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Abstract— The paper is a half-way between the agent 

technology and the mathematical reasoning to model tactical 

decision making tasks. These models are applied to air defense 

(AD) domain for command and control (C2). It also addresses 

the issues related to evaluation of agents. The agents are 

designed and implemented using the agent-programming 

paradigm. The agents are deployed in an air combat simulated 

environment for performing the tasks of C2 like electronic 

counter counter measures, threat assessment, and weapon 

allocation. The simulated AD system runs without any human 

intervention, and represents state-of-the-art model for C2 

autonomy. The use of agents as autonomous decision making 

entities is particularly useful in view of futuristic network 
centric warfare.  

Keywords- Autonomous agent, BDI architectures, weapon-

target assignment, meta level plan reasoning. 

I.  INTRODUCTION  

In recent times information sharing and collaborative 

decision making over the defense networks have completely 
revolutionized the air combat operations [1]. Today‟s 

offensive forces are equipped with sophisticated electronic 

attacking (EA) or electronic counter measuring (ECM) 

devices (designed to interfere radar and communication 

systems), airborne warning and controlling system 

(AWACS) aircrafts, high precision air-to-air, air-to-surface 

missiles, high speed fighters, bombers, unmanned air 

vehicles (UAV) etc. To respond to these, the defensive 

forces rely on early warning surveillance or tracking radar 

that has electronic counter counter measures (ECCM), high-

tech command and controls (C2) that robustly assess the 

threats and efficiently allocate right weapons for engaging 
right targets. Modeling such decision making C2 is of 

utmost importance to survive with such technological 

advancement. 

An integrated air defense (AD) system is an aggregation 

of sensors, weapons, C2, intelligence systems, 

communications, and personnel operating under the 

command of a designated AD commander. The AD systems 

have progressed steadily over the recent years to include 

highly sophisticated computer-based software systems to 

assist and train the commander. Some of the examples of 

such tools are Air Force Mission Support System, 
PowerScene, TopScene etc. [1].  

Usually decision making processes of C2 involve an 

OODA (Observe-Orient-Decide-Act) loop or variants of it 

([2], [3]). Although, the OODA loop was initially originated 

from behavioral science, latter it was exploited for 

understanding the human participations in complex C2 

problems. Along with the OODA loop recently, the BDI 

(Belief- Desire-Intention) architectures of agent oriented 

approach are also becoming popular because of it′s 

enhanced capability of practical reasoning for developing 

intelligent software systems. It has the advantages from the 
user perspective in terms of both speed and ease of 

development of models.  

Any AD system is highly dependent on classifying 

targets, doing intent recognition and threat assessment (TA). 

Several multidisciplinary studies have been performed to 

solve such problems. The multiple attribute decision making 

has been applied for TA in [4]. In [2, 5, and 6], threat is 

assessed in terms of risk using dynamic Bayesian networks 

which requires the knowledge of prior probabilities. Since 

this information is not always available, alternative 

approaches such as fuzzy logic is seldom found to be useful.  

Today, most of the sensors and weapons of AD systems 
can perform multiple tasks or engagements. Operating such 

systems autonomously is a challenging task. In past, 

decision making process for such C2 are modeled and 

automated using fuzzy logic, dynamic Bayesian networks, 

decision trees [7], neural networks [8] etc. In those studies, 

TA and decision making processes are modeled separately. 

In this study, an integrated approach of TA prior to decision 

making (weapon allocation (WA)) based on the BDI 

architectures of agent modeling is proposed.   

Looking at the real applications of agent technologies 

starting from the sensor networking [9] to coordinating 
ambulances in emergency situation [10] or adaptive traffic 

control [11], one can think of applying these technologies to 

C2 processes of AD system. Technologies like normality 

analysis [12] to automatically understand complex 

environment and to detect abnormal behavior of events of 

interest can also be brought into the C2 system for 

situational assessment.   

This paper is mainly focused on two aspects, firstly on 

the modeling the C2 of AD system in terms of BDI 

architectures, and secondly, evaluating the system on the 

basis of correct decisions in a simulated environment and by 



the opinion of human operators. Two decision making 

software agents are discussed. First one is related with 

electronic counter counter measures (ECCM) against 

electronic jamming and second one is related with TA and 
WA.  

II. APPLICATION IN AIR DEFENSE 

Let us assume an autonomous AD squadron, composed 

of several smaller units (batteries) with variable AD 

capabilities (like short- medium- or long-range, low-to-high-

altitude, air and ground missile defense systems, AD guns 

etc., (e.g. an AD squadron composed of Patriot (long range 
missile), Hawk XXI (medium range missile), or NASAMS 

(short or medium range missile)), is deployed to defend a 

vulnerable area or point (VAVP) (e.g. runways, tank 

platoons etc.), against a point, area or maneuver air attack. 

Batteries are equipped with their own surveillance radar, 

tracking radar and command post (Air Defense Direction 

Center or ADDC). Central C2 is governed by squadron level 

headquarter (Air Defense Command Center or ADCC). For 

early warning, ADCC relies on central acquisition radar 

(CAR). The CAR starts tracking targets at larger distance 

(around 200 km).  Track information is transferred to 
ADCC. The ADCC classify targets and passed information 

to ADDC.  Surveillance radar starts tracking target at lesser 

range (around 100 km). This data is transferred to ADCC. 

The ADCC performs multi radar tracking and carries out 

track correlation and data fusion and send the target-list to 

ADDC. The ADDC prioritizes threats from selected list of 

targets (which may include aircrafts, helicopters, tactical 

ballistic missiles, cruise missiles, UAVs etc.). The ADDC 

then perform optimal assignment of available weapons to 

targets. A multi-agent system (MAS) can be designed 

comprising of ADDC, ADCC and surveillance radar as 
agents. These agents depend on each other for achieving 

their goals. Figure 1 shows the requirements analysis of 

MAS using TROPOS (a tool used for designing agent-based 

systems) [13].  

A. Electronic Counter Counter Measures(ECCM): 

Today′s aircrafts (e.g. Su-25) are equipped with EA 
systems like jamming to reduce effectiveness of radars. 

Significant changes in surveillance sectors give an 

indication of jamming. The radar operator is capable of 

identifying whether at given time the enemy is using its 

jammer or not from received information like “target status 

(nt)” that includes target′s position, altitude, speed etc at 

time t.  

On the basis of nt radar operators decides their actions. 

The relative difference (RD) of target status (|((nt-nt+1)/nt )|) 

gives an indication of jamming. If the degree of jamming is 

very high usually the radar operator sends message to 
ADDC. On getting this information ADDC allocates 

interceptor aircraft to investigate about target. The ADDC 

sends this massage to the pilot for investigating suspected 

targets. The pilot prioritizes and engages targets by air-to-air 

missile based on its capability and availability and sensor 

performance (detection range). A heterogeneous range of 

sensors from ground as well as airborne are assigned to 

suspected target for tracking.  

 
 

Figure 1. Requirements analysis of multi-agent air defense system using the TROPOS concepts. 



All detected targets are not necessarily hostile. Targets 

are electronically identified using predefined codes. 
Predefined codes are distributed among friendly units. If the 

incoming unit responds correctly to these codes, it is 

regarded as friendly. If the response is contrary, the unit is 

considered to have "suspect" and thus invites tracking. 

B. Threat Assessment And Weapon Allocation 

i. Threat Assessment (TA) : 

For TA fuzzy inference rules are used [14]. These rules 
are required to be stored in the agent‟s beliefsets. The fuzzy 
inference rules have following form: 

if A1 is S1 and … and An is Sn then F is L1 

Ai and F are fuzzy variables and Sj and L1 are fuzzy labels. 
Ai ′s are the input variables; F is the output variable. For 

each fuzzy variable, fuzzy labels are defined as follows:  

Inputs 

 Range : { Close, Medium, Far }, 

 Velocity: {Slow, Medium, Fast }, 

 Altitude: {Low, Medium, High} , 

 Angle of Attack: {Low, Medium, High }, 

 Targets Types:{Very Lethal, Lethal, Less Lethal}, 

                         
 

Figure 2. Class diagram  of a surveillance radar agent that performs the task of ECCM and has been implemented in the JACK-agent oriented 

programming language. Each box represents a class stereotype, it has three parts containing the class label, attributes and methods. The 

arrows between the classes represent the association. The notations b, ev and p are used to represent the agent′s beliefset, event and plan 
respectively. 



 Intent Classes: {Strike, Interdiction, Suppression, 

Tactical Bombing, Strategic Bombing, Electronic, 

Close Air Support, Escort, Surveillance, 

Reconnaissance}. 

Output 

 Threat: {Low, Medium, High}. 

The angle between the target′s velocity vector projection 

and the longitudinal axis is defined as the angle of attack 

(AOA). The intent classes membership values are function 

of an operational parameter called conflict level (CL) [2]. 

This CL represents seriousness of a situation, 0  CL  1, 

CL= 0 indicates peace time and CL=1 indicates full scale 

war. The value of CL is given by users based on their 

assessment of the situation to the system. The Target Type 

is divided into three fuzzy sets, very lethal (missile, a group 

of bomber or fighter), lethal (a fighter or a bomber) and less 

lethal (EA, AWACS and other aircrafts).  

The fuzzy system consists of fuzzy rules such as : 

 R1: If the target′s Range is Far and Velocity is Slow 

and Altitude is High and Angle of Attack is Low 

and Target Type is Less Lethal and Intent Class is 

Reconnaissance or Surveillance, then its Threat is 
Low. 

                        

 
 

 
Figure 3. Class diagram  of an ADDC agent that performs the tasks of threat prioritization and weapon allocation and has been implemented in 

JACK-agent oriented programming language.  



 R1215: If target′s Range is Close and Velocity is 
Fast and Altitude is Low and Angle of Attack is 
High and Target Type is Very Lethal and Intent 
Class is Strike or Interdiction, then its Threat is 
High. 

These rules are written on the basis of intuitive and 

expert considerations and then tuned by simulation tests. A 

Mamdani approach is followed. The input/output fuzzy sets 

are defined using trapezoidal and semi-trapezoidal 
membership functions. The „and‟ operator and the 

implication methods are the product, and the defuzzification 

method is weighted average. Total 1215 possible fuzzy 

inference rules (=35
 × 5) are possible, but all rules need not 

to be defined because few of the rules unlikely to be 

observed in real situation. A minimal set of rules (e.g. a 

heuristic is defined as in rules of R1 and R1215 that 

represent two extreme situations of threat perception) are 

defined and other possible rules are automatically 

interpolated through given minimal set of rules. The ranking 

of each rules are performed in agent‟s plan-base. 

ii. Weapon Allocation (WA): 

Since 1959, WA problem has been extensively studied in 

operations research for further improvement [15]. Recently 

evolutionary approaches are found effective for WA [16]. 

Weapons are allocated to attacking targets based on target 

types, weapons‟ effectiveness, range, and availability. An 

integer linear programming model is developed. The 

objective function for WA is to maximize the target-value-

destroyed (TVD), which is defined as:  

 
 

Figure 4.  Surface plots of fuzzy inference rules for prioritizing threats.  The figures show the variations of threat as a function of (a) range and velocity (b) 

intent and target types (c) altitude and angle of attack and (d) target type and range while keeping other factors as fixed variable.  
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where yws  represents number of weapons of type w 

(w=1,..,W) allocated to target type s (s=1,..,S). Cws is 

constant matrix whose elements are determined as a 

function of kill probability and the constraints are 

(2)
W

w
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1

, (3)
W

w
sws NTy

1

and (4) 0wsy , 

where Nws is number of wth type of weapon required to kill s 

type target, NIw is number of weapon of type w and NTs is 

number of targets of type s. 

The models of C2-agents are implemented in the JACK 

[17] agent oriented programming language. Agents in JACK 

are autonomous software components that have explicit 

goals (desires) to achieve or events to handle. The intentions 

of those agents are modeled as goals. The goals are achieved 

through execution of some plans and furnishing some 

resources. Figures 2 and 3 show details of agent‟s structures 

using class diagrams (as one representative of unified 

modeling language). Figure 2 shows that SRA has to execute 
plans p1 to p4 to achieve the intention of ECCM. It uses the 

resources b1 to b5 which generates the events (ev1, ev2) that 

are prerequisite to execute plans. Similarly, figure 3 shows 

that the intention of TA and WA of ADDC-agent (ADDCA) 

is achieved by executing plans p1 to p3 and using resources 
b1 to b5 which generates events (ev1 to ev3) as prerequisites 

to execute plans. The agents use meta-level plan reasoning 

(MPR) process, as described in [18], for optimal decision 

making. The JACK software provides various library 

functions (e.g. relevant, context, getInstanceInfo etc.) for 

MPR. The relevant function is used to select plan associated 

with particular event. The context function is used to select 

the plan which is consistent with the agent's current beliefs. 

If there are still multiple plans left in the applicable plan-

base after using relevant and context functions, the JACK 

provides the getInstanceInfo function, which returns a 

PlanInstanceInfo object. This class has the def method 
which returns the rank (or threat value) of the plan. The 

ranking of each plan is computed by fuzzy rules. Each fuzzy 

rule generates a distinct plan. The plan with maximum rank 

is selected by the getInstanceInfo function. The events are 

posted either by the agent itself or by other plans. The 

events are posted by the plan (e.g. NewClusterPriorityEvent, 

in Figure 3) when the associated plans are executed. This 

 
Figure 5. Response of an ADDCA based on the KS statistics. In an AD scenario target may be in any 

situation ranging from low (far range, high altitude, slow velocity, low AOA, less lethal and surveillance 

or reconnaissance intent type) to high (close range, low altitude, fast velocity, high AOA, very lethal 

type and strike or interdiction intent type) threat label. Assuming a uniform (0, 1) distribution of 

occurrences of these situations the distribution of minimum (low threat) and maximum (high threat) 

order statistics are found using the KS test. The Inverse Gaussian distribution is found to be the best fit 

for both the cases with parameters given in the parenthesis. 



way, most potential weapon is allocated to the most threaten 

target. While allocating a weapon to the target the agent also 

checks its availability status so that multiple allocations do 

not take place. If there is slight change in the calculation 

process of threat ranking, MPR will take care of that. The 

MPR will always select the plan that measures maximum 
rank.  

III. EVALUATION 

This paper proposes two modeling approaches for 

evaluating the agent′s models, namely, logical and 

statistical. The propositional logic is used for the logical and 

techniques of hypothesis testing are used for the statistical 

evaluation. 

A. Logical Evaluation : 

The rules based on the propositional logic are used for 

representing the agent′s goals and their mutual conflicts. If 

an agent pursues multiple goals then the rules should 
automatically detect it as conflict situation. For the SRA, let 

the mutually exclusive goals (or plans) are p1: 

RadarIsNotJammed, p2: RadarIsJammed, p3: 

SendTheMessageToADDCA, p4: Frequency Hopping. The 

rules are defined as:  

    {ev1 Jammed} ,{p1}
k-     

 { p2   p3   p4 }             (5) 

         { ev1   Jammed} ,{ p2   p3   p4 }
k-     

 p1              (6) 

     { ev2   Jammed } {p2}
k+     

 { p3   p4 }              (7) 

where ev’s represents events, posted by the agent when it 

percepts significant changes in the environment. The 

equation (5) represents that if the SRA is Jammed (belief 

state denoted by  ), it may derive the goal to go for p2 or 

(denoted by  ) p3 or p4, but the goal to go for p1 is in 

conflict (denoted by k-). Similarly, the equations (6) and (7) 

also define the agent′s operating conditions and their 

conflicts.  Other possible conflicting goals situations are {p3 

 p4}, {p1  p2}, {p3  p1}, {p4  p2}, because if a SRA is 
found jammed, it may go for the plan p3 or p4, but should 

not pursue these goals (or plans) simultaneously though 

these are mutually exclusive plans.  

The state transition of agent is obtained at each time 

step for each plan instances (p1 to p4). The output of each 

time instance is a vector containing four strings representing 

the agent′s state < p1, p2, p3, p4 >. After five hundreds 
simulation runs no conflicting goal situation is observed for 

the SRA.   

Similarly, for the ADDCA, the plans and the conflicting 

situations are defined as follows: 

p1(N1): NewClusterPlans,  

p2(N2): NewClusterPriorityPlans,  

p3(N3): RedAircraft-InterceptorPlans, 

where each plan pi′s may posses a plan-base of Ni plans.  

{ev1  max(rank(p1(N1)))=p1(i)} ,{p1(j), j i}
k- 

 { p1(i) }           (8) 

{ev2  max(rank(p2(N2)))=p2(i)} ,{p2(j), j i}
k- 

 { p2(i) }           (9) 

{ev3  max(rank(p3(N3)))=p3(i)} ,{p3(j), j i}
k- 

 { p3(i) }         (10) 

If the ith plan combination has maximum rank then the 

above rules are true.  

B. Statistical Evaluation: 

The null hypothesis (H0) is assumed that the agent′s 

behavior (a random variable X) be characterized by a fully 

specified statistical distribution F(x). The Kolmogrov-

Smirnov (KS) statistic is used to determine the goodness-of-

fit of the underlying distribution pattern of the agent′s 

behavior. The KS statistic is defined as Dn = supx(|Fn(x)-

F(x)|), where Fn(x) is the empirical distribution function of  

random variable X of a sample of size n. The hypothesis 

about the distributional form is rejected at the chosen 

significance level ( ) if the test statistic, KS, is greater than 

the critical value obtained from statistical table. The KS 
statistic is applied for a number of statistical distributions 

and a ranking is performed for all of the fitted distributions. 

The fitted distribution with the highest KS rank is being 

selected as the characterized distribution and the 

performance measure of the agent.  

The system is designed in such a way that we need not to 

specify the statistical distribution in H0. The system 

automatically decides the best fitted distribution with 

estimated parameters from a library of distributions on the 

basis of KS statistic. 

IV. RESULTS AND DISCUSSION 

 An air combat scenario of smaller scale (200 km × 200 

km) is simulated where offensive force has one ground-

attack aviation regiment composed of one squadron (10 

aircrafts) of high speed fighter (e.g. A-10 Thunderbolts) and 

bomber (e.g. F-117) each, 10 air-to-surface missiles 
(Maverick), 15 cruise missiles (e.g. Tomahawk),  50 smart 

bombs, one UAV and one AWACS aircraft. The force is 

using electronic jammer (like directed energy into the 

enemy‟s search radar) for EA. Each unit of this force is 

approaching from different directions (with different speeds, 

altitudes and ranges), simultaneously towards a VAVP (a 

runway and aircraft shelters), which is protected by one 

squadron of integrated AD system comprising of one 

surveillance radar (capable of ECCM), one tracking radar, 

interceptor aircrafts two batteries (each with 3 units) of long 

(e.g. Patriot), medium (e.g. Hawk XXI) and small (e.g. 

NASAMS) range SAMs and Anti-Aircraft Artillery and one 
agent based C2 system.  

 Because of jamming, the surveillance radar receives 

wrong measurements of nt at time t. The nt is generated 

randomly using the Poisson distribution with mean 20. The 

RD values are computed at each time step and found that it 

best fits to General extreme value distribution with respect 

to the KS statistics. The calculated value of the KS statistic 

(0.6623) is greater than the theoretical value (0.136685 at 

confidence level 95%) so the H0 that the RD follows the 

specified distribution (General extreme value) is accepted 



and gives an indication of jamming and performance 

measure of the agent. It is observed that out of 500 runs, 231 

times (i.e. 41 %) the radar is found to be jammed and 91 

times the radar is found to send the message to the ADDCA.  

The ADDCA starts prioritizing once the targets reach 

within 200 km range from VAVP. Principal findings of the 
simulation results suggest that if fast moving very lethal 

target type (a group of fighter A-10 Thunderbolts with speed 

2.5 Mach) is very close (within 100 km) to the VAVP, its 

priority is very high as compared to a relatively slow 

moving target (Tomahawk missile with speed 0.7 Mach) 

which is quite far (beyond 200 km) (Fig 4(a)). Also if a 

lethal target (a group of bomber F-117) is coming with 

strike intention then its priority is more than a relatively less 

lethal target (EA aircraft) is coming with reconnaissance 

intention (Fig 4(b)). Also a target in a very low altitude (Su-

27 in a SEAD (Suppression of Enemy AD) mission) and 

high angle of attack is very dangerous than a target in high 
altitude moving in low angle of attack (UAV) (Fig 4(c)). 

Similarly, the threat of a low lethal target type (cargo 

aircraft) with the intention of attacking the VAVP 

(asymmetric warfare) at a very close distance is very high 

than a very lethal target at far range (Su-27) (Fig 4(d)).   

 The basic goal of the ADDCA is to prioritize threats 

based on estimated target s status. For example, let a plan 
detects target with far range, high altitude, slow velocity, 

low AOA, less lethal type and surveillance intention then it 

should assign low threat label, similarly, if a plan detects 

target with close range, low altitude, fast velocity, high 

AOA, very lethal type and strike intention then it should 

assign the high threat label. So the former plan instance is 
considered to follow the distribution of minimum order 

statistics and later one be considered to follow the 

distribution of higher order statistics. Now the distribution 

of these order statistics depends on the distribution of their 

parents. Assuming a uniform parent distribution to all plan 

instances the resulting distribution of minimum and 

maximum order statistics are shown in figure 5. The KS 

statistics are measured from the distributions of order 

statistics and the Inverse Gaussian distribution is found to 

be the best fit for both the cases.  

The SRA requires lesser computation time for checking 
its logical conditions than the ADDCA. The SRA computes 

the RD based on the current and previous observations; 

therefore, it requires at least two observations. Once it 

calculates the RD it checks the threshold . Similarly, for 
the ADDCA, planning time is fixed to 30 seconds. A genetic 

algorithm is developed for searching the optimal conditions. 

As expected, the search quality decreases with increasing 

number of targets. The decrease is not just because of the 

increase of the planning problem complexity, but also, and 

most importantly, because the number of available 

defensive combat resources and their configuration are kept 

fixed, for more targets to defend against. The system is 

tested for 30 weapons against 90 targets, up to this level the 
system performs effectively, above this level its 

performance reduces. So for larger operations more than one 

C2 systems have to be integrated. 

The reasoning process of the system is explained to the 

users and they found it logical and its conclusions sound to 

them relevant and useful. In future the plan is to conduct 

exhaustive experimentations of the system with diverse AD 
scenarios to extend the model for identifying the friend and 

foe as a function of CL and other rules of engagement (like 

visual identity) to further increase the user acceptance and 

usability. Also the proposed system will be evaluated with 

realistic scenarios (e.g. Operation Desert Storm). The aerial 

operations similar to those scenarios will be generated and 

the beliefs and decisions of the agents will be evaluated. 

This will help to develop air war-games where experts can 

evaluate the systems by changing their plans and strategies. 

For simplicity few operational choices used in this study are 

straight forward (e.g. target type, intent classes), in future 

these will be addressed more thoroughly. This system is 
conceptualized in computer simulated environment; the 

issues related to operational-level analysis can only be 

addressed in future.   
Similarly, inclusion of soft kill or non-lethal, options like 

decoys, chaffs, relocation of AD forces, deterrence 

measures, jamming etc. are left for future considerations. 

Further tests are to be done in future using two or more 

ADDCAs to see how they may negotiate for optimal 

utilization of their resources. To protect the system against 

byzantine attack the agents will communicate with each 

other with signed (or coded) messages which will be 
difficult to be forged by the traitor agents. Construction of 

the signature function will be a cryptography problem and 

addressed in future.      

V. CONCLUSIONS  

In this paper, modeling of autonomous intelligent agents 

for an AD system is presented using the concept of meta-

level plan reasoning of BDI (Belief-Desire-Intention) 
architectures. The C2-agents take decisions of ECCM, TA 

and WA. The SRA decides when to change its frequency to 

defend the radar system against jamming. ADDCA performs 

TA and WA. The agents‟ logic is first formulated in the form 

of BDI architectures and then implemented using the JACK 

agent programming language. The behavioral patterns of the 

agents in different simulated environments are also 

presented.  
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