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D   ynamic Coordination in 
Fleet Management Systems: 
Toward Smart Cyber Fleets

target-based planning, as well as supervision and 
control of fl eet operations based on available 
transportation resources and application con-
straints. FMSs have as an objective to reduce risk, 
increase quality of service, and improve a fl eet’s 
operational effi ciency while minimizing its costs.1

A key problem in FMS operations is fl eet-route 
planning, where different transport orders need to 
be aggregated into tours of fl eet vehicles so that 
the resulting schedule is both effi cient and robust 
while meeting the constraints put forward in cus-
tomer requests. The main challenge at the tacti-
cal level is to support decision making based on 
seasonality, trends, changing customer mix, and 
demand. At operational and real-time levels, the 
challenge is to respond to daily dynamics, such 
as traffi c, weather, employee absence, equipment 
breakdown, new orders, and order adjustments.

Approaches to fl eet planning typically focus on 
the development of near-optimal plans using vari-
ous types of effective vehicle-routing algorithms, 
which can be either static or dynamic.2–4 Fleet 
schedules designed a priori with static route plan-
ning assume the following: all relevant data is 

known before the planning starts, short- and long-
term decisions have the same importance, and 
the time available for creation, verification, and 
 implementation of route plans is of minor impor-
tance. The use of an initial fl eet schedule, although 
 necessary, is by no means suffi cient because it might 
not cope adequately with unexpected events dur-
ing execution, such as traffi c delays, vehicle break-
downs, road works, and new customer requests or 
the cancellation of preexisting ones, which causes 
fl eet delays, unexpected costs, and poor customer 
service. Real-time dynamic FMSs are needed to 
handle unexpected events—that is, to detect de-
viations from the initial dispatch plan and adjust 
the schedule accordingly by suggesting effective re-
routing immediately. In this context, timely deci-
sions are very important because the time available 
for verifi cation, correction, and implementation of 
changed route plans is often very short.5,6

Real-time FMSs have been applied to a broad va-
riety of domains, including emergency vehicles (fi re 
trucks, ambulances, and so on), police cars, taxis, 
commercial delivery vehicles, courier fl eets, public 
transport fl eets, and freight railcars.7–11 However, 
state-of-the-art FMS solutions are centralized and 
require vehicle fl eet operators to send low-level 
commands remotely to the fl eet’s drivers and their 
vehicles. Even though some dynamics of the envi-
ronment are accounted for, certain decisions can’t 
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be reconsidered because doing so 
could complicate the assignment pro-
cedure and potentially compromise 
the fleet’s response time. In addition, 
changes in the environment aren’t al-
ways communicated fast enough to 
FMS operators to help them make de-
cisions in a timely manner. The FMS’s 
dependence on adequate central oper-
ator decisions, therefore, compromises  
its robustness and hinders effective 
scalability.12

The technological advances in sen-
sors, communication and networking 
technologies, and geographic infor-
mation systems enables fleet opera-
tors to be informed about unexpected 
changes in fleet operation almost at 
the time that they occur, and thus al-
lows for increased levels of dynamic-
ity in operational decisions. Moreover, 
the increased performance of small-
scale, energy-efficient computing de-
vices allows for delegating part of fleet 
decision making to the fleet’s vehicles, 
enabling a more decentralized FMS ar-
chitecture that gives more autonomy 
to the vehicles and their drivers and, 
thus fosters the system’s reactiveness. 
Here, we sketch our work in the field 
of real-time FMS and point to devel-
opments that we believe are going 
to take place in the near future. We 
put forward our vision of conceiving 
FMS as smart cyber-physical systems, 
and illustrate the idea in the field of 
electro-mobility, where drivers of 
smart e-motorbikes (cyber vehicles),13  
equipped with an intelligent commu-
nication device (cyber helmet), are  
coordinated by means of a next-
generation FMS.

Dynamic Fleet Management
We propose to employ an event-based 
architecture for dynamic fleet man-
agement. We applied this architec-
ture to the coordination of a fleet of 
ambulances in a medical emergency 
scenario and show experimentally 

that our proposal outperforms a non- 
dynamic approach.

Event-Based FMS Architecture
Fleet operators face two main problems: 
task allocation and redeployment. The 
allocation problem consists of deter-
mining which vehicle should be sent to 
serve a given task. Redeployment con-
sists of relocating vehicles in the region 
of influence in a way that new tasks 
can be reached quickly at a low cost. 
Both issues are particularly challeng-
ing in dynamic environments, as con-
tinuously arriving new tasks might re-
quire attendance, and the fleet’s current 
situation might change due to external 
influences. To maximize vehicle utili-
zation and improve service quality in 
such environments, task allocation and 
vehicle redeployment should also be ac-
complished in a dynamic manner, adapt-
ing the fleet’s coordination seamlessly 
to upcoming events and changing de-
mands. To adequately capture real-time 
requirements in such a scenario, we set 
out from an event-driven approach.14

Figure 1 depicts our architecture for 
dynamic fleet management. It contains 

three basic layers: the top layer con-
tains the vehicles, modeled as agents; 
the second layer represents the fleet co-
ordination modules; and the third layer 
includes other components necessary 
for normal fleet operation (components 
for monitoring, task management, 
global fleet control, and so on).

In the fleet coordination layer, a 
fleet tracker follows the vehicles’ op-
erational states and positions. (We 
assume that vehicles have the abil-
ity to send their current positions on 
a regular basis and to inform about 
changes in their operational states.) 
The fleet tracker informs the event-
processing module about any changes 
in the fleet that would require an ad-
aptation of task allocations or the de-
ployment of idle vehicles. If necessary, 
it triggers task allocation and predic-
tive redeployment modules. The task 
allocation module, when executed, 
recalculates the optimal global as-
signment of all pending tasks (in 
the current moment) to vehicles 
based on a set of assignment criteria 
(depending on application domain). 
The predictive redeployment module 
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Figure 1. Event-based architecture for dynamic fleet management. The top layer 
contains the vehicles, modeled as agents; the second layer represents the fleet 
coordination modules; and the third layer includes other components necessary for 
normal fleet operation.
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calculates adequate positions for all 
idle vehicles at the current moment, 
taking into account predictions con-
cerning the appearance of new tasks 
(based on historical data) and the 
fleet’s current state.

Case Study: Ambulance 
Coordination in Madrid
To test our approach, we applied the 
architecture in a system for coordi-
nating a fleet of ambulances for the 
Emergency Medical Assistance Service, 
SUMMA112 (www.madrid.org/cs/
Satellite?pagename=SUMMA112/Page/
S112_home), in Madrid, Spain—a re-
gion of about 8,000 km2 with approx-
imately 6 million inhabitants. Among 
other services, SUMMA112 maintains a 
fleet of ambulances that provides out-of-
hospital assistance to patients in cases 
of emergencies. One of the main goals is 
to reduce response time (the time be-
tween when a patient calls and the 
moment the ambulance arrives) in life- 
threatening emergencies: shorter re-
sponse times are directly correlated 
with lower mortality rates.

SUMMA112 currently employs a 
static approach to patient allocation 
and ambulance redeployment: calling 
patients are classified by a triage sys-
tem into different severity levels, and 
patients at the highest level are as-
signed using the first-come/first-served 
(FCFS) principle—that is, the first pa-
tient in the system is assigned first, 

then the next patient, and so on. In 
each case, a patient is assigned to the 
closest available ambulance at that 
particular moment. After an ambu-
lance has finished a mission, it returns 
to its base station and waits for a new 
assignment. The locations of ambu-
lance base stations are fixed and have 
been chosen based on criteria such as 
population density and infrastructure.

Based on the architecture presented 
in Figure 1, we developed a proto-
type of a dynamic ambulance FMS 
in which ambulances and calling pa-
tients are the vehicle agents and new 
tasks, respectively. We concentrated 
only on the most severe emergency 
cases, those that are assisted with ad-
vanced life support units. Regarding 
the assignment of patients to ambu-
lances (task allocation), we substitute 
the current static FCFS strategy with 
a reactive method in which existing 
assignments can be reconsidered on 
the fly. As Figure 2 illustrates, any pa-
tient who was already assigned to an 
ambulance might be reassigned to an-
other one if this improves the average 
response time. In particular, a given 
assignment is recalculated if a new pa-
tient has appeared (see Figure 2b) or 
an ambulance has finished a previous  
mission (see Figure 2c). For this pur-
pose, we used Dimitri Bertsekas’s 
auction algorithm,15 which assures 
an assignment that minimizes the 
key performance indicator (average 

ambulance response time) in a suffi-
ciently fast manner.

With respect to ambulance rede-
ployment, we use historical data to 
estimate the probability distribution 
of emergency cases in the region for 
different days and times of day (one-
hour intervals). Based on this estima-
tion, we calculate adequate waiting 
positions for all ambulances that are 
idle at a given moment. The waiting 
positions are dynamically recalculated 
if one of the following events occurs: 
an ambulance previously assigned to 
a patient becomes idle again (the mis-
sion is finished or the ambulance is 
de-assigned from a patient), an idle 
ambulance is assigned to a patient, 
or a different estimation of the prob-
ability distribution needs to be ap-
plied (every hour). We implemented 
the redeployment module based on 
the calculation of centroidal Voronoi 
tessellations, a geometric optimization 
technique that allows to estimate sub-
optimal positions of a set of genera-
tor points in an Euclidean space and 
such that the weighted distance of all 
points in the space to the closest gen-
erator is minimized.16

To evaluate our dynamic approach’s 
effectiveness, we tested it in a set of 
experiments analyzing the response 
times to emergency patients. For this 
purpose, we developed a simulation 
tool for emergency medical assistance 
(EMA) services, covering the whole as-
sistance process—the emergence of pa-
tients, the schedule of an ambulance, 
the “in situ” attendance, and finally, the 
transfer of patients to hospitals—based 
on the information obtained from a 
well-calibrated, external route service. 
In our experiments, we considered 
a rectangle of 125 × 133 kilometres 
that covers the whole area of Madrid.  
We used 29 hospitals (all located at 
their real positions) and 29 ambu-
lances with advanced life support (as 
currently used by SUMMA112). We 
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Figure 2. Ambulance assignment strategies. Dotted lines show the current first-
come, first-served (FCFS) approach, while solid lines represent our assignment 
policy: (a) initial assignment, (b) a new patient appears, and (c) a previously busy 
ambulance becomes available.
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simulated the operation of the service 
for 10 different days (24-hour peri-
ods) with real patient data from 2009 
provided by SUMMA112. We chose 
the days that gave us a good repre-
sentation of high, medium, and low 
workloads.

Figure 3 compares the distribution 
of the response times in minutes over 
all patients (1,609 in total) for both 
the current FCFS coordination model 
(C-SUMMA112) and our dynamic co-
ordination model (DYNAMIC). The 
results clearly show the benefits of our 
dynamic approach, which performs 
better for practically all response time 
ranges. Furthermore, the most impor-
tant improvements can be observed in 
the ranges of higher response times. 
This is an important advantage, be-
cause it assures that more patients 
can be attended within given response 
time objectives. On average, the re-
sponse times are 15.8 percent bet-
ter in the DYNAMIC approach (9:54 
versus 11:45 minutes). Especially in 
severe cases, a reduction of almost 2 
minutes can be potentially lifesaving.

Toward Cyber Fleets
Prototypes of autonomous vehicles 
have been designed and tested, with 
the main challenges related to this 
new technology currently being stud-
ied in countless realistic and complex 
scenarios (www.cybercars.org).17 At 
some point, this poses new challenges 
to FMSs as they attempt to manage 
fully autonomous vehicles in a decen-
tralized manner. Based on currently 
available technologies, we’re studying 
the impact of different types of sensors 
and driver assistance technologies on 
fleet management. In particular, with 
the goal of improving the efficiency, 
safety, and autonomy of vehicle fleets 
and their drivers, we propose an FMS 
as a smart, cyber-physical system (cy-
ber fleet) made of cyber vehicles and 
drivers with cyber interfaces. In such a 

scenario, FMS decision making takes 
place both at the vehicle level (the 
drivers interact with their own and 
other cyber vehicles through cyber 
interfaces), as well as at the system 
level, where fleet operators can focus 
on more coarse grained management 
decisions for fleets that are potentially 
heterogeneous and large scale.

Figure 4 outlines our proposed FMS-
based cyber fleet. The coordination 
cloud is similar to the dynamic FMS 
outlined in Figure 1, but many low-
level events can be coped with locally 
in the cyber vehicles. That is, manage-
ment and monitoring tasks are shared 
between the fleet operator and the cy-
ber vehicles with their drivers.

We can illustrate the notion of cy-
ber fleets through an example in the 
field of electro-mobility. The company  
GoingGreen (www.goinggreen.es),  
for instance, is deploying fleets of e-
motorbikes in the city of Barcelona  
for vehicle sharing and home de-
livery purposes. The cyber fleet of  
e-motorbikes that we propose comprises 
three main components: cyber helmet 
(CH), cyber e-motorbike (CeM), and 
smart e-motorbike FMS (SeM-FMS).

Smart helmets are currently finding 
their way into the market (see Figure 
5). However, the CH for a cyber fleet 
of e-motorbikes needs to go beyond 
the state of the art, insofar as it serves 
as a smart communication bridge be-
tween the driver and the vehicle, and 
between the driver and the SeM-FMS. 
For this purpose, it’s equipped with 
additional communication outlets, a 
stereo camera, and a microphone, and 
it’s connected to the CeM to take ad-
vantage of its computing capacity.

The interaction between the CH 
and the driver has to be grounded 
in situational awareness: the former 
should refrain from communicating 
with the driver during difficult ma-
neuvering operations or traffic situ-
ations, which require the driver’s 
full attention. In particular, a traf-
fic evaluation module ought to take 
into account traffic images received 
through the camera, the driver’s cur-
rent maneuvering complexity based 
on the CeM’s GPS coordinates and 
the actual traffic state, weather con-
ditions, the road infrastructure com-
plexity, and CH sensor readings about 
the CeM’s current state (acceleration, 
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Figure 3. Dynamic versus static fleet management for ambulance coordination in 
Madrid. The response times in minutes over all patients (1,609 in total) for both 
the current FCFS coordination model (C-SUMMA112) and our dynamic coordination 
model (DYNAMIC) clearly show the benefits of our dynamic approach.
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velocity dynamics, wheel orientation, 
and so on). The identification of the 
traffic situation is possible through 
image recognition, fusion of data re-
ceived from different helmet and ve-
hicle sensors, and sensor knowledge 
extraction. In addition, the CH can 
determine the mode of communica-
tion (audio communication through 
microphone, video presentation of 
data on the helmet’s augmented real-
ity display, or a combination of both) 
and inform the driver about his or 
her tasks, as well as CeM and traffic 

conditions (malfunctions, battery, 
driving performance, security alerts, 
weather, traffic accidents, traffic jams, 
alternative routes, and so on).

The e-motorbikes that GoingGreen 
currently deploys (see Figure 6) are al-
ready equipped with simple sensors 
and basic data-processing capacity. We 
can enhance them with additional data 
sources such as accelerometer, prox-
imity (laser) sensors, stereo cameras, 
and so forth, and will turn them into 
a CeM by endowing them with ad-
ditional computing power. With this 
configuration, the CeM will perform 

real-time sensor data extraction, fusion, 
and reasoning, and communicate with 
the driver through the CH connected 
to the vehicle’s battery and to the SeM-
FMS through standard wireless com-
munication. Some of the exemplary 
vehicle processes are forecasting the 
residual battery autonomy with a spe-
cific driver profile, maintaining a driver 
profile based on driving habits, and 
networking with other vehicles and 
SeM-FMSs in the system for task and 
work break distribution, contingency 
coverage, and so on. The CeM assists 
decision making about the mission’s 
execution. It might receive and directly 
execute commands from the SeM-FMS 
about maximum speed limit, maximum 
acceleration, and engine blocking, so 
as to enhance energy efficiency and ve-
hicle security. But it can also suggest 
directly to the driver information such 
as the most adequate charging spots.

The SeM-FMS is the computational 
platform that ultimately satisfies fleet 
objectives. Its level of decentralization 
in decision making is customizable 
to  the fleet owner’s preferences and 
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constraints; it can vary from a fully 
centralized to a subsidiary option (see 
Figure 7). Subsidiarity is an organiz-
ing principle of decentralisation, pro-
moting the delegation of responsibil-
ities to the smallest, lowest, or least 
centralized authorities capable of ad-
dressing an issue effectively (in our 
case, drivers and their CeMs).18 In a 
centralized structure, all decisions re-
garding a fleet’s strategic, tactical, and 
operational levels related to task al-
location, vehicle deployment, battery 
autonomy, work break, and contin-
gency management are controlled by 
the central fleet operator. In contrast, 
with fully decentralized control, the 
fleet operator only controls the overall 
fleet strategy (its mission and related 

constraints); CeMs manage key parts 
of mission execution and related op-
erations at tactical and operative lev-
els in real time through lateral inter-
actions. Besides constraints emanating 
from the concrete organizational en-
vironment in which the SeM-FMS is 
embedded, the fleet’s level of decen-
tralization depends, for instance, on 
its size and dispersion over one or 
more regions of interest. To facilitate 
individual accounting for fleet perfor-
mance, one of the tools for mission 
evaluation track’s a personal driver 
profile record. If necessary, the SeM-
FMS can undertake corrective actions 
on fleet vehicles and drivers to mini-
mize performance degradation during 
sudden performance variations.

We plan to further explore cy-
ber fleets of e-motorbikes in two case 
studies with GoingGreen. In home 
delivery, the task of electric motorcy-
cles is to distribute products in an ur-
ban area by assigning CeMs to prod-
uct pick-up and delivery tasks. The 
vehicle-sharing scenario refers to a 
type of vehicle rental for short periods 
of time, often a matter of hours. The 
principle of vehicle sharing is that in-
dividuals gain the benefits of private 
transportation without the costs and 
responsibilities of ownership. Instead, 
a private user accesses a fleet of ve-
hicles on an as-needed basis. We also 
plan to integrate both business cases 
into one business solution, where a 
fleet of CeMs serves both purposes at 
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the same time, and dynamically and 
seamlessly adapts to user demands to 
maximize vehicle utilization and in-
crease profit gains. In future work, we 
also intend to extend our approach to 
mixed cyber fleets capable of manag-
ing heterogeneous fleets of traditional 
vehicles, cyber vehicles, and fully au-
tonomous vehicles. 
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