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conviction that the floor will hold your 
weight. When people communicate with 
each other, they rely on similar background 
knowledge, which they almost never state 
explicitly. This follows from the maxim of 
pragmatics that people avoid stating infor-
mation that is obvious to the listener.1

In the absence of a learning system as 
complete as the human brain, automati-
cally acquiring all this frequently unstated 
knowledge would be difficult. But for an 
AI system to understand the world that 
humans live in and talk about, it needs to 
have this unspoken background knowledge. 
It needs a source of information about the 
basic relationships between things that 
nearly every person knows. In one way or 
another, this implicit knowledge must be 
made explicit so that a system can use it 
computationally. 

The goal of the Open Mind Common 
Sense (OMCS) project is to provide intu-
ition to AI systems and applications by giv-
ing them access to a broad collection of 
basic knowledge, along with the computa-
tional tools to work with it. This knowl-
edge helps applications understand the way 
objects relate to each other in the world, 
people’s goals in their daily lives, and the 
emotional content of events or situations.

Reflecting the way people change thought 
processes and representations to attack dif-
ferent problems, we designed the OMCS 
system to easily transition between sev-
eral data formats, using the best represen-
tation for an application or problem. Our 
semantic network, ConceptNet, is built 
from a corpus of commonsense knowl-
edge collected and rated by volunteers on 
the Internet. ConceptNet powers our rea-

When we encounter new situations, such as entering an unfamiliar res-

taurant or store, we rely on our background knowledge to act and 

communicate appropriately. This background knowledge includes, for ex-

ample, the knowledge that you can pay money for goods and services and the 
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soning engine, AnalogySpace, which 
uses factor analysis to build a space 
representing the large-scale patterns 
in commonsense knowledge. It uses 
these patterns to reason over the col-
lected information and infer addi-
tional common sense.

Blending is a technique that per-
forms inference over multiple sources 
of data simultaneously, taking ad-
vantage of the overlap between them. 
This enables common sense to serve 
as a basis for inference in a wide va-
riety of systems and applications. 
Using this natural extension of the 
AnalogySpace process, applications 
can achieve “digital intuition” about 
their own data, making assumptions 
and conclusions based on the connec-
tions between that specific data and 
the general common sense that peo-
ple have.

Acquiring and Representing 
Common Sense
Open Mind Common Sense takes a 
distributed approach to the problem 
of commonsense knowledge acqui-
sition. The project allows the gen-
eral public to enter commonsense 
knowledge into it, without requiring 
any knowledge of linguistics, artifi-
cial intelligence, or computer science. 
(See the sidebar, “Using Open Mind 
Common Sense,” to find out how to 
contribute.) The OMCS has been 
collecting commonsense statements 
from volunteers on the Internet since 
2000. In that time, we’ve collected 
more than 700,000 pieces of English- 
language commonsense data from 
more than 16,000 contributors. 
The OMCS project has expanded to 
other languages, with sites collecting 
knowledge in Portuguese, Korean, 
and Japanese. (See “Other Collec-
tions of Common Sense” on page 34 
for related work.)

Each interface to OMCS presents 
knowledge to its users in natural lan-

guage, and collects new knowledge in 
natural language as well. OMCS uses 
different activities to elicit many types 
of commonsense knowledge from 
contributors. Some of this knowledge 
is collected in free text, and some of it 
is collected from templates that users 
fill in, such as “______ can be used 
to ______.” Knowledge collected 
from these templates can be pro-
cessed more easily and reliably than 
free text, but free text can be a useful 
guide for creating new templates that 
represent sentence patterns that our 
contributors have used frequently. 
There are 90 sentence patterns used 
in the creation of the ConceptNet 3.5 
semantic network.

For the knowledge we collect to be-
come computationally useful, it must 
be transformed from natural lan-
guage into more structured forms. 
Much of OMCS’s software is built on 
three interconnected representations: 
the natural language corpus that peo-
ple interact with directly; Concept-
Net, a semantic network built from 
this corpus; and AnalogySpace, a  
matrix-based representation that uses 
dimensionality reduction to infer new 
knowledge (which can then be added 
to ConceptNet).

We take steps to make sure that 
all of OMCS’s knowledge, no mat-
ter what representation it’s currently 
stored in, can be expressed in natu-
ral language. Natural language isn’t 
something to be abstracted over and 
avoided; it’s our system’s anchor to 
the real world that people talk about.

ConceptNet
ConceptNet represents the informa-
tion in the OMCS corpus as a directed 
graph.2,3 The nodes of this graph are 
concepts, and its labeled edges are as-
sertions of common sense that con-
nect two concepts. Figure 1 shows a 
slice of ConceptNet surrounding the 
word “cake.”

Concepts represent sets of closely 
related natural-language phrases, 
which could be noun phrases, verb 
phrases, adjective phrases, or clauses. 
In particular, ConceptNet defines 
concepts as the equivalence classes of 
phrases after a normalization process 
that removes function words, pro-
nouns, and inflections. (As of Con-
ceptNet 3.5, we remove inflections 
using a tool based on the multilingual 
lemmatizer MBLEM.4) The normal-
ization process avoids unnecessarily 
sparse data and prevents some du-
plication of information by making 
phrases equivalent when they seem 
to have approximately the same se-
mantics but are expressed in different 
ways. Using this process, for exam-
ple, the phrases “drive a car,” “you 
drive your car,” “driving cars,” and 
“drive there in a car” all become the 
same concept, represented with the 
normalized form drive car.

ConceptNet expresses assertions as 
relations between two concepts, se-
lected from a limited set of possible 
relations. The various relations repre-
sent commonsentence patterns found 
in the OMCS corpus; in particular, 
every fill-in-the-blanks template used 

To interact with Open Mind Com-
mon Sense, please visit: http://
openmind.media.mit.edu.

The OMCS corpus, ConceptNet, 
and Divisi are all available and free to 
download. Divisi is a software pack-
age for reasoning by analogy and as-
sociation over semantic networks, in-
cluding commonsense knowledge. It 
contains methods for AnalogySpace-

style reasoning as well as blending. 
These can be found at the following: 
http://conceptnet.media.mit.edu  
and http://analogyspace.media. 
mit.edu.

If you are interested in starting  
a commonsense knowledge acquisi-
tion project in your language, please 
contact us at conceptnet@media. 
mit.edu. 

using Open mind common Sense 
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on the knowledge collection Web site 
is associated with a particular rela-
tion. Table 1 shows the current set of 

20 relations, along with an example 
of a sentence pattern associated with 
each relation.

Each assertion is associated with 
a frequency value that can express 
whether people say the relation-
ship sometimes, generally, or always 
holds; there are also frequency val-
ues that introduce negative contexts, 
to assert that a relationship rarely or 
never holds. Independently of the fre-
quency, assertions also have a score 
representing the system’s confidence 
in that assertion. When multiple us-
ers make the same assertion indepen-
dently, that increases the assertion’s 
score; users can also choose to in-
crease or decrease an assertion’s score 
by rating it on the OMCS Web site. 
This allows collaborative filtering of 
deliberate or inadvertent errors.

To create ConceptNet from the  
natural-language assertions in OMCS, 
we use a shallow parser to match the 
assertions against patterns such as the 
ones shown in Table 1. For example, 
the sentence, “You make an apple pie 
by baking it,” becomes the assertion 
represented internally as (apple pie, 
CreatedBy, bake); Figure 2 provides an 
illustration.

The representation of ConceptNet 
described so far simplifies the con-
tributed natural language text into a 
more computationally useful form. 
The underlying text that produced 
each assertion isn’t discarded, though, 
because it’s valuable information that 
keeps the knowledge in ConceptNet 
connected to natural language.

Each assertion in ConceptNet is 
connected to an alternate represen-
tation, a raw assertion that connects 
it to natural language. In the raw-
assertion form, the natural language 
phrases are left in their surface form, 
instead of being normalized into con-
cepts. The edges, instead of being la-
beled with generalized relations, are 

Table 1. The 20 relations in ConceptNet 3.5.

Relation Example sentence pattern

IsA NP is a kind of NP.

UsedFor NP is used for VP. 

HasA NP has NP. 

CapableOf NP can VP. 

Desires NP wants to VP.

CreatedBy You make NP by VP.

PartOf NP is part of NP.

HasProperty NP is AP. 

Causes The effect of NP|VP is NP|VP.

MadeOf NP is made of NP.

AtLocation Somewhere NP can be is NP.

DefinedAs NP is defined as NP.

SymbolOf NP represents NP.

ReceivesAction NP can be VP (passive).

HasPrerequisite Before you VP, you must VP.

MotivatedByGoal You would VP because you want to VP.

CausesDesire NP would make you want to VP.

HasSubevent One of the things you do when you VP is NP|VP.

HasFirstSubevent The first thing you do when you VP is NP|VP.

HasLastSubevent The last thing you do when you VP is NP|VP. 

AP: adjectival phrase; NP: noun phrase; VP: verb phrase. | indicates a choice between phrase types.
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Figure 1. ConceptNet describes the 
commonsense relationships between 
natural language words and phrases. 
This diagram shows some of the nodes 
and links surrounding the concept 
“cake.”
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labeled with the frame that the surface 
forms fit into to form the sentence—
such as “{1} can be used to {2}.”

Using the raw-assertion representa-
tion, a new assertion that’s added to 
ConceptNet can be represented as an 
understandable sentence in natural 
language, even if its natural language 
representation isn’t previously known. 
The raw forms of similar statements 
serve as a guide for the system to pro-
duce a reasonable guess at a sentence 
representing the new assertion.

When the OMCS Web site asks 
questions based on cumulative anal-
ogies, this serves to make the data-
base’s knowledge more strongly con-
nected, because it eliminates gaps 
where simply no one had thought to 
say a certain fact. It also helps to con-
firm to contributors that the system is 
understanding and learning from the 
data they provide.

AnalogySpace
Any system that is to learn the things 
humans learn must not just survive in 
a noisy environment, in the presence 
of misinformation and imprecision; it 
must thrive there. Thus, a system for 
reasoning over a large commonsense 
knowledge base must be prepared to 
deal gracefully with inconsistency, 
subjectivity, and generally noisy data. 
Although the OMCS database con-
tains a more than reasonable amount 
of correct information, it also has a 
noticeable amount of noise. If a rea-
soning system over OMCS depended 
on its input being fully consistent and 
correct, it would fail. Instead of such 
a reasoning system, it’s important to 
use a method for making rough con-
clusions based on similarities and ten-
dencies, not based on an assumption 
of absolute truth.

This goal of robustness in the pres-
ence of noise led us to develop the 
AnalogySpace process.5 In this pro-
cess, we represent the knowledge in a 

semantic network as a sparse matrix, 
and use singular value decomposition 
(SVD) to reduce its dimensionality, 
capturing the most important corre-
lations in that knowledge. This gen-
eralizes a method of commonsense 
inference called cumulative analogy, 
first presented in Timothy Chklovs-
ki’s Learner.6

Using SVD, any matrix A can be 
factored into an orthonormal ma-
trix U, a diagonal matrix , and an 
orthonormal matrix VT, so that A = 
UVT. The singular values in  can 
be ordered from largest to smallest, 
where the larger values correspond to 
the vectors in U and V that are more 
significant components of the initial 
A matrix. The largest singular values, 
and their corresponding rows of U 
and columns of V, represent the prin-
cipal components of the data.

When making use of the SVD re-
sults, we often discard all but the 
first k components—the principal 
components of A—resulting in the 
smaller matrices Uk, k, and Vk

T. The 
components that are discarded rep-
resent relatively small variations in 
the data, and the principal compo-
nents form a low-rank approximation 
of the original data. This is called a 

truncated SVD, represented by this 
approximation: 

A ≈ UkkVk
T = Ak.

We know from the properties of 
SVD that the result of the approxima-
tion, Ak, is the nearest least-squares 
approximation to A of rank k. 

This factorization allows the row 
space of A and the column space of A 
to be projected into a common space 
by the transformations U and V. We 
can think of these spaces as contain-
ing two types of objects, which we 
can represent as row and column vec-
tors of A, which are related to each 
other by the values where they meet. 
After the SVD transformation, Anal-
ogySpace represents both kinds of 
objects in the same space, where it 
can compare them to one another as 
k-dimensional vectors.

Prediction using SVD
The key to discovering new informa-
tion using SVD is the approximation 
matrix Ak. This dense matrix con-
tains an approximated version of the 
input data, expressing all the data 
that can be described by the first k 
principal components. Choosing the 

“You make an apple pie by baking it.”
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Figure 2. Adding an edge to ConceptNet based on a sentence. The sentence is 
transformed into a raw assertion with pattern matching, and then normalized  
into a ConceptNet assertion.
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value of k is a practical trade-off be-
tween precision and efficiency; we 
tend to use k = 100, although there 
are over 400 axes that represent sta-
tistically significant amounts of  
variance in the data. 

It’s often computationally expen-
sive to calculate Ak itself, as it’s a 
dense matrix shaped like the origi-
nal sparse matrix. When using only 
the entries in ConceptNet that have 
a score of 2 or greater, this dense 

matrix has over 2.4 billion entries. 
However, we know that individual 
entries of Ak result from the product 
of a row of U and a column of VT, 
weighted by the diagonal . Rows 
of U that contain vectors pointing in 
similar directions lead to similar re-
sults in Ak, and the same is true for 
VT. The effect of the SVD, then, is to 
compress the data by sharing infor-
mation between items that are simi-
lar to each other. 

Applying SVD  
to Common Sense
To use this technique to make infer-
ences about common sense, we ex-
press ConceptNet as a matrix. Be-
cause each assertion in ConceptNet 
expresses a relation between two 
concepts, we can describe it with 
the 3-tuple (concept, relation, con-
cept). To fit this data into a matrix, 
we break each assertion into two 
parts, a concept and a feature. A 
feature is simply an assertion with 
one concept left unspecified; it ex-
presses a feature that things may 
have, such as “is enjoyable” or “is 
part of a car.”

Because either of two concepts can 
be omitted from an assertion, features 
come in two mirror forms. A left fea-
ture, such as “A wheel is part of . . 
. ” contains the first concept while 
omitting the second; a right feature, 
such as “. . . is a kind of liquid,” con-
tains the second concept and omits 
the first. A given assertion can be de-
composed into either a concept and a 
left feature, or a concept and a right 
feature.

The entries in the matrix defined by 
a concept and a feature are positive 
or negative numbers, depending on 
whether people have made positive or 
negative assertions that connect that 
concept and that feature. The magni-
tude of each value increases logarith-
mically with the confidence score. If 
no information is known connecting a 
concept to a feature, that entry of the 
matrix has a value of zero. Because 
most of the entries are unknown and 
therefore zero, the matrix can be rep-
resented sparsely in memory, with the 
zeroes implied.

The result of SVD on this matrix 
projects both concepts and features 
into the same space, where they’re 
described as linear combinations of 
principal components. Figure 3 is a 
two-dimensional projection of this 
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Figure 3. A two-dimensional projection of AnalogySpace. The axes are the first 
two principal components identified by the SVD; their signs are arbitrary. In this 
visualization, colors represent the values of three more components that are not 
shown spatially.
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space, plotting the concepts of Con-
ceptNet on coordinates that represent 
their correlation with the fi rst two 
principal components. Notice that 
concepts cluster together in the same 
direction when they have similar 
meanings or share similar features.

The OMCS Web site uses these 
predictions as a form of feedback. 
The site uses AnalogySpace to ask 
questions that seem to fi ll gaps in 
its knowledge, such as, “Would you 
fi nd a park in a city?” The questions 
can also be generalized into fi ll-in-
the-blank questions, such as, “What 
is paprika used for?” By asking the 
right questions, OMCS both collects 
valuable new data and assures users 
that it’s learning.

This space has greatly simpli-
fi ed the task of fi nding similarities 
in ConceptNet. The information-
sharing property of truncated SVD 
causes it to describe other features 
that could apply to known concepts 
by analogy: If a given concept has an 
unknown value for a given feature, 
but many similar concepts have that 
feature, then by analogy the given 
concept is likely to have that feature 
as well. More succinctly, concepts 
and features that point in similar di-
rections (and therefore have high dot 
products) are good candidates for 
analogies. AnalogySpace uses these 
analogies to infer additional pieces of 
commonsense knowledge that aren’t 
yet part of the database. We ask users 
to verify these new inferences, and 
they’re added to the database upon 
verifi cation.5

This technique forms a sort of mid-
dle ground between traditional sym-
bolic and statistical techniques. As a 
form of statistical machine learning, 
AnalogySpace benefi ts from large 
amounts of data and the broad con-
clusions that can emerge from that 
data as a whole. But also, by main-
taining a symbolic graph representa-

tion, AnalogySpace can explain these 
large-scale conclusions using small-
scale examples.

Because concepts and features are 
projected into the same space, small 
groups of concepts and features that 
fall near each other can give meaning 
to an area of AnalogySpace. Focus on 
the concepts and features in any lo-
cal area of AnalogySpace and expla-
nations become apparent: “Offi ces, 
schools, and libraries are similar be-

cause they are all places, you might 
read things there, and you might go 
to any of them to do work.”

Blending
We’ve seen how AnalogySpace uses 
SVD-based techniques to reason 
with and expand our commonsense 
knowledge. However, the power of 
a commonsense reasoning system 
isn’t simply to create more common 
sense or to reason with the existing 
commonsense knowledge, but to in-
tegrate common sense into other sys-
tems. The ability to work with exter-
nal data is essential to make common 
sense useful for something besides 
feeding back into itself. 

Earlier, we discussed using SVD 
methods to predict the value of en-
tries that were unspecifi ed in the orig-
inal source matrix. We can think of 

the matrix of predictions that this 
creates as the analogical closure of 
that data—that is, the data that re-
sults when all possible analogies are 
made, up to a level of detail deter-
mined by the parameter k.

When we fi nd an analogical closure 
across multiple, previously separate 
sources of data, we call it blending. 
Blending combines two sparse matri-
ces linearly into a single, larger ma-
trix that AnalogySpace can analyze 
with SVD. 

When we perform SVD on a blended 
matrix, the result is that new connec-
tions are made in each source matrix 
taking into account information and 
connections present in the other ma-
trix, originating from the informa-
tion that overlaps. By this method, 
we can combine different sources of 
general knowledge, or overlay gen-
eral knowledge with domain-specifi c 
knowledge, such as medical, geologi-
cal, or fi nancial knowledge.

Because ConceptNet ties its knowl-
edge representation to natural lan-
guage, blending with ConceptNet 
can be especially useful for work 
with data that’s provided as natural-
language text, such as tags that orga-
nize Web content, free-text responses 
to survey questions, or databases 
containing some natural language 
entries that could be analyzed more 
deeply. Figure 4, for example, shows 
a blend in the domain of Boston-area 
businesses, given a database contain-
ing lists of products and services that 
they sell.

Alignment
The fi rst step to creating a blend is to 
transform the input data so that it can 
all be represented in the same matrix. 
If we consider the source matrices to 
have sets of concepts and features that 
respectively index their rows and col-
umns, the blended matrix will have 
the union of all the input concepts 

the ability to work 

with external data is 

essential to make 

common sense useful 

for something besides 

feeding back into itself.
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for its rows and the union of all the  
features for its columns.

If these concept and feature sets are 
disjoint, the result will be uninter-
esting. No analogies can be formed 
that cross domains unless there are 
either some concepts or features in  
common between those domains, so 
that some rows or columns of the 
new matrix contain data from both 
sources. Alignment is the process of 
transforming the input data so that 
the different domains are described 

using some of the same concepts or 
some of the same features, which in-
volves converting the data into some 
common representation. We can il-
lustrate this with a blend of Concept-
Net and the popular natural language 
processing resource WordNet.7

Concept-based alignment is gener-
ally the more straightforward form 
of alignment. ConceptNet’s concepts 
can be represented by their lemma 
form, with stop words and inflections 
removed. WordNet’s synsets also 

contain words in lemma form, and 
rarely contain multiple-word phrases 
with stop words. A valid way to align 
ConceptNet and WordNet, then, is to 
align the lemma forms of ConceptNet 
concepts with the lemma forms of 
the words in WordNet (without dis-
tinguishing word senses). Whenever 
a ConceptNet concept and a Word-
Net entry have the same lemma form, 
there will be a row of the blended ma-
trix that contains information from 
both ConceptNet and WordNet.

Feature-based alignment sometimes 
takes more thought. In WordNet, we 
identify five WordNet relations which 
we consider to map onto ConceptNet 
relations. Table 2 lists these correspon-
dences. After aligning the concept part 
of the feature we’ve described, we can 
now use this table to also align the re-
lations. The resulting aligned features 
can describe both ConceptNet con-
cepts and WordNet entries.

Although in this case we have poten-
tial overlaps between ConceptNet and 
WordNet in both the concepts and the 
features, this isn’t a necessity. Blend-
ing only requires overlapping data in 
either the concepts or the features. 

In cases in which the inputs are nat-
urally disjoint, we can create overlap 
by adding a third bridging data set 
that overlaps with both of the data 
sets. For example, there are no con-
cepts or features that appear in both 
the English and Portuguese Concept-
Nets, because concepts are distin-
guished by language; however, we 
can blend the English and Portuguese 
ConceptNets by bridging them with 
assertions generated from an English-
Portuguese translation lexicon.

Calculating the   
Blending Factor
For many blending factors, the prin-
cipal components will be defined al-
most entirely by one matrix alone, 
with very little contributed by the 
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Figure 4. A projection, similar to Figure 3, of a blend between ConceptNet’s general 
knowledge and domain-specific data on Boston-area corporations and what they 
sell. Points that are near each other in this space are related by common sense and 
domain-specific knowledge.

Table 2. WordNet relations that map onto ConceptNet relations.

WordNet relation ConceptNet relation 

Hypernym IsA

Part holonym PartOf

Substance meronym MadeOf

Attribute HasProperty

Entailment Causes
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other matrix. It’s important to choose 
a blending factor that allows both 
sources to contribute to the inference.

A brief example shows how we can 
determine when principal compo-
nents are interacting with each other. 
Suppose we’re blending two matrices 
with no overlap at all. If we plot their 
singular values as f ranges from 0 to 
1, we’ll see these singular values de-
crease linearly with f, from their orig-
inal values on one edge of the graph 
to 0 on the edge of the graph where 
that input is completely absent. The 
other singular values, decreasing lin-
early in the opposite direction, won’t 
affect them in any way. The singu-
lar values form intersecting straight 
lines, as shown in Figure 5.

When there’s overlap, however, the 
singular values don’t cross each other 
in straight lines. Instead, some non-
linear interaction occurs around the 
place where they would intersect. 
We refer to this nonlinear behavior 
as veering. Figure 6 shows an actual 
example, plotting the top 10 singular 
values for varying values of f in the 
blend of ConceptNet and WordNet. 
The curved sections are the result of 
veering.

We theorize that veering represents 
the influence of analogies that span 
both inputs. Therefore, we want to 
choose the blending factor to maxi-
mize the amount of veering.

Calculating Veering
We can calculate the amount of veer-
ing that occurs by hypothesizing a 
blend with no interaction—one where 
the singular values all scale linearly 
in f—and finding the magnitudes of 
the differences between those hypo-
thetical singular values and the ac-
tual ones. The time-consuming way 
to maximize blending is to search a 
range of blending factors for the one 
that maximizes, for example, the sum 
of squares of these differences. How-

ever, a quick rule of thumb gives al-
most the same result. 

Because veering occurs around the 
places where singular values would 
otherwise meet, we can seek out a 

particular intersection; and a prom-
inent one to look for is the intersec-
tion that would occur between the 
top singular value on each side. If 
the maximum singular value for one  
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Figure 5. The singular values of a hypothetical blend of two matrices with no 
overlap, as blending factor f ranges from 0 to 1. In this case, the trajectories of the 
singular values intersect without interacting.

Figure 5. The singular values of a hypothetical blend of two matrices with no 
overlap, as blending factor f ranges from 0 to 1. In this case, the trajectories of the 
singular values intersect without interacting.

Figure 6. When two data sets contain overlapping information, blending them 
can produce inferences that would not be produced from either input alone. This 
appears as nonlinear interaction, or “veering,” on a graph of the trajectories of 
singular values. This graph shows veering in the blend between ConceptNet and 
WordNet.
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matrix is a, and the maximum sin-
gular value for the other matrix is b, 
these values intersect when f = a/(a + 
b), and this represents a reasonable 
blending factor that tends to have a 
sufficiently large amount of veering.

Case Study: Blending   
WordNet and ConceptNet 
As a specific example of blending, we 
created a matrix of knowledge that 
blends together ConceptNet and a 
large portion of WordNet. WordNet 
expresses relations between synsets 
that contain many words. To align 
these with ConceptNet, for each rela-
tion between synsets we enumerated 
all the words it could connect, creat-
ing relations between each possible 
pair of words in the two synsets.

Because WordNet is intended to be 
a rigid hierarchy of knowledge, analo-
gies over knowledge that comes solely 
from WordNet are often unhelpful or 
incorrect—if such an analogy pro-
duced correct knowledge, it would in-
dicate that WordNet’s creators should 
have stored the knowledge higher in 
the hierarchy in the first place. To en-
sure that the analogies involve at least 

some knowledge from ConceptNet, 
we filtered out all WordNet links that 
connected two terms that don’t ap-
pear in ConceptNet, such as, “An os-
cine is a passeriform bird.”

We used the previously described 
method to automatically calculate 
the blending factor, giving a result 
of about 0.72 for WordNet. Figure 6 
shows this as approximately the min-
imum of the top line, occurring in an 
area where veering affects many sin-
gular values. 

Evaluating Knowledge 
and Predictions
In keeping with the theme of human-
centered knowledge collection, we 
use human volunteers to evaluate the 
quality of assertions and inferences 
in Open Mind Common Sense. From 
time to time, we ask volunteers to rate 
the truth and sensibility of statements 
from various sources. 

In a 2002 study,8 human judges 
evaluated the quality of a random 
sample of the assertions that had been 
collected by OMCS. They judged 75 
percent of the assertions to be “largely 
true,” 85 percent of the assertions to 

“make sense,” 82 percent of the as-
sertions to be “neutral,” and 84 per-
cent “common enough to be known 
by someone in high school.”

In an evaluation process that we 
began in 2007,5 volunteers assign rat-
ings to a random sampling of state-
ments selected from various stages 
of the OMCS system, such as user- 
verified assertions in ConceptNet and 
predictions made by AnalogySpace, 
all expressed in natural language us-
ing the same process. As a control, 
some of the statements are random 
nonsense assertions constructed by 
combining randomly selected con-
cepts and features. Each user sees the 
same number of assertions from each 
source, mixed together in a random 
order so the evaluation is blind and 
impartial. 

For each assertion, users choose a 
rating from the set “generally true,” 
“sometimes true,” “not true,” “doesn’t 
make sense,” and “not true but amus-
ing.” As of the 2009 evaluation, we 
collect the “not true but amusing” as-
sertions and show some to each par-
ticipant as a small reward for their 
time. We count these assertions as 
“not true” when graphing the results. 

In the most recent evaluation, with 
59 participants rating 60 statements 
each, the statements came from four 
sources. One quarter are existing as-
sertions that users have contributed 
to ConceptNet; those with a score of 
at least 2 (indicating that they have 
been confirmed by at least one other 
user) are distinguished from the oth-
ers. One quarter are predictions that 
emerge from ConceptNet using the 
AnalogySpace process, sampled with 
a probability proportional to their 
predicted value. Another quarter are 
sampled predictions from our exam-
ple blend, incorporating information 
from WordNet and ConceptNet. The 
final quarter are random. Figure 7 re-
ports the results. 
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Figure 7. Open Mind Common Sense user evaluation results, January 2009. Users 
rated statements contributed by users to ConceptNet, predictions emerging from 
ConceptNet through the AnalogySpace process, sampled predictions from the blend 
of WordNet and ConceptNet, and random statements. 
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We evaluate our inference pro-
cesses with respect to multiple goals. 
Of course, it’s always beneficial to 
be able to automatically infer cor-
rect new knowledge, so a system that 
makes use of common sense can fall 
back on reasonable assumptions in 
the absence of the correct knowledge. 
That establishes a goal of making as 
many inferences as possible that are 
“generally true” or “sometimes true.” 
In the presence of noisy data and am-
biguity, though, some inferences will 
inevitably be incorrect. We’ve found 
that users have greater confidence in 
a system, whether it’s OMCS itself or 
a derived application, if the errors it 
makes are at least plausible. This es-
tablishes a secondary goal of avoid-
ing “nonsense” results. Finally, we 
want inference processes to expand 
the domain of the data, making in-
ferences that wouldn’t normally ap-
pear in the corpus; this is the motiva-
tion for blending different resources 
together.

To compare the correctness of the 
predicted statements, we translated 
the responses into an integer scale, 
giving a score of 0 for “doesn’t make 
sense,” 1 for “not true but amusing,” 
2 for “not true,” 3 for “don’t know” 
or “opinion,” 4 for “sometimes true,” 
and 5 for “generally true.” We mea-
sured the mean rating each partici-
pant gave to each source of asser-
tions. By comparing the scores of 
both kinds of inferences to the ran-
dom statements using a paired t-test, 
we can show that the inferences were 
better than random assertions, both 
when they are produced from Con-
ceptNet alone (t = 10.61, df = 58, p 
> .99) and from the blended data (t 
= 13.49, df = 58, p > .99). Table 3 
lists the mean scores for the different 
kinds of inferences, as well as for the 
random baseline.

As expected, the statements most 
often considered truthful by partici-

pants were the ones that were already 
present in ConceptNet, particularly 
the subset of those that had been 
confirmed (of which 94 percent were 
rated “sometimes true” or better). 
Predicted assertions were rated sig-
nificantly higher than random asser-
tions, with more true statements and 
less nonsense.

The predictions that emerged from 
the blend of WordNet and Concept-
Net expanded the vocabulary beyond 
the concepts in ConceptNet, includ-
ing inferences such as, “A workday 
is a part of February,” and “A syn-
chroflash is a machine.” This came 
at the expense of some accuracy: the 
blend created considerably more non-
sense inferences. Also, because some 
of these inferences fell outside the 
domain of common knowledge, they 
showed a significant increase in the 
number of “don’t know/opinion” re-
sults. These results were still signifi-
cantly better than the random ones, 
and could be used as a basis for a sys-
tem that would ask questions based 
on WordNet to expand ConceptNet’s 
vocabulary.

We can use a process much like 
the WordNet blend we’ve de-

scribed to aid in bootstrapping new 
lexical resources. Creating linguis-
tic resources of any kind is a time-
consuming, expensive process. It of-
ten takes years and many annotators 
to create such a data set, and funding 
for these projects is often hard to find. 
A process that can automatically sug-
gest connections to add to an incom-

plete resource can save time, making 
the obvious parts easier to add while 
allowing the experts to focus on im-
parting their expert knowledge.

Blending doesn’t require all of 
its input to be structured knowl-
edge—with the right form of align-
ment, it can work with other mo-
dalities of common sense. We’ve 
previously mentioned using the data 
in ConceptNet to better understand a  
natural language resource. One way 
to work with natural language is to 
use dependency parsing to make 
graphs of a free-text resource, and to 
make a blend that includes a represen-
tation of those graphs and seed data 
that represents the semantics of some 
text. In particular, we’re interested in 
doing this with ConceptNet and the 
OMCS corpus itself—this will allow 
us to extract more information from 
the contributed text that we haven’t 
yet been able to parse.

We’ve also explored using this ap-
proach in knowledge management, 
helping to construct and make use of 
databases of domain-specific, task-
specific, and expert knowledge. Work-
ing with partner corporations, we’ve 
developed a method for creating spe-
cific knowledge bases with informa-
tion about a topic, such as geoscience 
or finance, collecting knowledge from 
games, specific knowledge entry, and 
targeted acquisition from other re-
sources both structured and unstruc-
tured. Organizations can use these 
blended knowledge bases to help or-
ganize and understand documents 
and other data, visualize and simplify 
trends in data and opinions, and under-
stand customers’ opinions and goals.

Table 3. Mean scores of random statements, ConceptNet inferences,  
and inferences from ConceptNet blended with WordNet.

Source Score (99% confidence)*

Random 1.668 (± 0.205) 

Blended inferences 2.494 (± 0.152) 

ConceptNet inferences 2.939 (± 0.194) 

* A score of 0 corresponds to “doesn’t make sense”; 5 corresponds to “generally true.”
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A step beyond this would be to 
construct a blend out of cross-modal 
data, to incorporate into our com-
monsense system other forms of 
grounded knowledge such as images 
or sound samples with descriptions. 
If we give a commonsense system ac-
cess to audio and visual data that’s 
partially aligned with linguistic data, 
it would have access to a wider range 
of representations, which it could use 
to solve more problems and get input 
from an even broader portion of the 
real world. 

Many problems require common 
sense to solve, and different prob-
lems benefit from having different 
data available to them. Common 
sense can be the source for the intui-
tive links and connections that form 
the underlying base of our reasoning 
about the world, no matter what sits 
on top of that base. Using SVD to an-
alyze a graph representation, and us-
ing blending to expand the range of 
this representation, we can provide 
a system with digital intuition that 
helps it to relate to the world and its 
inhabitants.

Acknowledgments
The Common Sense Computing Initiative 

thanks the tens of thousands of users who 

have entered, checked, and rated our knowl-

edge, as well as our multilingual collabo-

rators at other universities. We also thank 

Jason Alonso, Kenneth Arnold, Jayant 

Krishnamurthy, and our undergraduate re-

searchers for their help developing and using 

the AnalogySpace process. For their support 

and interaction, we thank our sponsors, 

especially Microsoft, Schlumberger, and 

many collaborators from Bank of America 

through the Center for Future Banking at 

the MIT Media Laboratory.

In addition to Open Mind Common 
Sense, other projects have under-
taken the task of collecting com-

monsense knowledge. The Cyc proj-
ect,1 started by Doug Lenat in 1984, 
aims to represent human knowledge 
as a set of interconnected knowledge 
representations with a formal logi-
cal language at the core. Cyc, along 
with other resources such as Word-
Net, FrameNet, PropBank, and the 
Brandeis Semantic Ontology (BSO), 
collects its knowledge from trained 
knowledge engineers.

Lenhart Schubert’s Epilog sys-
tem2 is a different logically driven 
approach to commonsense acquisi-
tion, using a representation based 
on episodic logic. This long-running 
project was first released in 1990. 
Epilog has the ability to extract gen-
eral relations from corpora of free 
text. Epilog does not, however, have 
a commonsense knowledge base as a 
primary part of its project. 

Interestingly, ConceptNet, Cyc, and 
WordNet all contain a similar number 
of nodes overall. As of March 2009, 
Cyc contains “nearly two hundred 
thousand terms,”3 WordNet has 
206,941 synsets,4 and ConceptNet 
contains 204,279 concepts.5
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