.
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