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Using Constraints to
Describe Source
Contents in Data
Integration Systems
Chen Li, University of California, Irvine

D ata integration supports seamless access to autonomous, heterogeneous informa-

tion sources such as legacy databases, corporate databases connected by intranets,

and sources on the Web. Many data integration systems adopt a mediation architecture1

in which a user poses a query to a mediator that retrieves data from underlying  

sources to answer the query. In such an environment,
sources can have various constraints on their con-
tents, which the system can use in query processing
and optimization.2

With this in mind, my colleagues and I at the Uni-
versity of California, Irvine’s Raccoon Project
looked at how to best describe these constraints so
that they can be used to answer queries. We classified
various constraints; analyzed their motivations, lim-
itations, and advantages; and looked at how to
manipulate them. This research gave us greater
insight into how we can utilize constraints more
effectively.

An example: Housing information
For instance, consider the mediation system in

Figure 1, which provides information about houses.
The system integrates two sources that have Orange
County, California, housing information. They have
these simplified schemas:

Source S1: s1(street, zip, price, sqft), Irvine houses
Source S2: s2(street, zip, year, sqft), Newport Beach houses

The sources have these constraints:

• C1: All houses at source S1 are at least $250,000.
• C2: All houses at source S1 have a unique street address.
• C3: All houses at source S2 are at least $200,000 and were built

before 1995.
• C4: Each house in Orange County has a unique (street, zip)

address.

These constraints carry a rich set of semantics that
the system can use in query processing. For instance,
consider these queries that ask for houses in Orange
County:

• Q1 asks for houses under $230,000. We don’t need
to access S1 owing to C1.

• Q2 asks for houses built after 1998. We don’t need
to access S2 owing to C3.

• Q3 asks for the price and year of Orange County
houses. We can take the natural join of these two
sources on the street and zip attributes to compute
answers. We can’t compute the answers in this
way if C4 doesn’t hold true.

We consider the local-as-view (also known as
source-centric) approach to data integration under
the open-world assumption. The LAV approach uses
a collection of global predicates to describe source
contents as views and formulate user queries. Given
a user query, the system decides how to answer the
query by synthesizing source views. In the housing
example, a global predicate house(street, city, zip, price,
year, sqft) describes the source contents and user
queries. (On the contrary, in the global-as-view
approach, users pose queries directly on global views
that are defined on source relations. Jeffrey D. Ull-
man compares these two approaches in detail.3)
Many systems have adopted the LAV approach, par-
ticularly because of its good scalability; whenever a
source description changes, we can just inform the
mediator without modifying any global predicates
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or other source views. Under the open-world
assumption, each source has partial infor-
mation about a particular domain. For
instance, there are always some houses in
Orange County whose information isn’t
stored in S1 and S2.

Under these LAV and open-world assump-
tions, source contents and constraints could
exist a priori even before we introduce the
global predicates. Some source constraints,
such as C1, C2, and C3, exist for only some
data sources and don’t hold on the global
predicates. Other constraints, such as C4, are
true for all sources and better represented as
global constraints—constraints that hold for
the global predicates. For example, the fact
that (street, zip) form a key for the predicate
house can represent C4. By using global con-
straints, we can represent general informa-
tion about the underlying sources’ contents
and constraints. The source constraints can
imply some global constraints. For instance,
even though Orange County houses might
generally have a large range of prices and
years built, for answering user queries using
the two given sources’ contents, we can
assume that all houses stored at these two
sources are at least $200,000.

At a high level, there are two ways to
describe source constraints: either on the
sources (local constraints) or on the global
predicates (global constraints). Although
local constraints are easy to define, the
semantics of global constraints are subtler
because global predicates are virtual. That is,
in the LAV approach to data integration, the
global predicates don’t have relations that
store real records.

Local constraints
Heterogeneous sources in a data integra-

tion environment have various constraints. A
few common classes are

• Range constraints (such as housePrice ≥
200,000, houseYear ≤ 1995, and carPrice between
[3000, 8000])

• Enumeration constraints (for example, the
value of a state attribute can be only from
the 50 US state names)

• Functional dependencies (for example, a
source relation hotel(hotelName, address, tel) has
a functional dependency hotelName →
(address, tel)[“→” represents a functional
dependency])

• Other constraints such as referential
integrity (foreign keys) and inclusion con-
straints (for example, all the house
addresses from table R are a subset of all
those addresses from table S)

Some of these source constraints could be
described in the source view definitions if the
view language were expressive enough. Con-
sider the two data sources in the housing
example. We could define the source con-
tents and some of the constraints in this way:

S1(s, z, p, f) :- house(s, irvine, z, p, y, f),
p ≥ 250,000.
S2(s, z, y, f) :- house(s, newport, z, p, y, f),
p ≥ 200,000, y ≤ 1995.

We want to consider constraints sepa-
rately from the view and query language for
several reasons. First, the language might
not be expressive enough to describe all pos-

sible constraints. For example, the view def-
initions just listed use select-project-join
queries with comparisons, also known as
conjunctive queries with built-in predicates.
This query language can’t describe con-
straints such as enumerations and functional
dependencies.

Second, incorporating constraints in the
query language could complicate the process
of answering user queries using source views
because its complexity heavily depends on
the language. For instance, if user queries and
source views are all conjunctive queries
using the global predicates, the problem of
finding a conjunctive rewriting for a query
using the views is NP-complete.4 If the user
queries and views can have arithmetic com-
parisons, we need at least recursive queries to
compute answers to queries,5 and the com-
plexity increases significantly. So, we’re
interested in realistic cases where we can
simplify the process.

Third, describing constraints separately
from the query language can let us reason
about them more easily.

Some source constraints can naturally be
represented as local constraints. Each local
constraint is defined on one data source only.
A local constraint C for a data source S is a
set of conditions such that for any database
instance of S, the tuples in the database must
satisfy these conditions. For instance, we can
represent the first three constraints in the
housing example as three local constraints:

C1 for S1: price ≥ 250,000
C2 for S1: street → (zip, price, sqft)
C3 for S2: price ≥ 200,000, year ≤ 1995.
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Source S1: s1(street, zip, price, sqft)
All houses are in Irvine, CA.
C1: All houses are at least $250,000.
C2: All houses have a unique street address.

Source S2: s2(street, zip, year, sqft)
All houses are in Newport Beach, CA.
C3: All houses are at least $200,000 and were built before 1995.

C4. Each house in Orange County has
a unique (street, zip) address.

Mediator

Figure 1. A data integration system with source descriptions and content constraints.



For C1 in particular, the condition price ≥
250,000 should be satisfied by any database
instance of S1, not just for a particular
instance. We might want to represent C4 as
two local constraints:

C4 for S1: (street, zip) → (price, sqft)
C4 for S2: (street, zip) → (year, sqft).

However, they don’t correctly describe C4.
These two local functional dependencies
don’t disallow the case where the two sources
have two different houses with the same street
and zip code. That is, source S1 might have a
record s1(main street, 92697, $300,000, 2500) while
S2 has a record s2(main street, 92697, $360,000,
2800) for a different house. Clearly, C4 doesn’t
allow this case. So, if we replace C4 with
these two local constraints, we can’t take the
natural join of S1 and S2 to answer Q3. Local
constraints’ limitations show the need to use
global constraints.

Global constraints
The two kinds of global constraints are

general global constraints and source-derived
global constraints.

Let S1, …, Sk be k sources in a data inte-
gration system. Let P = {P1, …, Pn} be a set
of global predicates, on which the contents
of each source Si are defined. For simplicity,
let’s assume that each source Si has a single
view vi defined on the global predicates.

(Some constraints such as referential integrity
need multiple tables at a source.)

General global constraints
A general global constraint is a condition

that should be satisfied by any database
instance of the global predicates P. For exam-
ple, we can represent C4 in the housing
example as this (general global) constraint:

G1: (street, zip) form a key of the house
predicate—that is, (street, zip) → (city, price,
year, sqft)

The system designer can introduce gen-
eral global constraints during the design of a
data integration system. They capture the
application domain’s semantics no matter
how many sources are in the system. That is,
even if new sources join or existing ones
leave the system, we assume that any data-
base instance of the global predicates should
satisfy these constraints. They can be used to
answer queries, as Q3 shows.

Source-derived global constraints
Consider the following view definition for

source S1:

S1(s, z, p, f) :- house(s, irvine, z, p, y, f)

Under the open-world assumption, this
view means that for each tuple t1 = 〈s, z, p, f 〉

at source S1, a tuple t2 = 〈s, c, z, p, y, f 〉 must
exist in the predicate house such that the city
value c = irvine, even though we don’t know
year y’s exact value. S1 might not have the
information about all Irvine houses. On the
other hand, we can infer only the existence
of tuples such as t2 (for all tuples in S1), and
we don’t know whether other tuples exist.
So, we can just assume that other tuples don’t
exist (except those that are derived from other
source view instances). Given a database
instance of all the source views, we use the
derived tuples on the global predicates (such
as t2) to compute answers to a query.

Given these two sources, because we’re
certain about those derived tuples on the
global predicate, we can introduce the cor-
responding constraints these derived tuples
must satisfy. Owing to the local constraints
C1 and C3, the following is a condition that
all the derived tuples for the global predicate
house should satisfy:

G2: price ≥ 200,000.

G2 is a source-derived global constraint.
To formally define source-derived global

constraints, let’s first revisit the semantics of
a source view definition. We use the language
of conjunctive queries (select-project-join
queries) as an example, even though the con-
cept can be generalized to other languages.
Consider a view defined as the following
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Researchers in deductive databases have intensively studied
integrity-constraint specification and checking. Using integrity
constraints to speed up query processing has also been the topic
of many papers, especially in the area of deductive and object-
oriented databases. In particular, semantic query optimization
uses semantic information (such as integrity constraints or
deductive rules) to speed up query processing.1 We can use
these techniques for data integration. In addition, these studies
assume that the constraints are given. Because the constraints
on global predicates might not exist a priori in a data integration
system, solutions that can compute these global constraints can
make these techniques applicable in data integration. Further-
more, because we can describe the constraints at both the source
and global levels, we need more optimization techniques that
are suitable for this context. For instance, how do we compute
global constraints from local constraints, or vice versa, even
before we pose user queries? Chun-Nan Hsu and Craig A.
Knoblock present a semantic query-optimization approach for
heterogeneous multidatabase systems.2 It provides global opti-
mization for query plans and local optimization for subqueries
that retrieve data from individual database sources.

Researchers have studied the problem of resolving constraint

conflicts while integrating the conceptual schema of multiple
autonomous data sources using the entity relationship model,3

assuming that we need to design the global schema to integrate
data sources and resolve their constraint conflicts. They stud-
ied how to compute constraints from local sources to global
schemas and how to resolve conflicts.4
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conjunctive query, where each ri is a global
predicate:

Under the open-world assumption, this view
means that for each tuple tv in an instance of
the view, there are tuples t1, …, tn in the pred-
icates r1, …, rn, respectively, such that this
query v will produce (at least) tuple tv using
these n tuples.

Given a database instance Is = {T1, …, Tk}
of the k source views v1, …, vk, in which Ti is
a table instance of view vi, let D be a data-
base instance of the global predicates derived
from Is according to the view definitions. D
could have some unknown values. However,
to ensure that join attributes share the same
value in the records to produce a record in Is,
these join values could use the same
unknown values (reflected by using func-
tional symbols in the inverse-rule algo-
rithm6). We call D a derived database of Is.

Let source views v1, …, vk have local con-
straints C1, … , Ck, respectively. A source-
derived global constraint G of these source
views is a condition that must be satisfied by
any derived database of any database
instance of the source views that satisfy the
local constraints C1, …, Ck.

In the housing example, price ≥ 200,000 is a
source-derived global constraint because it’s
satisfied by any house tuple derived from any
database instance of the two sources. On the
contrary, price ≥ 300,000 isn’t, because there
could be a house (derived from a database
instance of the two sources) that has a price
lower than this one. Similarly, C2 can’t
derive a global constraint street → (zip, price, sqft)
because this functional dependency might
not be true for a derived database of the house
predicate.

Two observations about source-derived
global constraints stand out as important.

First, such a constraint might not hold for
the particular domain in general. For exam-
ple, houses in Orange County could be
cheaper than $200,000, violating constraint
G2. However, because these houses can’t be
derived from any database instance of the
two sources, we don’t need to consider them
for the purpose of computing answers to
queries using these two sources.

Second, if a source joins the system with
its own local constraints, the existing source-
derived global constraints could change. For
instance, if source S3 also has house infor-
mation and the prices of all its houses are at

least $150,000, then constraint G2 will
become price ≥ 150,000. If S4 doesn’t have any
local constraint on its house prices, then G2
will become invalid. On the contrary, if
sources leave the system, we might get more
global constraints or existing ones might
become more restrictive (for example, price ≥
150,000 could become price ≥ 180,000).

Motivation to use global 
constraints

Global constraints have several advantages
over local ones. First, some source con-
straints can’t be expressed as local—as
shown by C4, which can be easily described
as a (general) global constraint. General
global constraints easily and more naturally
represent conditions of tuples for the global-
predicate level.

Second, global constraints generally
describe the data at the sources; this descrip-
tion can help users understand the source con-
tents. Knowing that constraint G2 is true, users
can better submit queries to meet their needs.

Third, global constraints can make query
processing more efficient. Given the global
predicate G2, if a query asks for houses
cheaper than $130,000, the mediator can
immediately know that the answer is empty
without checking the source contents and
constraints.

Fourth, a data integration system can serve
as a subcomponent in a larger-scale system.
We could have a hierarchy of data integra-
tion systems, in which each node could be a
system that has multiple sources. We could
also have a network of data integration sys-
tems, each participant of which consists of
multiple sources. This architecture can hap-
pen in a peer-based data integration system
such as the Raccoon Project. Having the
global constraints for each component will
be critical for other components to know the
contents of the sources in this component.
We can use this information effectively in
query answering and routing.

We’ve encountered some problems
regarding how to describe con-

straints so that their rich semantics help the
system answer queries. One is how to com-
pute source-derived global constraints from
local constraints. Because such a system can
be very dynamic—sources come and go—
we need a systematic way to calculate these
global constraints automatically. In develop-

ing the algorithms, we need to consider dif-
ferent kinds of constraints.

Take range constraints for example. One
possible approach could be that, for each
local constraint for a source view, we use the
view definition to compute a constraint on
the predicates used in the view. We do the
computations for all the local constraints.
Then for those computed constraints on the
global predicates, we check if some of them
are consistent and choose the most inclusive
constraint. For instance, from local con-
straint C1, we can get a constraint price ≥
$250,000 on the house predicate. From local
constraint C3, we can get a constraint price ≥
$200,000 on the house predicate. Combining
these two new constraints, we can get price ≥
$200,000, which is the valid source-derived
global constraint G2.

The computation process can get compli-
cated if the view definitions have complex
operations such as joins and projections. For
instance, if we want to “map” the local con-
straint C2 to the global predicate, we might
need this constraint on the predicate house:

If city = irvine, then functional dependency
street → (zip, price, sqft) is true.

This constraint clearly isn’t a pure functional
dependency, because it’s constant based. To
capture various source constraints, we might
need to introduce more expressive constraints.

Another problem is how to verify if a
given database instance of source views sat-
isfies a general global constraint. Recall that
such a constraint is introduced during the sys-
tem’s design, assuming any database of the
global predicates satisfies it. We need to com-
pute the corresponding constraints source
relations must satisfy. This process is just the
opposite of the process of inferring global
constraints from local constraints. We need
efficient algorithms for this process and the
verification.

A third problem, about which intensive
research exists, is how to utilize local con-
straints and global constraints to answer
queries effectively and efficiently.7 For
instance, Q3 could be answered using the
two sources by utilizing the global constraint
G1. It’s interesting and challenging to see
how to use these techniques to process and
optimize queries in the context of data inte-
gration. Because the constraints could be
described at both the source and the global
levels, new techniques need to be developed
in this new context.8
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