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Abstract - The ever-increasing data production and 

availability in the field of bioinformatics demands a 

paradigm shift towards the utilization of novel solutions for 

efficient data storage and processing, such as the 

MapReduce data parallel programming model and the 

corresponding Apache Hadoop framework. Despite the 

evident potential of this model and existence of already 

available algorithms and applications, especially for batch 

processing of large data sets as in the Next Generation 

Sequencing analysis, bioinformatics MapReduce 

applications are yet to become widely adopted in the 

bioinformatics data analysis. We identify two prerequisites 

for their adaptation and utilization: (1) the ability to 

compose complex workflows from multiple bioinformatics 

MapReduce tools that will abstract technical details of how 

those tools are combined and executed allowing 

bioinformatics domain experts to focus on the analysis, and 

(2) the availability of accessible and flexible computing 

infrastructure for this type of data processing. This paper 

presents integration of two existing systems: Cloudgene, a 

bioinformatics MapReduce workflow framework, and 

CloudMan, a cloud manager for delivering application 

execution environments. Together, they enable delivery of 

bioinformatics MapReduce applications in the Cloud. 

I. INTRODUCTION 

Due to the advent of Next Generation Sequencing 
(NGS) [1], which can be described as the ability to decode 
the human genome in a massively parallel way, the 
amount of data in genomics has increased rapidly over the 
recent years. This remarkable increase in the volume of 
data is forcing affected institutions to consider novel 
approaches for storing the data and improving data 
analysis algorithm performances. However, for the 
bioinformatics domain experts without a background in 
computer science, utilizing these algorithms is often a 
challenging task because they require access to advanced 
compute infrastructure setup.  

Well-established workflow systems in bioinformatics 
data analysis, such as Galaxy [2] or Taverna [3], enable 
scientists to access a large set of computational tools 
through an accessible web interface. Domain experts are 
able to compose complex pipelines consisting of multiple 
tools, while the systems keep track of all the parameter 
options and allow the analysis to be reproduced or shared. 
These systems abstract the details of how the available 
tools are run, and allow the domain expert to focus on the 
data analysis rather than the technical details required to 

run a tool or load the data. While these systems represent 
an indispensable value to today’s research community, 
they are limited to the traditional tools (i.e., sequential, 
MPI, embarrassingly parallel) and traditional 
computational infrastructures (i.e., dedicated or cloud-
based compute clusters and standalone workstations).  

Given the large volume of data generated by NGS, 
novel algorithm parallelization methods are becoming 
increasingly important. One example of such a method is 
MapReduce [4][5], a straightforward programming model 
that allows efficient data parallelization. The MapReduce 
programing model (simply called MapReduce) allows 
users to process large amounts of data without 
understanding the underlying job execution environment 
complexity. In general, MapReduce provides a scalable 
way to parallelize large amounts of data using many 
inexpensive computational nodes and can simply be 
described as a general data-processing tool. However, not 
every algorithm can be efficiently parallelized with 
MapReduce. For example, parallelizing iterative 
algorithms with a lot of inter-process communication are 
better parallelized using the message-passing (MPI) model 
instead of MapReduce.  

So far, the support for the MapReduce parallelization 
model in the field of bioinformatics has been available 
only on a per-tool basis (see Section 2). Such individual 
tools typically cover one aspect of an otherwise larger data 
analysis pipeline. While beneficial, these solutions require 
domain experts to manually compose different tools in 
order to ensure a complete pipeline. What is currently 
lacking is the ability to interactively chain multiple such 
tools and allow the domain experts to focus on the data 
analysis rather than on the mechanics of the pipeline. 
Although, the previously mentioned and popular 
workflow systems enable this level of abstraction for the 
traditional tools, currently they do not offer the support for 
the tools based on MapReduce parallelization model. 

Realizing such a workflow platform requires a number 
of features, including: a graphical platform to integrate 
and execute available MapReduce tools, the option to 
easily reproduce experiments, the ability to extend the 
platform with additional or alternative tools, and a 
simplified access to the required computational 
infrastructure. In this paper, we describe each of these 
components and present a system that fulfils mentioned 
requirements. Moreover, we give an overview of 
bioinformatics applications that implement the 
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MapReduce model, some of which have already been 
integrated into the presented system. 

II. BIOINFORMATICS MAPREDUCE APPLICATIONS  

The most widely used open-source implementation of 
MapReduce programming model for large data batch 
processing is Apache Hadoop [6]. Hadoop also includes 
several sub-projects such as a distributed file system 
(HDFS) used for data storage in combination with 
MapReduce and Hadoop Pig, a high-level dataflow 
language to simplify the generation of MapReduce jobs. 
Within MapReduce, the user is responsible to write the 
map and reduce functions according to the algorithm's 
requirements. The MapReduce itself then achieves 
parallelization, data distribution, load balancing, and fault-
tolerance on cluster architecture by appropriately invoking 
the map or reduce functions. Despite its potential, 
particularly for batch processing applications in 
bioinformatics, only a limited number of algorithms have 
adapted this model.  

Table I gives an overview of currently available 
libraries and applications based on the MapReduce 
paradigm in the bioinformatics context. Utilizing these 
solutions often requires significant technical expertise, 
which may present a challenge for domain experts without 
a background in computer science or without access to the 
necessary MapReduce cluster architectures. To facilitate 
their adoption, several features that have already been 
delivered by graphical workflow systems such as Galaxy 
or Taverna, must be also fulfilled for the MapReduce 
applications. This includes a graphical platform to 
integrate and execute available MapReduce workflows, 
the possibility to reproduce experiments easily and a 
simplified access to a MapReduce cluster in private and 

public clouds. Libraries such as SeqPig [8] or BioPig [9] 
are helping biologists to use the aforementioned 
paradigms by abstracting the underlying Hadoop 
framework and providing high-level Apache Pig functions 
(or User Defined Functions (UDFs)). Nevertheless, a 
combination of algorithms to workflows, a standardized 
way to import/export data and an execution platform for 
algorithms in public or private cloud infrastructure is still 
lacking. 

III. BIOINFORMATICS MAPREDUCE WORKFLOWS 

Cloudgene [18] presents a web-based platform to 
create and execute workflows consisting of Hadoop 
MapReduce, Hadoop Pig and command line-based 
programs. It can be seen as an additional layer between 
Hadoop MapReduce and the end user that hides the 
complexity of the framework. Therefore, Cloudgene 
allows integrating different programs or algorithms within 
one platform that can be easily combined to workflows. 
The general architecture of Cloudgene is presented in 
Figure 1. As depicted, the client communicates with the 
server through a REST API. The server itself consists of 
three components: a workflow engine, a workflow 
manager, and a data manager. The workflow engine 
processes a previously generated workflow, specified on 
client side by utilizing Cloudgene’s workflow definition 
language (WDL) and it is responsible for executeing 
MapReduce steps on a Hadoop cluster. Job details, 
including all metadata (e.g., status of a job), are analyzed 
by the workflow manager and then provided to the client. 
Finally, the data manager component has the 
responsibility of interacting with the Hadoop distributed 
file system (HDFS). In order to submit jobs or interact 
with HDFS, Cloudgene must be installed on a Hadoop 

TABLE I.  BIOINFORMATICS MAPREDUCE APPLICATIONS OVERVIEW 

Area Program Description Cite 

Hadoop MapReduce 

libraries for 

Bioinformatics  

Hadoop BAM 
Manipulation of aligned next-generation sequencing data (supports BAM, SAM, 

FASTQ, FASTA, QSEQ, BCF, and VCF) 
[7] 

SeqPig 
Processing NGS data with Apache Pig; Presenting UDFs for frequent tasks; using 
Hadoop-BAM 

[8] 

BioPig Processing NGS data with Apache Pig; Presenting UDFs [9] 

Biodoop 
MapReduce suite for sequence alignments / manipulation of aligned records; written 

in Python 
[10] 

DNA - Alignment 

algorithms based on 

Hadoop 

CloudBurst 
Based on RMAP (seed-and-extend algorithm) Map: Extracting k-mers of reference, 

non- overlapping k-mers of reads (as keys) Reduce: End-to-end alignments of seeds  
[11] 

Seal 
Based on BWA (version 0.5.9) Map: Alignment using BWA (on a previously 

created internal file format) Reduce: Remove duplicates (optional) 
[12] 

Crossbow 

Based on Bowtie / SOAPsnp 

Map: Executing Bowtie on chunks 

Reduce: SNP calling using SOAPsnp 

[13] 

RNA - Analysis 

based on Hadoop 

MyRNA Pipeline for calculating differential gene expression in RNA; including Bowtie [14] 

FX RNA-Seq analysis tool [15] 

Eoulsan RNA-Seq analysis tool [16] 

Non-Hadoop based 

Approaches 
GATK 

MapReduce-like framework including a rich set of tools for quality assurance, 

alignment and variant calling; not based on Hadoop MapReduce  
[17] 
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cluster namenode.   

Existing applications can be integrated into the 
workflow platform by utilizing Cloudgene’s plugin 
interface. No adaptation to the source code is needed, 
while only a simple WDL manifest file including a 
header, input parameters, output parameters and the 
definition of the workflow itself need to be created. Figure 
2. shows the integration process of CloudBurst [11] into 
Cloudgene. The manifest file includes all the 
aforementioned parameters. When launching Cloudgene, 
the manifest file is loaded and the client interface is 
automatically rendered using information from the file.  

A project like Cloudgene lives from its integrated use 
cases. Therefore, several tools (Crossbow, MyRNA, 
CloudBurst and Seal) have been already integrated in 
Cloudgene and will be extended with additional 
applications in the future. Especially with Hadoop 2 
(based on YARN), new algorithms utilizing other 
programming models than MapReduce will be most likely 
developed.  

IV. BIOINFORMATICS MAPREDUCE WORKFLOWS IN 

THE CLOUD 

Underlying a workflow system such as Cloudgene, 
functional compatible cluster architecture is a prerequisite 
for executing MapReduce jobs. Unfortunately, small to 
medium sized research institutes can hardly afford the 
acquirement and maintenance of own computer systems 
with adequate performance. A possible solution comes in 
the form of cloud computing, which opens the opportunity 
to use compute and storage resources or services on 
demand. Cloud computing provides the possibility to rent 
computer hardware from different providers (e.g., AWS, 
HP) and those can be used to analyze necessary datasets.  

However, laborious challenges need to be addressed to 
make these resources available to the researchers. 
Specifically, although cloud computing provides a way to 
acquire computational resources on demand, the resources 
provided are either virtual machines on the Internet or 
specific programming libraries, which are unusable for 
domain experts because they require considerable 
configuration and ongoing management. A viable analysis 
solution thus needs to be accessible and deployable 

 
Figure 1.  Cloudgene Architecture 

 
Figure 2.  The integration process of CloudBurst into CloudGene 
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without informatics expertise while efficiently and 
automatically using dynamically scalable resources. 

Commercial companies also offer higher-level services 
that provide functional MapReduce frameworks. 
Examples include AWS Elastic Map Reduce (EMR) 
service or the Rackspace Hortonworks. While these 
options represent a workable solution, they are also 
forcing the system to use a particular cloud infrastructure 
provider, thus locking the user down. Open source 
Hadoop cluster distributions, such as the Cloudera CDH 
or MapR M series offer alternatives to the Apache Hadoop 
distribution. These distributions need to be installed, 
configured, and managed on computational infrastructure 
comparable to the low-level cloud resources (i.e., virtual 
machines). 

In response, as part of Cloudgene, Cloudgene-Cluster 
has been developed as a web-based system to acquire and 
configure a MapReduce cluster in the cloud. Cloudgene-
Cluster allows the orchestration of a full working Hadoop 
MapReduce cluster, the installations of additional services 
such as Apache Pig and user specific libraries or software. 
On top of the cluster, Cloudgene's workflow engine is 
provided. The end result is that a user is able to access 
Cloudgene in the cloud without any limitations to an in-
house cluster architecture or having to setup their own 
cluster. Although Cloudgene-Cluster provides an 
acceptable solution for providing a Hadoop cluster for the 
Cloudgene workflow application to utilize, its 
functionality is limited and, more importantly, borderlines 
the scope of an otherwise workflow system. Instead of 
developing a full-featured Hadoop manager within the 
workflow application, it is more beneficial to delegate 
resource orchestration step to another application. 

To help in this regard, we have previously constructed 
a software system called CloudMan [18], which makes it 
possible to easily procure and configure a functional data 
analysis platform on a cloud infrastructure. The procured 
platform delivers a scalable cluster-in-the-cloud and a data 
analysis environment preconfigured with a number of 

applications. With its ability to be launched and managed 
via a web browser on a number of clouds, customized as 
necessary, and easily shared with collaborators, 
CloudMan makes it possible to readily utilize cloud 
resources in a research environment [20]. Notably, 
CloudMan provides access to the Galaxy application, 
preconfigured with dozens of bioinformatics tools and 
hundreds of gigabytes of reference genome data [21]. 
Beyond these user-level features exposed in a web 
browser, CloudMan offers a set of application execution 
environments: a batch scheduler environment via Sun 
Grid Engine (SGE), a MapReduce environment using 
Hadoop and SGE integration, and a support for federated 
job execution environment via HTCondor [22]. These 
enable a range of workloads to be readily executed atop 
procured cloud resources.  

Internally, CloudMan implements a service-oriented 
architecture that allows arbitrary tools to be described as 
services. Once implemented, these services are easily 
deployed within the CloudMan platform making the tools 
available (to the user or other services/tools). CloudMan 
further implements a service dependency management 
framework that allows services to specify other services as 
their prerequisites. This makes it suitable for wrapping the 
Cloudgene workflow application as a CloudMan service. 
Because CloudMan provides a number of cloud 
orchestration and scaling features as well as includes a 
Hadoop-based application execution environment [22], by 
specifying Hadoop as its prerequisite, CloudMan will 
ensure a functional Hadoop cluster to be available for the 
Cloudgene workflow application to utilize when started. 
This service-to-tools ecosystem is visualized in Figure 3.  

Delegating the setup of the parallel compute 
environment to CloudMan opens the door for Cloudgene 
application to incorporate and make use of additional, big 
data, computational models (e.g., real-time data 
streaming). Comparable to the Hadoop environment, 
rather than needing to provide an implementation for 
provisioning the desired environment, such environment 
may be provided as a CloudMan service that can be 
simply requested by the Cloudgene application. The given 
environment will still need to be provided with the 
CloudMan platform. However, the expectation is that it 
will be possible to reuse much of the functionality already 
provided by the platform (e.g., cloud resource 
management), thus simplifying the service development 
process. Lastly, CloudMan platform already integrates a 
number of bioinformatics tools and a workflow system 
(Galaxy). As mentioned, Galaxy implements an execution 
model for the running jobs via the traditional batch 
scheduler. Adding Cloudgene into the platform, as a 
workflow system for MapReduce type applications, 
presents an opportunity to integrate the two job execution 
models. 

V. CONCLUSION 

The MapReduce model has proven to be a simple but 
effective programming model for implementing 
algorithms for the analysis of large datasets on large 
clusters and is thus very well suited for the Cloud. 
However, the usage of this paradigm is still limited to a 
small number of highly qualified domain experts. 

CloudMan platform

OpenNebulaOpenNebula

AWS OpenStack Eucalyptus

SGE Hadoop HTCondor ...

GalaxyCloudgene

MapReduce tools Traditional tools

Batch

Cluster jobs

 
Figure 3.  A layered view of the applications composing a flexible, 

functional tools ecosystem 
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Improving accessibility of solutions that utilize this 
concept is one of the first steps in democratizing access to 
the technology and reaping its benefits. In this paper, we 
summarize a number of software solutions that exist in the 
domain of bioinformatics that utilize the MapReduce 
programming model. In order to facilitate their utilization 
and integration, we then describe Cloudgene as a 
graphical workflow engine that allows these existing 
solutions to be easily chained together. This facilitates 
development of open-ended analyses and promotes 
acceptance of the technology. Finally, we identify a 
number of technical issues that still exist when trying to 
utilize this technology in the Cloud context and present an 
overview of a solution to overcome a number of those. 
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