
52 1541-1672/04/$20.00 © 2004 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

Authorization and
Privacy for Semantic
Web Services
Lalana Kagal and Tim Finin, University of Maryland

Massimo Paolucci, Naveen Srinivasan, and Katia Sycara, Carnegie Mellon University

Grit Denker, SRI International

W eb Services will soon handle users’ private information. They’ll need to pro-

vide privacy guarantees to prevent this delicate information from ending up

in the wrong hands. More generally, Web Services will need to reason about their users’

policies that specify who can access private information and under what conditions.

These requirements are even more stringent for
Semantic Web Services that exploit the Semantic
Web to automate their discovery and interaction
because they must autonomously decide what infor-
mation to exchange and how.

In our previous work, we proposed ontologies for
modeling the high-level security requirements and
capabilities of Web Services and clients.1 This
modeling helps to match a client’s request with
appropriate services—those based on security criteria
as well as functional descriptions. For example, a Web
Service could state that it can perform OpenPGP
encryption and requires an invoker that can
authenticate itself and communicate in XML. We
added functionality to the DAML-S Matchmaker2 (an
earlier version of the OWL-S Matchmaker) that lets it
verify if a service’s capabilities fulfill the invoker’s
security requirements and vice versa. Our results assist
coarse-grain matching decisions such as “Does the
service provide encryption?” or “What kind of cre-
dential do I have to provide to authenticate myself to
the service?”

In this article, we propose a more fine-grain
security markup of service parameters in OWL-S.
We extend our previous work with annotations
about the security and privacy policies of services.
We express these annotations in Rei, a logic-based
language that lets you define rules and constraints
over domain-specific ontologies.3 Our work aims
to provide security and policy annotations for
OWL-S service descriptions and enforcements by
extending the OWL-S Matchmaker for policy
matching and the OWL-S Virtual Machine (VM)4

with policy enforcement and security mechanisms.

Role of policies
Policies specify who can use a service and under

which conditions, how information should be pro-
vided to the service, and how the provided informa-
tion will be used. Policies should be part of Web Ser-
vice representations—particularly those on the
Semantic Web (see the “Related Work” sidebar for
more background information).

In our work, a client-server model involves a client
that wants to invoke a Web Service. We view the use
of policies as symmetric—policies that constrain both
the provider and requester. You can easily extend this
model to a service-service architectural model.

Here, we address two kinds of policies: privacy
and authorization. Privacy policies specify under
what conditions you can exchange information and
the legitimate uses of that information. For example,
a privacy policy might say that a provider could give
a requester a key to access private information only
if the key is encrypted during transmission. When a
requester discovers the policy, it should decide
whether it can satisfy this condition. The requester
might have its own privacy policy that requires keep-
ing certain information confidential, so it likewise
can’t share unencrypted private information. The
requestor’s privacy policy prevents it from interact-
ing with Web Services that don’t perform the needed
encryption.

Privacy policies help specify data confidential-
ity during transmission as well as after receipt. Con-
sider a service that says it won’t distribute details

Providing guarantees

for security and

privacy is paramount

to the success of

Semantic Web

Services. In this

article, the authors

describe OWL-S policy

annotations and

extend the OWL-S

Matchmaker and

OWL-S Virtual

Machine to support

the processing of

those policies.

S e m a n t i c W e b S e r v i c e s

it receives as input. A requester that values
privacy might see this as an important
requirement.

You can interpret a Web Service’s privacy
policies as an obligation and contract. For
example, if after invocation, a service does pro-
vide a requester’s details to a telemarketer, the
person represented by the requester could take
legal action against the service on the basis of
the policy. As financial transactions become
more common among Web Services and as
Web Services start dealing with confidential
information (such as names, addresses, social
security numbers (SSNs), credit cards, and
telephone numbers), more people will expect
the enforcement of privacy policies.

Authorization policies constrain the pro-
vider to accept requests for service only from
certain clients. For example, a service’s autho-
rization policy could state that a requester
must act on behalf of a person who belongs
to a certain organizational group and can
prove membership with a digital certificate.
Similarly, the requester could limit invoca-
tion to selected providers.

A motivating example
Consider a scenario in which a scientist is

looking for an online computing service for
her experimental data. Her privacy policy
requires that any personal information pro-
vided to the service (such as name or SSN)
stay confidential. So, she’s only looking for
Web Services that accept encrypted data and
that don’t release personal information to
other services or agents.

The scientist finds a Web Service that can
perform the necessary data computations.
The service’s authorization policy says that
it allows access only to members of certain,
selected organizations and that the scientist’s
registration must be authenticated.

In this article, we’ll approach the for-
malization and processing of these privacy
and authentication policies on two abstrac-
tion levels. On a more abstract level, we pro-
vide ontologies to annotate Web Service
input and output parameters with security
characteristics that state whether these para-
meters are encrypted or digitally signed, and
we rely on Rei to formalize the privacy and

authorization policies.
On a more concrete level, selecting Web

Services that satisfy the requester’s policies
will be part of an extension of the OWL-S
matchmaking process. Furthermore, crypto-
graphic mechanisms such as encrypting or
signing messages are enforced via integra-
tion into the OWL-S VM, a generic proces-
sor for the OWL-S process model and tool
for automatic invocation of OWL services.

OWL-S markup
OWL-S is a set of ontologies that describes

Web Services with the help of three modules:
a profile that provides a general description
of the Web Service, a process model that
describes how the Web Service performs its
tasks and the Web Service interaction proto-
col, and the grounding that specifies how the
atomic processes in the process model map
onto WSDL (Web Services Description Lan-
guage)5 representations.

Information exchanged between the Web
Service and its clients is controlled by the
inputs and outputs (I/O parameters) defined

JULY/AUGUST 2004 www.computer.org/intelligent 53

Today, Web Services—and Semantic Web Services even more
so—have a ways to go to realize their potential. Standardization
groups such as the Organization for the Advancement of Struc-
tured Information Standards (OASIS) and the World Wide Web
Consortium (W3C) have focused on syntactical issues of Web
Services interoperability and security. But these organizations
are just starting to explore how semantically rich annotations
will facilitate the discovery, selection, composition, invocation,
and runtime monitoring of Web Services.

Relevant related work stems from the areas of security for
Web Services and trust and privacy policies for the Semantic
Web. Lately, significant standardization efforts have arisen for
XML-based security, such as WSS (Web Services Security) and
SAML (Security Assertion Markup Language), sponsored by
OASIS technical committees, and the Liberty Alliance Project’s
security specifications. This work doesn’t consider Web Services’
semantic aspects. In addition to the specification of security,
efforts on Semantic Web trust and privacy policies—although
not specifically targeted toward Semantic Web Services—are
also relevant for our work.1,2

There has also been a significant amount of research in se-
curity policies for distributed systems. KAoS provides a policy
representation language based on OWL.3 Although this is an
interesting approach, OWL can’t adequately capture the full
range of policy constraints. Several efforts are under way to
add syntax for rules in OWL.4 Ponder is a policy specification
language developed at Imperial College.5 Although flexible
and expressive, it’s mostly a syntactic language and doesn’t
lend itself well to Semantic Web Services.

Rei, the language we use in this article, draws on distrib-
uted policy work by Morris Sloman and Emil Lupu.6–8 It has
an RDF Schema representation and includes a Prolog-like

notation for expressing rules on policy objects that exceeds
what can be done in DAML+OIL and OWL.

References

1. J.M. Bradshaw et al., “Representation and Reasoning for DAML-
Based Policy and Domain Services in KAoS and Nomads,” Proc. Conf.
Autonomous Agents and Multiagent Systems (AAMAS 03), ACM
Press, 2003, pp. 835–842.

2. F. Gandon and N. Sadeh, “Semantic Web Technologies to Reconcile
Privacy and Context Awareness,” Web Semantics J., vol. 1, no. 3,
2004, pp. 241–260.

3. A. Uszok et al., “KAoS Policy and Domain Services: Toward a Descrip-
tion-Logic Approach to Policy Representation, Deconfliction, and
Enforcement,” Proc. Policy Workshop, IEEE Press, 2003, pp. 93–98.

4. I. Horrocks et al., SWRL: A Semantic Web Rule Language Combin-
ing OWL and RuleML, ver. 0.5, DAML, 19 Nov. 2003; www.daml.
org/2003/11/swrl.

5. N. Damianou et al., “The Ponder Policy Specification Language,”
Proc. Policy 2001: Workshop Policies for Distributed Systems and
Networks, LNCS 1995, Springer-Verlag, 2001, pp. 18–39.

6. E. Lupu and M. Sloman, “A Policy Based Role Object Model,” Proc.
1st Enterprise Distributed Object Computing Conf. (EDOC 97), IEEE
CS Press, 1997, pp. 36–47.

7. E. Lupu and M. Sloman, “Conflicts in Policy-Based Distributed Sys-
tems Management,” IEEE Trans. Software Eng., vol. 25, no. 6, 1999,
pp. 852–869.

8. M. Sloman, “Policy Driven Management for Distributed Systems,”
J. Network and Systems Management, vol. 2, no. 4, 1994, pp. 333–
360.

Related Work

in the profile and process model. To support
security and privacy information, we must
provide a way to encrypt I/O parameters.
Because encrypted data is just a byte string,
it doesn’t reveal its internal value or struc-
ture. So, we suggest a semantic markup that
specifies the security characteristics of Web
Services’ I/O parameters, keeping informa-
tion about the data’s structure but without
revealing its value. (You can find a basic
ontology to handle the cryptographic details
of Web Services I/O parameters at www.csl.
sri.com/users/denker/owl-sec/infObj.owl.)
Requestors or matchmaking services can use
this metainformation for service selection.

To capture encrypted or signed I/O data,
we define an InfObj class (information object)
and subclasses EncInfObj (encrypted informa-
tion object) and SigInfObj (signed information
object). We’ll use the InfObj class as a range
for I/O parameters of OWL-S services. Infor-
mation objects have a baseObject that describes
the type or structure of the information that’s
encoded in it. For example, the base object
of an I/O parameter of class EncInfObj might be
a class such as SSN. This property provides
knowledge about the data exchanged and
could be used to determine whether a service
parameter fits a client’s requirements or
whether two Web Services’ I/O parameters
match. Furthermore, an information object
could have a property cryptoAlgUsed to indicate

the specific cryptographic algorithm used for
signing or encrypting data.

This basic ontology suffices to describe
the cryptographic details necessary for our
example. First, we’ll look at service discov-
ery and selection. Then, we’ll proceed to ser-
vice invocation.

We use a matchmaker to find a data com-
putation service that satisfies the scientist’s
functional requirements (such as the type of
data and turnaround time). (In this article, we
omit the details about functional require-
ments and focus on the client and service
security-related requirements.)

Privacy
Figure 1a shows a partial instance defini-

tion of class Person to describe our scientist
using the Friend of a Friend (FOAF) ontol-
ogy (see http://xmlns.com/foaf/0.1) that sup-
ports the description of people. Because the
scientist doesn’t want to reveal personal infor-
mation to everyone, she looks for Web Ser-
vices that accept encrypted personal infor-
mation. To find such a Web Service, the
scientist looks for OWL-S service descrip-
tions containing input descriptions in the
process:hasInput property that are consistent with
the input parameter shown in Figure 1b.

Authorization
Assume that our data computation service

grants authorization to the scientist based on
the following:

• The scientist must belong to a certain
group of selected organizations.

• The scientist must go through authentica-
tion to register with the service.

We’ll treat the first condition as a Rei pol-
icy. The service expresses the second con-
dition as a requirement in which the scien-
tist must register personal information in a
verifiable way to avoid impersonation at-
tacks. Figure 1c shows how the Web Ser-
vice could express its authenticated sign-in
requirement. Because the client’s policy can
vary from the Web Service’s policy, the
client’s requirements might not align with
a Web Service’s requirements. In our exam-
ple, the client required encrypted personal
information as input for the service, and the
service required the client to sign the infor-
mation. Nevertheless, a matchmaker can
deduce from our markup that both the client
and Web Service want personal information
submitted.

Policy representation and
reasoning

We propose to integrate expressive policies
relating to several security aspects, including
authorization and privacy in Semantic Web
Services. Policies are useful primarily during
the discovery phase and for forming contracts.

Representing policies in Rei
Rei is an RDF Schema-based language for

policy specification. It’s modeled on deontic
concepts of rights, prohibitions, obligations,
and dispensations. These constructs have four
attributes: actor, action, provision, and con-
straint. Constraint specifies conditions over
the actor, action, and any other context entity
that must be true at invocation, whereas pro-
vision describes conditions that should be
true after invocation. Provisions are the actor’s
obligations. These basic constructs let us
describe different kinds of policies, including
authorization, privacy, and confidentiality.

We believe that in distributed environ-
ments such as those enabled by Semantic
Web Services, the potential of conflicts
between policies will be high as there will be
several policies acting on a service. To enable
dynamic conflict resolution, Rei also includes
metapolicy specifications, namely setting the
modality preference (negative over positive
or vice versa) or stating the priority between

54 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 1. OWL encoding for (a) an instance Person using FOAF; (b) an OWL-S description
of an input parameter with encryption of values; and (c) an authenticated sign-in
requirement.

<foaf:Person rdf:ID=“MarySmith”>
<foaf:name xml:lang=“en”>

Mary Smith</foaf:name>
<foaf:title>Dr.</foaf:title>

</foaf:Person>

(a)

<process:hasInput rdf:ID=“PersonInf”>
<process:parameterType rdf:resource=

“EncPersonInfObj”/>
</process:hasInput>
where
<Class rdf:ID=“EncPersonInfObj”>

<SubClassOf rdf:resource=“#EncInfObject”/>
<Restriction>

<onProperty rdf:resource=“baseObject”/>
<allValuesFrom rdf:resource=

“&foaf;Person”/>
</Restriction>

</Class>

(b)

<process:hasInput rdf:ID=“RegInf”>
<process:parameterType rdf:resource=

“SigRegInfObj”/>
</process:hasInput>
<Class rdf:ID=“SigRegInfObj”>

<SubClassOf rdf:resource=“#SigInfObject”/>
<Restriction>

<onProperty rdf:resource=“baseObject”/>
<allValuesFrom rdf:resource=

“&foaf;Person”/>
</Restriction>

</Class>

(c)

S e m a n t i c W e b S e r v i c e s

rules within a policy or between policies
themselves.

The Rei reasoning engine interprets and
reasons over Rei policies, domain informa-
tion, and context and answers queries about
the current permissions and obligations of
entities in the environment. It can answer
several types of queries including,

• Does X have permission to perform Y on
resource Z?

• What are X’s current obligations?
• What actions can X perform on resource Z?
• What are all of X’s permissions in the cur-

rent policy domain?

• Under what conditions does X have per-
mission to perform Y on resource Z?

While answering these queries, the Rei
engine takes into account speech acts and
tries to resolve any conflicts it might find
using the defined metapolicies.

The class Policy is at the root of the Rei ontol-
ogy. Furthermore, Rei defines three subclasses
of Policy, PrivacyPolicy, AuthorizationPolicy, and Con-
fidentialityPolicy, to specify the different types of
policies we can support. In our implementa-
tion, we relate the class Policy with the OWL-S
ontology by defining a new OWL-S descrip-
tion property, called policyEnforced, of which Pol-

icy is the range (see www.csee.umbc.edu/
~lkagal1/rei/examples/sws-sec/swspolicy.owl).

For example, we can define in Rei an
authorization policy such as (in natural lan-
guage) “Permit everyone to access the data
computation service who is in the same
group as the provider of the service.” To spec-
ify this policy, we exploit the OWL-S prop-
erty contactInformation, which we specialize to
have the range foaf:Agent. We can use this prop-
erty to describe the service provider. We
assume that the OWL-S description of the
data computation service exists at some
namespace http://www.somenamespace.com/
dcs. Moreover, we assume that information

JULY/AUGUST 2004 www.computer.org/intelligent 55

Figure 3. A privacy policy specified in Rei.

<!— Get process associated with service —>
<constraint:SimpleConstraint rdf:ID=”GetProcess”

constraint:subject=”#ServiceVar”
constraint:predicate=”&service;describedBy”
constraint:object=”#ProcessVar”/>

<!— Get output value of process —>
<constraint:SimpleConstraint rdf:ID=”GetOutputValue”

constraint:subject=”#ProcessVar”
constraint:predicate=”&process;Output”
constraint:object=”#OutputVar”/>

<!— Parameter type is Person described in foaf —>
<constraint:SimpleConstraint rdf:ID=”IsPersonInfo”

constraint:subject=”#OutputVar”
constraint:predicate=”&process;parameterType”

constraint:object=”&foaf:Person”/>

<!— constraints combined —>
<constraint:And rdf:ID=”GetProcessAndOutput”

constraint:first=”#GetProcess”
constraint:second=”#GetOutputValue”/>

<constraint:And rdf:ID=”IsOutputPersonInfo”
constraint:first=”#GetProcessAndOutput”
constraint:second=”#IsPersonInfo”/>

<deontic:Prohibition rdf:ID=”PrivacyRestriction1”>
<deontic:action rdf:resource=”#ServiceVar”/>
<deontic:constraint rdf:resource=”#IsOutputPersonInfo”/>

</deontic:Prohibition>

Figure 2. A section of authorization policy specified in Rei.

<!— Rei variables used —>
<entity:Variable rdf:ID=”ProviderVar”/>
<entity:Variable rdf:ID=”ProviderProject”/>
<entity:Variable rdf:ID=”RequesterVar”/>

<!— Find provider of service —>
<constraint:SimpleConstraint rdf:ID=”FindProviderOfService”

constraint:subject=”&dcs;profile”
constraint:predicate=”&process;contactInformation”
constraint:object=”#ProviderVar”/>

<!— Get Provider’s project —>
<constraint:SimpleConstraint rdf:ID=”GetProviderProject”

constraint:subject=”#ProviderVar”
constraint:predicate=”&foaf;currentProject”
constraint:object=”#ProviderProject”/>

<!—Is Requester in the same project as Provider —>
<constraint:SimpleConstraint rdf:ID=”SameProjectAsProvider”

constraint:subject=”#RequesterVar”
constraint:predicate=”&foaf;currentProject”
constraint:object=”#ProviderProject”/>

<!— combine first two constraints —>
<constraint:And rdf:ID=”FindProviderAndGetProject”

constraint:first=”#FindProviderOfService”
constraint:second=”#GetProviderProject”/>

<!— combine remaining constraint —>
<constraint:And rdf:ID=”IsRequesterInSameProjectAsProvider”

constraint:first=”#FindProviderAndGetProject”
constraint:second=”#SameProjectAsProvider”/>

<!— permission to use data computation service —>
<deontic:Permission rdf:ID=”ServicePermission”>

<deontic:actor rdf:resource=”#RequesterVar”/>
<deontic:action rdf:resource=”&dcs;service”/>
<deontic:constraint

rdf:resource=”#IsRequesterInSameProjectAsProvider”/>
</deontic:Permission>

<sws:AuthorizationPolicy rdf:ID=”AuthPolicy1”>
<policy:grants rdf:resource=”ServicePermission”/>

</sws:AuthorizationPolicy>

exists about the groups the scientist belongs
to as well as information about the groups to
which the service provider belongs. See Fig-
ure 2 for a section of the authorization policy
specified in Rei.

However, a requester might have a privacy
policy of never sharing personal information.
Figure 3 shows how you could express this in
Rei. Specifically, this privacy policy assumes
that the FOAF ontology concepts specify all
of the scientist’s personal information. The
policy prohibits any service that has as out-
put personal information described using
FOAF Person. The privacy policy acts as a
template for allowed or prohibited services
based on output parameters. Additionally, the
requester might want to specify that any per-
sonal information, if shared, must be en-
crypted (see Figure 4).

Finally, Rei provides a metapolicy prior-
itization mechanism to resolve policy con-
flicts. So, a requester could state, for exam-
ple, that PrivacyRestriction2 holds priority over
PrivacyRestriction1, ensuring that services meet-
ing PrivacyRestriction2 are checked first.

Extending OWL-S with policies
All three modules of OWL descriptions

need security information: the profile is
where you specify the Web Service security
requirements for discovery, and the process
model and grounding need a specification of
the security requirements for invocation and
messages exchanged between the Web Ser-
vice and its requester. No explicit place for
security policies exists in OWL-S, but you
can naturally link to the profile because poli-
cies specify the Web Service’s general prop-
erties rather than properties that are specific
to any process.

Based on our earlier work,1 we propose
that policies are an extension of services’
security requirements and suggest adding a
property called policyEnforced, defined as a sub-
property of securityRequirement (see www.csl.sri.
com/~denker/owl-sec/serviceSecurity.owl).
PolicyEnforced describes the different policies
that must be enforced for the service to exe-
cute correctly.

Figure 5a shows how we annotate a Web
Service requiring the authorization policy

shown in Figure 2.
Similarly, we envision annotations of re-

questers’ policies. In earlier work, we sug-
gested a property securityRequirement with domain
Agent, a general class for clients and requester.1

Property policyEnforced is also a subproperty of
an agent’s securityRequirement, and we define the
foaf:Person class to be a subclass of Agent. So, in
Figure 5b we show how we define a scientist
who requires that her personal information be
transmitted as encrypted data and that it never
appear as a service’s output.

Using policies to select providers
During the discovery process, the requester

must select the best provider. To do this, the
requester must verify the compatibility of its
policies with the provider’s. In this article, we
aim to integrate Rei reasoning on policies
within the Matchmaker, a capability-based
matching engine.2 To begin, we present the
algorithm for privacy constraints:

1. The Matchmaker fetches the OWL-S
description of a Web Service that
matches the requester’s functional
requirements.

2. The Matchmaker does the capability
matching to extract the Web Services
that perform the requested task.

3. The Matchmaker retrieves the requester’s
privacy policy and extracts the privacy
policies from the provider’s profile.

4. The Matchmaker sends the OWL-S
description and the privacy policies to
the Rei reasoner.

5. As the privacy policy defines the pro-
hibited service templates, the Rei rea-
soner verifies that the matched service
is not prohibited. It checks that the ser-
vice doesn’t have as output any infor-
mation that the client wants to keep pri-
vate. It also checks that the provider and
requester’s privacy policies don’t con-
tradict each other.

6. If a privacy policy isn’t satisfied, the
Rei reasoner returns false and the
Matchmaker continues to check the
next service for privacy compatibility.
Otherwise, the Rei reasoner returns true
and the Matchmaker returns this ser-
vice to the client.

Similarly, we present the algorithm for
authorization policies:

1. After matching capabilities, the Match-
maker extracts the precondition of the

56 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Figure 5. Annotation of an OWL-S profile with (a) authorization and (b) requester
policies.

<profile:Profile rdf:ID=
“DataComputationServiceProfile”>

<profile:textDescription>
This data computation service requires

authorization.
</profile:textDescription>
…
<policyEnforced:rdf:resource=

“#AuthPolicy1”/>
</profile:Profile>

(a)

<foaf:Person rdf:ID=”MarySmith”>
<foaf:name xml:lang=”en”>

Mary Smith</foaf:name>
<foaf:title>Dr.</foaf:title>
<policyEnforced: rdf:resource=

”#PrivacyPolicy1”/>
</foaf:Person>

(b)

Figure 4. A privacy policy stating that all shared personal information must be
encrypted.

S e m a n t i c W e b S e r v i c e s

<!— Parameter type is Person encrypted as per
inf ontology —>
<constraint:SimpleConstraint rdf:ID=

”IsPersonInfoEnc”
constraint:subject=”#OutputVar”
constraint:predicate=

”&process;parameterType”
constraint:object=”&inf;EncPersonInfObj”/>

<!— constraints combined using IsOutputPerson-
Info constraint decribed earlier —>
<constraint:And rdf:ID=”IsOutputEncPerson”

constraint:first=”#IsOutputPersonInfo”
constraint:second=”#IsPersonInfoEnc”/>

<deontic:Permission rdf:ID=”PrivacyRestriction2”>
<deontic:action rdf:resource=”#ServiceVar”/>
<deontic:constraint rdf:resource=

”#IsOutputEncPerson”/>
</deontic:Permission>

<sws:PrivacyPolicy rdf:ID=”PrivacyPolicy1”>
<policy:grants rdf:resource=

”PrivacyRestriction1”/>
<policy:grants rdf:resource=

”PrivacyRestriction2”/>

</sws:PrivacyPolicy>

service that is of type AuthorizationPolicy.
2. It gathers all relevant information about

the user and sends this and the autho-
rization policy to the Rei reasoner.

3. If the Rei reasoner returns true, the
authorization policy is satisfied and the
Matchmaker can return the service to
the client. Otherwise, the Matchmaker
continues checking the next service for
authorization compatibility.

Verifying policy adherence
You can declare policies in the profile, but

they should be enforced in the process model
that’s responsible for the provider and
requester interactions. Furthermore, the
grounding module provides a mapping from
the process model to the messaging specifi-
cation, and specifically to WSDL and SOAP
(Simple Object Access Protocol).

The emerging specifications for Web Ser-
vices security assume that message security
is specified at the WSDL and SOAP levels.6

If the requester wants to check whether the
policies will be enforced in the interaction,
it must verify the constraints placed by the
provider on message passing.

If the requester wants to verify that the
provider adheres to the published policies, it
must analyze all specifications for the mes-
sage passing. The requester also needs to do
this because the provider might not expose
its policies completely, but it could compile
some aspects directly in the interaction
specifications.

The following algorithm is a first attempt
to enable the requester to verify the pro-
vider’s adherence to policies:

1. The requester gathers the process mo-
del, grounding, and WSDL and SOAP
specifications from the provider and its
own and the provider’s policies.

2. The requester uses the provider’s
process model, grounding, and WSDL
and SOAP specifications to detect what
encryption is adopted for the different
types of information.

3. The reasoner verifies that
a. The requester’s policies are satisfied
b. The provider enforces its own policies

4. If the first test fails, the requester
doesn’t use the provider. If the second
fails, the requester makes its own de-
cisions about using the provider.

Steps 1 and 2 are achieved by exploiting
the grounding and WSDL, which describes

how this information is encoded in the mes-
sage. In the future, we envision implement-
ing Step 3 of this algorithm in the Rei rea-
soner. If the results of the reasoning about
policies aren’t consistent with the requester’s
policies, the requester knows that it will incur
a violation if it pursues the interaction. If the
reasoning reveals an inconsistency between
the policies specified and the actual inter-
action management, the requester may
decide whether or not to select the provider
depending on whether it can satisfy the addi-
tional requirements and its own judgment on
the provider’s failure.

In general, it behooves the provider to be
explicit and honest about its policies. If a
provider isn’t honest and it specifies a
policy that it doesn’t enforce, it loses all the
requesters that don’t want to adhere to the
policy and loses the trust of the requesters
that realize the policies aren’t enforced.
Similarly, if the provider doesn’t explicitly
specify some of its policies, it could interact
with requesters that can’t deal with those
policies and fail in the interaction.

Enforcing privacy and
authentication

We mentioned that you can fulfill privacy or
authentication through encrypting or signing
I/O parameters. We propose to keep the work
involved with cryptographic operation trans-

parent to the requester by extending the tool that
invokes the Web Service (in our case, the OWL-
S VM) with features for encrypting or signing
data exchanged between client and server.

The OWL-S VM3 implements a general
purpose Web Service client that relies on the
OWL-S process model and grounding to
automate interactions between Web Services,
minimizing human intervention. The OWL-
S VM architecture, shown in Figure 6, is orga-
nized in three columns: on the left are the
inputs to the OWL-S VM, specifically the
process model, grounding, and WSDL de-
scription of a Web Service. The center col-
umn describes the OWL-S VM proper, while
the box on the right describes the reasoning
system of the agent that uses the OWL-S VM.

Upon receiving the process model and
grounding of a Web Service, the OWL-S VM
activates the OWL-S processor module, which
implements the semantics of OWL-S and
OWL, to control the interaction of the Web
Service through the execution of the process
model. In addition, the Web Service’s WSDL
description is used to parameterize the Web
Service invocation module that manages the
actual message passing between the OWL-S
VM and the Web Service. Whenever the
process model requires a message passing
between the client and the Web Service, the
OWL-S processor asks the reasoning system
for the content of the messages to send and

JULY/AUGUST 2004 www.computer.org/intelligent 57

Reasoning system

Interaction rules

Agent knowledge base

Problem solver

Web Services

SOAP

Web Service invocation

Axis's Web Service invocation framework

OWLS WebServiceInvoker

OWL-S processor

Grounding execution rules

Process model execution rules

OWL inference engine

OWL Jess knowledge base

Jess

Jena

OWL-S service
description

OWL-S VM

WSDL

OWL -S
grounding

OWL-S
process model

Figure 6. The OWL-S Web Service architecture.

then asks the Web Service invocation mod-
ule to send the message.

We intend to extend the OWL-S VM to
enforce authorization and privacy policies.
We’ll implement the required security trans-
formation on the I/O parameters in the OWL-
S VM. So, upon executing an atomic process,
the OWL-S VM uses the semantic parameter
annotation in the corresponding process mo-
del to enforce the privacy and authorization
constraints that cryptographic techniques
(using encryption and digital signatures) can

implement. We use SOAP security annota-
tions to implement the actual message en-
cryption or signing. By using the security
mechanisms proposed in this article, Web
Services implementing the OWL-S VM are
guaranteed to maintain secure communica-
tion with their partners.

In the future, we plan to expand our work
to address negotiation protocols. Policies

that don’t match require some form of nego-
tiation. Let’s assume that a Web Service
requires another Web Service’s authentica-
tion, but the credential provided doesn’t suf-
fice. The service could enter a negotiation
phase, following certain communication pro-
tocols, to resolve this problem. Furthermore,
the policy language’s abstraction level or
expressiveness also determines the problem’s
complexity. Consider a policy stating that a
client never wants to reveal information that
someone can use to deduce his home address.
Depending on the information exchanged
with the service and additional context infor-
mation, this could mean that the service
could never release the client’s phone num-
ber because a reverse lookup could compro-
mise the address. This shows that a broad
range of policies apply. In the future, we’ll
also look at more complex policies that
address combinations of these security
notions and other user-defined policies.

Acknowledgments
DARPA supports this work through the Air Force

Research Laboratory under contract F30602-00-C-
0168 to SRI, contract F30602-00-2-0592 to Carnegie
Mellon University, and contract F30602-97-1-0215
to the University of Maryland, Baltimore County.

References

1. G. Denker et al., “Security for DAML Web
Services:Annotation and Matchmaking,” The
Semantic Web - ISWC 2003, LNCS 2870,
Springer-Verlag, 2003, pp. 335–350.

2. M. Paolucci et al., “Semantic Matching of
Web Services Capabilities,” Proc. 1st Int’l.
Semantic Web Conf., 2002, pp. 333–347.

3. L. Kagal,T. Finin, and A. Joshi, “A Policy Based
Approach to Security on the Semantic Web,”
The Semantic Web - ISWC 2003, LNCS 2870,
Springer-Verlag, 2003.

4. M. Paolucci et al., “The DAML-S Virtual
Machine,” The Semantic Web - ISWC 2003,
LNCS 2870, Springer-Verlag, 2003, pp.
290–305.

5. E. Christensen et al., “Web Services Descrip-
tion Language (WSDL) 1.1,” W3C, 15 Mar.
2001; www.w3.org/TR/wsdl.

6. B. Atkinson et al., “Specification: Web Ser-
vices Security (WS-Security),” ver. 1.0, 5 Apr.
2002; www-106.ibm.com/developerworks/
webservices/library/ws-secure, 2002.

For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.

S e m a n t i c W e b S e r v i c e s

58 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e A u t h o r s
Lalana Kagal is a PhD candidate and research assistant with Tim Finin at
the Department of Computer Science and Electrical Engineering in the Uni-
versity of Maryland, Baltimore County. She is part of UMBC’s eBiquity
group (http://research.ebiquity.org), which explores the interactions between
mobile computing, multiagent systems, and AI. Her research interests include
pervasive computing, application-level security, knowledge representation,
agent systems, and the Semantic Web. She received MS degrees in computer
science from the University of Poona, India, and from UMBC. Contact her
at Computer Science and Electrical Eng., Univ. of Maryland Baltimore

County, 1000 Hilltop Cir., Baltimore, MD 21250; lkagal1@cs.umbc.edu; www.cs.umbc.edu/~lkagal1.

Massimo Paolucci is a principal research programmer at Carnegie Mellon University. His research inter-
ests include the Semantic Web, Web Services and their relations to multiagent systems, and multiagent
planning. He received his MS in computational linguistics from Carnegie Mellon University and his
MS in intelligent systems from the University of Pittsburgh. He is a member of the OWL-S Coalition,
UDDI (Universal Description, Discovery, and Integration) Technical Committee, Semantic Web Ser-
vices Initiative architecture committee, and AAAI. Contact him at Robotics Inst., 1604D NSH, Carnegie
Mellon Univ., 5000 Forbes Ave., Pittsburgh, PA 15213; paolucci@cs.cmu.edu.

Naveen Srinivasan is a research programmer at Carnegie Mellon University. His research inter-
ests include the Semantic Web, Web Services, and tools for multiagent systems. He received his MS
in computer science from the University of Maryland, Baltimore County. Contact him at Robotics Inst.,
1604D NSH, Carnegie Mellon Univ., 5000 Forbes Ave., Pittsburgh, PA 15213; naveen@cs.cmu.edu.

Grit Denker is a computer scientist in the Computer Science Laboratory at
SRI International. Her research interests include formal specification and
verification of cryptographic security protocols, security for the Semantic
Web and Semantic Web Services, and logic-based approaches for distrib-
uted system analysis. She received her PhD in computer science from the
Technical University of Braunschweig. Contact her at Computer Science
Lab., M/S EL284, SRI Int’l, 333 Ravenswood Ave., Menlo Park, CA 94025;
denker@csl.sri.com; www.csl.sri.com/~denker.

Tim Finin is a professor in the Department of Computer Science and Elec-
trical Engineering at the University of Maryland, Baltimore County. His
research interests include intelligent interfaces, robotics, software agents,
the Semantic Web, and mobile computing. He received his PhD in computer
science from the University of Illinois. Contact him at Computer Science
and Electrical Eng., Univ. of Maryland Baltimore County, 1000 Hilltop Cir.,
Baltimore, MD 21250; finin@umbc.edu; http://umbc.edu/~finin.

Katia Sycara is a research professor in the School of Computer Science at Carnegie Mellon Univer-
sity and director of the Advanced Information Technology Laboratory. Her research interests include
autonomous agents; planning; learning and coordination of multiple agents in open, uncertain, and
dynamic environments; Web Services; and case-based reasoning. She received her PhD in computer
science from the Georgia Institute of Technology. She is a member of the OWL-S Coalition and UDDI
(Universal Description, Discovery, and Integration) Technical Committee, and is the US chair of the
Semantic Web Services Initiative executive committee. She is a fellow of the AAAI, founding editor in
chief of the Journal of Autonomous Agents and Multi-Agent Systems, and the 2002 recipient of the
ACM Autonomous Agent Research Award. Contact her at Robotics Inst., 1604D NSH, Carnegie Mel-
lon Univ., 5000 Forbes Ave., Pittsburgh, PA 15213; katia@cs.cmu.edu.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

