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importance for the anticipation, mitigation, and 
containment of pandemics. Disease-spread simula-
tion models are often used to understand the ef-
fects of changes in citizen behavior or government 
policies, or to study disease outbreak parameters 
and mitigation-strategy features. Here, we focus 
on how to improve future global pandemic con-
tainment with the help of advanced artifi cial intel-
ligence and simulation methods.

Containing Pandemics at the Source
Infectious disease pandemics present serious 
threats to global health and can potentially impact 
national security.1 The Asian-Pacifi c region is of-
ten the epicenter of emerging infectious diseases, 
having given rise to recent outbreaks of avian fl u, 
Asian fl u, and Severe Acute Respiratory Syndrome 
(SARS). In 2003, SARS affected 29 countries, re-
sulting in 8,096 infections and 774 deaths.2 This 
outbreak demonstrated that increased population 
density and mobility can play important roles in 
the spread of emerging infectious diseases and 
could potentially lead to future pandemics. Ac-
cording to the United Nations Newsletter,3 by 
2030 the world’s urban population is estimated 
to reach 8 billion people and the number of city 
dwellers is expected to grow to 5 billion. People 
living in urban areas are constantly in close con-
tact, and urban populations experience a vastly 
different lifestyle than suburban populaces. Mass 
gatherings of people in confi ned spaces and inter-
connected contacts can increase the probability of 

spreading infectious diseases.4 Even for the same 
swine fl u strain, it has been suggested that the ba-
sic reproductive number (a measure of how quickly 
the disease spreads) in New York City would be 
greatly different than that found in Mexico City, 
due to differences in population density, environ-
ment, demographics, and behavioral factors.5

Taking the 2003 SARS outbreak as an exam-
ple, we can identify several items of strategic im-
portance. First, the SARS coronavirus at hospital 
wards critically threatened the lives of healthcare 
workers and other patients;4 and so it’s of the ut-
most necessity to quickly quantify the risk of in-
fectious disease spread within high-risk healthcare 
facilities to contain the outbreak at the earliest 
stages. Additionally, today’s ubiquitous airplane 
passenger traffi c6 and other modes of public trans-
portation result in fast disease movement and vari-
able disease transmission rates, all of which must 
be taken onto account in any analysis. Further, 
modeling of detailed community interaction dy-
namics increases a public health organization’s 
ability to contain a potential strain at its origin.7

Traditional infl uenza simulations typically focus 
on large-scale populations with a generalized and 
homogeneous individual contact structure. They 
often overlook crucial regional variations when 
constructing community structures and thus are 
inadequate to replicate the true contact dynamics 
in the high-population and high-density environ-
ments common in urban areas. Moreover, large-
scale stochastic models tend to be computationally 
ineffi cient if detailed agent dynamics are taken 
into account; and usually those systems don’t pro-
vide user-friendly and user-adaptable interfaces.

We envision a systematic, quantitative, and 
easy-to-use approach for tracking infectious 

Simulation studies play a signifi cant role in 

supporting pandemic disease scenario pre-

diction and facilitating the understanding of how 

infectious diseases spread. This is of paramount 
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 disease spread that can realistically 
explain critical social contacts and 
population movements in urban 
 areas. Apart from the health eco-
nomics implications,8 such modeling 
approaches can enable preemptive 
detection, identification, and com-
prehension of pandemic outbreaks, 
as well as scientific justifications for 
mitigation strategies, such as social 
distancing, biosecurity screening, and 
quarantines.

Considering Critical 
Social Contacts
Homogeneous mixing models assume 
that in a given period of time all en-
tities have approximately the same 
number of contacts, with the same 
disease transmission probability for 
each contact. By contrast, a nonhomo-
geneous mixing model incorporates a 
variety of contact probabilities, map-
ping a network of contacts between 
each member pair in the population. 
Dionne Aleman and her colleagues5 
incorporated into their simulation an 
algorithm to compute each person’s 
probability of becoming infected us-
ing his contacts within the popula-
tion each day. Such an approach may 
assume varying transmission prob-
abilities, depending on the time and 
intensity (for example, the spatial 

proximity) of each contact. More vul-
nerable groups, such as children and 
the elderly, can be identified and mod-
eled by assigning to them higher es-
timated probabilities of becoming 
infected than to healthy adults. Su-
perspreading phenomena4 by highly 
contagious and connected individuals 
can be modeled as well. These kinds 
of studies also enable the inclusion of 
indirect disease transmission paths, 
for instance, through bacteria depos-
ited on a handrail or elevator but-
ton. In addition, the flexible modeling 
paradigm allows for dynamic human 
 behaviors, such as weekly travel or 
visiting healthcare facilities when in-
fected. Figure 1 conveys the general 
conceptual framework.

Diseases can be most transmis-
sible when the susceptible group is 
more vulnerable—for example, when 
they’re sick and housed in hospi-
tals.9 Various studies have discussed 
exposure and infection risk mod-
els in local healthcare facilities and 
special settings such as an isolation 
ward or general hospital ward.10,11 
Carline Van den Dool and her col-
leagues12 adapted a previously devel-
oped model of influenza transmission 
in a long-term care nursing home to 
study the effects of the vaccination 
of healthcare workers in hospital 

wards. Moreover, a matrix of health-
care worker-to-patient contact prob-
abilities, numbers of contacts, and 
times of each contact in hospital set-
tings was proposed.12,13 Our team 
further extended the Susceptible-Ex-
posed-Infected-Removed (SEIR) 
model (a four-state model used to 
specify stages of human infection by 
a contagious disease) from others’ 
work13,14 to study how an exposed 
individual becomes infectious after a 
latent period during which the indi-
vidual may experience no symptoms. 
 Preliminary results showed that iso-
lating symptomatic patients can ef-
fectively reduce the attack rate (that 
is, the cumulative infection rate) of 
patients by more than 10 percent.15 
In the future, categorization of types 
of patients (for example, by severity 
of illness) and healthcare profession-
als (by functions) can help  determine 
the contact structure (in terms of 
 durations and proximities) under 
hypothetical disease scenarios; ad-
ditionally, the intensity of contact 
between healthcare workers and pa-
tients can be more accurately mod-
eled through other hospital workflow 
simulation study platforms.16

By understanding the spatiotem-
poral features of contacts between 
infectious and susceptible persons 

Figure 1. Conceptualizing a disease’s spread. Critical social contact simulation model for high-density metropolitan areas. 
(P = parameters.)
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in mass transportation activities, we 
can quantify the intensity and prob-
ability of infection in certain urban 
settings. Currently, there are some 
agent-based microscopic models that 
aim to emulate the movement of pas-
senger flow in frequent public travel 
activities.16–19 Our collaborators stud-
ied passenger flow movement via 
simulation.20 They were able to es-
timate the probabilities that each in-
dividual is in close contact (within 
1 meter) or long-distance contact (via 
an airborne route)21 with an infected 
individual. Thanks to advanced au-
tomatic recording and surveillance 
systems, researchers can capture 
many passenger movement activities, 
such as passenger density and rider-
ship flow, station check-in and check-
out, and travel patterns. Quantifying 
domestic travel by age, sex, and the 
traveler’s place of origin, travel dura-
tion, and proximity of each contact 
can improve the modeling of disease 
spread in major mass-transportation 
systems within high-density cities.

Efficient Algorithms for 
Spatiotemporal Simulation
Deterministic models and stochas-
tic models7,8,12-14 are commonly used 
to describe the transmission dynam-
ics of infectious diseases. Determin-
istic models, formulated by nonlinear 

systems of differential equations, are 
generally applicable to large, homo-
geneous populations. Disease-spread 
simulation studies under dynamic 
parameter assessment, appropri-
ate descriptive granularity of mix-
ing groups, and accommodation of 
 social-behavioral changes are cur-
rently feasible, but not yet fully re-
alized. Current global epidemic and 
mobility models use what is known as 
meta-population simulation to model 
the spatial spread of infectious dis-
eases.22 However, tracking every in-
dividual’s detailed critical behavioral 
patterns for an entire population can 
be challenging and requires extensive 
computation power. Our  experience 
using an agent-based continuous pe-
destrian model for one metro sta-
tion with a time step size of 100 ms 
suggests that such models require 
 significant computing time. The situ-
ation can be substantially worsened if 
we model the detailed travel dynam-
ics and behavioral patterns. Running 
simulations on parallel computing 
platforms can be a useful strategy in 
the face of such challenges, but it isn’t 
feasible in all settings.

It’s of great interest to develop al-
gorithms with heterogeneous subset 
sampling that efficiently draw sam-
ples in a domain set with different 
inclusion probabilities, to  simulate 

 larger-scale populations in greater 
detail. Meng-Tsung Tsai and his col-
leagues23 developed an efficient algo-
rithm for heterogeneous subset sam-
pling, and demonstrated the results in 
a 23-million agent model of the pop-
ulation of Taiwan. To accelerate sto-
chastic simulation, Ira Longini and 
his colleagues24 expressed the prob-
ability of susceptible persons to be-
come infected as a function of the 
transmission probabilities from all in-
fectious contacts. We’ve investigated 
computationally efficient algorithms 
with heterogeneous transmission rates 
by incorporating Bayes’ rule.15 Pre-
liminary results have indicated that 
computation time can be reduced 
without significantly sacrificing the 
accuracy of output results, enabling 
the simulation algorithm to be run in 
reasonable time on a standard laptop.

Visual Disease Propagation
Displaying simulation outputs in a 
user-friendly GUI can facilitate, for 
purposes of decision making, a visual 
disease-spread display across a geo-
graphical area. Figure 2 presents a pre-
liminary interface design for the simu-
lation package we have developed.15 
Users can investigate how changes 
in disease parameters and interven-
tion strategies can influence the evolu-
tion of an epidemic scenario. The GUI 

Figure 2. Simulation interface illustrating key output scenarios with respect to Hong Kong’s spatial characteristics. (a) Analysis 
by region. (b) Cumulative age-specific attack rate.

(a) (b)
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lets users adjust input parameters and 
critical interventions in response to a 
developing outbreak, including de-
mographic composition, transmission 
probabilities with contact groups, ex-
posure parameters, population sizes, 
and vaccination coverage levels. The 
simulation interface also communi-
cates to users several key performance 
outputs, such as cumulative attack 
rates by age group. A thematic map 
shows how the epidemic outbreak 
is expected to evolve. Such a system 
lets users assess spatial disease-spread 
movement and compare dispersion 
patterns across different demographic 
dynamics and geographical features. 
Similar to currently available weather 
forecast platforms, geographic infor-
mation system geomapping or mesh 
grids that provide sufficient accuracy 
on results displays can be further inte-
grated into  visual disease propagation 
displays.

Despite the many independent 
surveillance system implementa-
tions that have been deployed across 
different disciplines, such as ES-
SENCE,25 Google Flu Trends,26 
and Global Microbial Identifier 
(see www.globalmicrobialidentifier.
org), our ability to accurately de-
tect infectious disease outbreaks 
and pandemics is still in its nascent 
stages. Current surveillance sys-
tems lack the means to integrate 
disparate data sources, although re-
cently proposed methods for mul-
tivariate surveillance hold promise 
for deployment in future systems, 
and are yet to unify with other sur-
veillance systems to provide accu-
rate prediction for infectious dis-
ease outbreaks and spreading trends. 
Computational  epidemiology ap-
proaches such as disease detection 
surveillance,  simulation studies, and 

 microbiological informatics27 can 
play complementary roles to enable 
more comprehensive outbreak detec-
tion, and are promising in terms of 
tracking the spread of infectious dis-
ease at its origins. Exploring interop-
erability among different methods 
for disease detection can justify op-
timal data-sharing for effective con-
tainment of infectious disease spread. 
The development of robust future 
approaches involves intimate inter-
national scientific collaboration and 
understanding among statisticians, 
simulation modelers, epidemiolo-
gists, microbiologists, practitioners, 
and public health policymakers. 
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