
This is a repository copy of Formal Specification and Automatic Verification of Conditional
Commitments.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85899/

Version: Accepted Version

Article:

El Kholy, W., El-Menshawy, M., Bentahar, J. et al. (2 more authors) (2015) Formal
Specification and Automatic Verification of Conditional Commitments. IEEE Intelligent
Systems, 30 (2). 36 - 44. ISSN 1541-1672

https://doi.org/10.1109/MIS.2015.6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Formal Specification and Automatic Verification
of Conditional Commitments

Warda El Kholy
Concordia University

Mohamed El Menshawy

Concordia University and Menofia University

Jamal BentaharConcordia University

Hongyang Qu
University of Sheffield

Rachida Dssouli
Concordia University

Abstract: Developing and implementing a model-checker dedicated to conditional commitment logic with
user interface are urgent requirements for determining whether agents comply with their commitments
protocols.

Keywords: Strong (classical) commitments, model-checker, compliance

Recently, the number of multi-agent applications has grown rapidly, along with opportunities to develop
commonly understood agent communication languages (ACLs) and efficient multi-agent interaction
protocols to let agents to talk with each other and decide what information to exchange or action to
perform. Social commitments in the form of contractual obligations from one agent to another have been
advocated to define formal semantics for ACL messages.1,2 Social commitments also provide powerful
representation for modeling and reasoning about multi-agent interaction protocols without restricting
agents’ autonomy and flexibility. They also provide natural ways to characterize degrees of autonomy and
interdependency without getting bogged down in low-level details. Thus, the agent communication
research community has agreed that any formal semantics for ACL messages within heterogeneous systems
must be supported by high-level abstractions rather than reasoning about agents’ mental states (e.g.,
beliefs).3

Previous proposals for multi-agent commitment protocols have considered the semantics of conditional
commitments—a natural and universal frame of social commitment—and how to check their compliance
with protocol specifications.4 The basic idea of conditional commitments is that the debtor agent can only
commit to the creditor agent (in what’s also called a commitment consequence) when specific antecedents
are met—for instance, the seller commits to the buyer to ship the requested goods if the buyer sends the
agreed payment. However, such proposals don’t capture some of the subtleties that arise in concrete
applications in which commitments (typically representing contracts) have implicit or explicit temporal
orderings and emphasize the existence of at least one option to satisfy their assigned conditions. An
important aspect of social commitments is that they can be manipulated through a set of actions.2,4 Such
manipulations provide the primary way to evolve changes in social commitment states and to define
commitment life cycles.2 A commitment can be present in one state at a time and continues in that state
until an action is carried out on it. Such actions are typically classified into two-party actions (such as
Discharge (or Fulfill) and Violate) and three-party actions (such as Delegate and Assign). For instance,
when a commitment consequence is true (that is, the seller delivers the requested goods), the commitment
is fulfilled.

Current semantic models for fulfilling commitments nevertheless have a spurious paradox resulting
from the counterintuitive assumption that “the commitment should be active when it comes time to its
fulfillment.”4,5 Suppose, for example, that a customer commits to give $500 to a merchant. As soon as that
money is transferred to the merchant’s account, the commitment is immediately fulfilled. By considering

this assumption, the commitment to sending $500 is still active, but it would be ridiculous to force the
customer to send the money again. Technically, such an assumption violates a principle that’s commonly
accepted in the literature:2,6 when a commitment is fulfilled, it should no longer be active, meaning that the
fulfillment action results in a state where the active commitment is marked as resolved.

Here, we distinguish a subtype of conditional commitments called strong commitments. Classical
commitments are those that can be activated even if the antecedent will never be satisfied (see Example 1
below), whereas strong commitments are only activated when there’s a possibility of satisfying the
antecedents (see Example 2 below). We propose an operational framework for conditional commitments
that’s expressive and rich enough to accommodate practical business scenarios. Because it’s unknown in
advance whether a party will fulfill its commitment, checking whether the commitment is violated is
significant, especially as interacting agents are heterogeneous. In our framework, when there’s no way to
fulfill strong (or classical) commitments, the commitment is violated. Indeed, the companion contribution
of this article lies in developing a symbolic algorithm to solve the problem of model-checking conditional
commitments and their fulfillments or violations. (Model checking is a formal and fully automatic
verification technique at design time that increases confidence in a system’s safety, efficiency, and
robustness.7) This type of model-checking algorithm is entirely missing in the literature and would help
designers detect and eliminate design errors so that commitment protocols (a set of commitment action
meanings on which agents agree) comply with specifications before any interactions start at runtime.

Real-World Challenges

To describe our motivation for distinguishing conditional commitments as a particular subset of classical
conditional commitments, we use situational examples that arise in practical applications of online or
offline business contracts. We present formalizations of these examples later.

Example 1. Consider the NetBill protocol modeled by using event calculus.6 Social commitments
conventionally let us flexibly specify this protocol, enabling us to begin an interaction in one of the
following ways: a merchant commits to present an offer without receiving a request from a customer (as
happens for advertising8); a merchant can commit to deliver some goods for trial without asking a customer
to accept the price; or a customer commits to accept the price quote before the merchant proposes one,
mimicking the customer’s trust in the fact that the merchant will make an offer.

Because interacting agents are indeed heterogeneous, there are no guarantees about how they’re
implemented (hence the question about distinguishing malicious agents). Suppose the customer has some
reasons to trust the merchant: What happens when the merchant is willing but practically unable to present
the offer? This example shows the need for imposing a temporal ordering between the acquisition of
consequence and the antecedent of commitments. To achieve such a temporal ordering, strong
commitments can model the conditional commitment of the customer accepting the price quote. It won’t be
active until there’s at least one possibility in the agent model to receive the merchant’s offer.

We also present classical commitments on top of strong commitments (recall that strong commitments
are a subset of classical commitments with an additional constraint) to preserve the flexibility provided by
social commitment approaches and to capture the semantics defined by previous proposals. In this context,
a weak commitment is a classical commitment that isn’t strong. Informally, a weak commitment is active if
the antecedent never holds—for example, a weak commitment can be used to model the commitment about
presenting the offer if the merchant knows that the antecedent will never be satisfied (that is, there’s no way
for the customer to send the request).6 The following example gives additional incentive for introducing
strong commitments.

Example 2. A pharmacist strongly commits to provide medicine only if the patient shows a prescription
for that medicine and pays for it.8 Notice that such antecedents are always possible.

Weak commitments aren’t suitable for modeling the contractual business scenario discussed in Example
2, because it is ridiculous to commit to provide the medicine without showing prescription and paying for
it. Consequently, strong commitments are extremely necessary for addressing the weak commitment
shortcoming of committing without satisfying the antecedent. In fact, strong commitments often give more
confidence in terms of their fulfillments than classical commitments, which can be weak. For instance,

when both payment and prescription are present, the fulfillment degree of the pharmacist’s commitment to
provide the requested medicine is very high.

Proposed Framework

Our proposed framework for conditional commitments encompasses three different but integrated parts:
logical, algorithmic, and implementation (see Figure 1).

Figure 1. The main components of the proposed framework: logical, algorithmic, and implementation. The
logical component extends CTL with commitment and fulfillment modalities. Our algorithm enriches the
standard CTL algorithm with symbolic algorithms for new modalities and implements on the top of
MCMAS. The algorithm returns true or false.

Logical Language
Interaction between autonomous and heterogeneous intelligent agents is the quintessential aspect of
building open and effective multi-agent systems (MASs). Agents have to negotiate deals (such as price of
goods and delivery terms), exchange information, and cooperate with each other to satisfy the individual
and social goals that they can’t achieve alone because of a lack of resources or knowledge. Munindar P.
Singh1 introduced four crucial criteria to a well-defined semantics for ACL messages in terms of social
commitments:

 formality (using logics to define a formal semantics of agent messages to eliminate the
possibility of ambiguity in their meaning);

 declarative (focusing on what social interactions and protocols are, to avoid over constraining
interactions, by specifying how interactions should be accomplished);

 meaningfulness (focusing on message content and meaning, not on a message’s representation
as a token); and

 verifiability (verifying if an agent is acting according to the semantics).

These criteria are defined from the perspective of agent communication; we introduce additional
commitment-oriented criteria as follows:

 commitment modeling (specifying how the commitment is formally modeled, for example, as
a fluent and temporal modality);

 commitment semantics (defining a formal semantics for the commitment based on its
modeling); and

 verification method (specifying the technique to be used to verify the compliance of
commitments and commitment protocols with specifications (model checking, monitoring, and
so on). Such a criterion can help designers select a tool based on their own needs.

These criteria eliminate all the existing candidates for ACL semantics using conditional commitments.

For example, the neighborhood semantics introduced in one study8 still isn’t verifiable because we need to
either find an equivalent semantics using standard Kripke structures or develop a completely new model-
checking algorithm from scratch for the nonclassic neighborhood logic; both issues are still open problems.
Furthermore, the algorithm for this semantics’ advocated linear temporal logic frame is exponential in
terms of formula size and linear in terms of model size.9 Event calculus semantics2 using first-order logic
(FOL), quite common and expressive in practice, is undecidable—that is, we can’t develop a model-
checking algorithm that works for all kinds of formulae). Moreover, safety and liveness properties of
commitment protocols, generally expressed using temporal operators, can’t be expressed in the FOL.4
Fluents-based semantics2 waives the real semantics of commitments (because they’re simply abstracted as
fluents), and temporal logic-based semantics (if applied to commitments as simple tokens) isn’t
meaningful. We argue that an approach formalized by extending the standard computation tree logic
(CTL), where commitments are modal operators with grounded and intuitive semantics, can meet all of the
requirements listed earlier. Indeed, CTL balances between expressiveness and verification efficiency
(which is linear in both formula and model size).9

In the logical part of our framework, we develop a branching-time temporal logic, CTLcf, that enriches
CTL with modalities for conditional commitments and their fulfillments.

Definition 1. Given a set of atomic propositions AP, the syntax of CTLcf is defined as follows:

 :: = p        EX  EG  E( U )  Com  Ful

Com :: = CC(i, j, , )  SCC(i, j, , )

Ful :: = Fu(CC(i, j, , ))  FuS(SCC(i, j, , )),

where p  AP is an atomic proposition; E is the existential quantifier on paths; X, G, and U are CTL path
modal connectives standing for “next,” “globally,” and “until,” respectively; the Boolean connectives 
and  are defined and read in the usual way; and Com and Ful stand for conditional commitments and their
fulfillment modalities, respectively.

In this logic, a (strong) conditional commitment (SCC(i, j, , )) CC(i, j, , ) is read as “agent i

(strongly) commits toward agent j that  when the antecedent  holds,” or equivalently from
communication perspective as “i is (strongly) conveying information  to j after receiving information .”
The antecedent  and consequence  in the context of commitment modality can be any arbitrary CTLcf
formula, so they would be commitments as well. FuS(SCC(i, j, , )) Fu(CC(i, j, , )) is read as “the
(strong) conditional commitment (SCC(i, j, , )) CC(i, j, , ) is fulfilled.” Other Boolean connectives
and temporal modalities can be defined in terms of the aforementioned connectives and modalities as
usual—for example,    ؜   ;    ؜       ; EF ؜ EሺᄦU ); AX ؜  EX  ; and
AG ؜  EF  , where , , F and ᄦ ؜ ሺp   p) stand for implication, equivalence, eventually, and
unconditionally true, respectively. We now use CTLcf to formalize the business scenarios in Example 1 as
follows:

1 = AG(SCC(Mer, Cus, ᄦ, presentQuote))

2 = AG(SCC(Cus, Mer, ᄦ, E (requestQuote U requestQuote  acceptQuote presentQuote)))

3 = AG(SCC(Mer, Cus, ᄦ, E (acceptQuote U acceptQuote  deliverGoods))),

where 1 means that the merchant proactively presents a quote even without being requested by the
customer; 2 means there’s a possibility for the customer to accept the price quote without requesting it;
and 3 states that there exists a path during which the merchant can commit to deliver the goods without
asking the customer to accept the price (as in a trial offer). The business scenario mentioned in Example 2
would be formalized as follows:

4 = AG(SCC(Pha, Pat, (showPrescription  sendPayment), EF deliverMedicine)),

which means that the pharmacist strongly commits to deliver medicine only if the patient shows the
prescription and sends the payment . To keep CTLcf propositional, other commitment actions, missing in
our previous work,10 are abstracted as predicate propositions, which hold in social states precisely after
performing agents’ local actions, underlying the assumption saying that an agent performs one local action
at a time.

Example 3. By performing the Cancel local action by Mer at local state lmer to withdraw its commitment
SCC(Mer, Cus, sendPayment, deliverGoods) holding at social state s, the predicate proposition p =
Cancel(Mer, SCC (Mer, Cus, sendPayment, deliverGoods)) will hold in the accessible state s'.

Before we introduce the logical model M to interpret CTLcf formulae, we briefly describe the extended
version of the interpreted system formalism we developed previously.4,5 This formalism in fact provides a
standard framework for modeling and reasoning on fundamental classes of MASs, such as synchronous and
asynchronous. Specifically, suppose a MAS is composed of a set Agt = {1, …, n} of n agents, wherein each
agent i  Agt is characterized by a countable set Li of local states, a countable set Acti of possible local

actions, a local protocol : 2 iAct
i iPr L  that’s a function producing the set of enabled actions at a given

local state, and a local evolution function, which is defined by i: Li  Acti  Li. The agents in Agt act
within an “environment” (e), which in turn can be modeled with the set Le, set Acte, protocol Pre, and
evolution function e. The environment e can be seen as a special agent because it captures any information
that might not pertain to a specific agent. In principle, we can view a commitment protocol as an agent e.

Definition 2. We represent the instantaneous configuration of all agents in the system at a given time by the
social state having (n + 1)-tuple g = (le, l1, …, ln), where each element le  Le and li  Li represents a local
state of agent e and of agent i, respectively. Thus, the set of all social states G = Le  L1  …  Ln is the
Cartesian product of all local states of n + 1 agents.

The notation li(g) represents the local state of agent i in social state g. The social evolution function is
defined as follows: t: G  ACT  G, with ACT = Acte  Act1  …  Actn, where each component a  ACT
is a “joint action,” which is a tuple of actions (one for each agent). To account for communication that
occurs during MAS execution, we associate with each i  Agt a set Vari of at most n  1 local variables to
represent communication channels through which messages are sent and received. The value of a variable x
in the set Vari at local state li(g) is denoted by ()x

il g . The idea is that, for two agents i and j to

communicate, they should share a communication channel, which is represented by a shared variable
between them (that is, Vari ת Varj  Ø). For the variable, x  Vari ת Varj, () (')x x

i jl g l g means the values

of x in ()x
il g for i and in (')x

jl g for j are the same. It’s worth noticing that shared variables only motivate

the existence of channels or pipes for communication, not the establishment of communication itself.

Definition 3. A model of communicative conditional commitments is a tuple M = (S, Rt, {ij  (i, j) 

Agt2}, I, V} , where:

 S  Le  L1  …  Ln is a set of social states for the system.
 Rt  S  S is a total transition relation defined by (s, s')  Rt iff there exists a joint action (ae,

a1 … an)  ACT such that  (s, ae, a1 … an) = s'.

 For each pair (i, j)  Agt2, ij  S  S is a serial social accessibility relation defined by s ij
s' iff the following four conditions are true:

1. li(s) = li(s').

2. (s, s')  Rt.

3. Ø and () (') we have ; andi j i j
x x
i jVar Var x l s l sVar Var     

4.
 we have () (').y y

j jj i ly Var Var s l s  

 I  S is a set of initial social states for the system.
 V: Ap  2S is a valuation function.

The model M conceptualizes time as a tree-like structure in which nodes correspond to the states of the
system being considered, and branches represent all choices in the future that agents have when they
participate in protocols (the past is linear). Concretely, the underlying abstract time domain in M is discrete
such that the present moment refers to the current state, the next moment corresponds to the immediate
successor state in a given path, and a transition represents a social interaction between agents and
corresponds to the advance of a single time unit. We can unwind the model M into a set of computation
paths to interpret a CTLcf formula. A path  = s0, s1, … in M is an infinite sequence of reachable social
states in S such that ׊i  0, (si, si+1) Rt.

Because the semantics of CTLcf state formulae extends the standard semantics of CTL, we present only
the semantics of commitments and their fulfillments.

Definition 4. Given model M, the satisfaction of a CTLcf formula  in social state s, denoted by (M, s) ٧ 
is recursively defined as follows:

 (M, s) ٧ CC(i, j, , ) if f ׊ s'  S s.t. s ij s' and (M, s) ٧ , we have (M, s') ٧ ,
 (M, s) ٧ SCC(i, j, , ) if f 1)  s'  S s.t. sij s' and (M, s') ٧ ; and 2) (M, s) ٧ CC(i, j, ,

),
 (M, s) ٧ Fu(CC(i, j, , )) if f  s'  S s.t. s' ij s and (M, s') ٧ CC(i, j, , ) and (M, s) ٧ 

  CC(i, j, , ), and
 (M, s) ٧ FuS(SCC(i, j, , )) if f  s'  S s.t. s' ij s and (M, s') ٧ SCC(i, j, , ) and (M, s) ٧    SCC(i, j, , ).

The state formula CC(i, j, , ) is satisfied in model M at s iff the consequence  holds in every state
satisfying  and accessible via ij. The semantics of the strong commitment SCC(i, j, , ) is similar, but
we add condition 1 ( s'  S s.t. sij s' and (M, s') ٧ ) to ensure that at least one accessible state satisfies
antecedent . The state formula Fu(CC(i, j, , )) is satisfied in model M at s iff s satisfies the consequence
 and the negation of the commitment CC(i, j, , ), and there exists a state s' satisfying the commitment
from which s is “seen” via ij.

The idea behind this semantics is to say that a commitment is fulfilled when we reach an accessible state
from the commitment state in which the consequence holds and the commitment becomes no longer active.
The semantics of the strong fulfillment FuS(SCC(i, j, , )) is similar, but the focus is on checking the
satisfiability of antecedent . This is because—from the semantics of the strong commitment—we
guarantee that whenever  holds in an accessible state, then consequence  holds as well. The proposed
semantics solves the fulfillment paradox,4,5 where the commitment is still active when it’s fulfilled.
Terminating commitment after being fulfilled is stated explicitly in the operational semantics introduced
elsewhere.2,8 Furthermore, our logic doesn’t include an additional operator for violation; instead, violation
can be expressed as follows:

 AG (CC(i, j, , )  EF Fu(CC(i, j, , )))  EF(CC(i, j, , )  AG(Fu(CC(i, j, , phi)))),

where  should be replaced by S if the commitment is strong and removed otherwise. The violation comes
out when, after having the conditional commitment, the fulfillment doesn’t occur in all states of every
possible computation. By considering social commitments and their actions, our language allows designers
to characterize the practical business scenarios that are sufficient to flexibly model business protocols and
models. Following recent literature,8 conditional commitment is a first-class citizen in our framework, and
unconditional commitment can be obtained as abbreviation: C(i, j, ) ؜ CC(i, j, ᄦ, ).

Symbolic Algorithm for CTLcf
In the algorithmic part of our framework, we develop a new symbolic algorithm to directly address the
problem of model-checking CTLcf, where the set ۤۥ of states satisfying the formula  being checked are

represented symbolically. Such an algorithm particularly extends the standard symbolic algorithm
dedicated to CTL with five algorithms: one for each new modality and one for the accessibility relation.
We adopt symbolic approaches because they need less memory than automata-based approaches, and their
algorithms are applied to Boolean functions, not to Kripke structures.

In practice, space requirements for Boolean functions that can be easily encoded in ordered binary
decision diagrams (OBDDs) are exponentially smaller than for explicit Kripke structure representations. In
a nutshell, given model M and CTLcf formula , the problem of model-checking CTLcf is determining
whether M is a model for  (that is, ׊ s  I, we have (M, s) ٧ ). Specifically, our symbolic algorithm (see
Algorithm 1) takes model M and CTLcf formula  as input and returns the set ۤۥ of states in M satisfying
. The algorithm operates recursively on the structure of  and builds the set ۤۥ of states using the
following operations on sets: complementation, union, and existential quantification. Lines 1 to 6 call the
standard CTL algorithms; the algorithm then proceeds to call our subalgorithms (lines 7 to 10), which
compute the set of states satisfying the (strong) commitments and their fulfillments. Due to space
constraints, we won’t present those subalgorithms here.

Algorithm 1. SMC (, M): the set ۤۥ

1  is An atomic formula: return V();

2  is 1: return S  SMC(1, M);

3  is 1  2: return SMC(1, M) ڂ SMC(2, M);

4  is EX 1: return SMCEX(1, M);

5  is E (1 U 2): return SMCEU(1, 2, M);

6  is EG 1: return SMCEG(1, M);

7  is CC(i, j, 1, 2): return SMCcc(i, j, 1, 2, M);

8  is SCC(i, j, 1, 2): return SMCscc(i, j, 1, 2, M);

9  is Fu(CC(i, j, 1, 2)): return SMCf u (i, j, 1, 2, M);

10  is FuS(SCC(i, j, 1, 2)): return SMCf us (i, j, 1, 2, M).

Implementation and Experimental Results
We fully implemented the model-checking technique we’ve presented on top of the MCMAS symbolic
model checker,11 developed to automatically verify MASs formalized using interpreted systems. Such an
implementation isn’t an obvious task, nor is it trivial: we first need to extend the ISPL (the input language
of MCMAS) with the shared and unshared variables needed for agent communication (social accessibility
relation), and then add five developed subalgorithms along with other modifications of interest. We chose
MCMAS because it supports the semantics of interpreted systems and CTL and performs OBDD
operations via the efficient CUDD library.

The extended version of MCMAS features a user interface (based on Eclipse; see Figure 2) that
supports a wide range of features such as editing and tracking the modeled system, expressing properties,
adding new agents, checking syntax, and starting verification. Moreover, thanks to its embedding in a Java
archive, such a user interface can be seamlessly integrated with other applications that need model-
checking commitments or other domain properties.

Figure 2. The User Interface of the developed model checker. The numbered circle 1 illustrates our
MCMAS plug-in in Eclipse, while other numbered circles 2, 3, 4, 5, 6, and 7 refer the features supported by
our User Interface for editing and tracking the modeled system, expressing properties, adding new agents,
checking syntax, and starting verification, respectively.

To experimentally test our algorithm’s effectiveness, we adopted an electronic commerce protocol,
NetBill, that’s specifically designed for selling and delivering low-priced information goods over the
Internet. The protocol regulates interactions between two agents (merchant Mer and customer Cus) and
starts when Cus requests a quote for some desired good. This request is followed by Mer’s reply with a
price quote as an offer. Cus can then either reject the offer, and the protocol moves to the initial state, or
accept the offer, which means Cus commits to send payment if Mer delivers the requested goods. If Cus
accepts the received offer, it has two choices: fulfill its commitment by sending payment to Mer, or violate
its commitment, moving the protocol to the failure state. When Mer receives payment, it commits to send a
receipt to Cus. In a way similar to Cus’s choices, Mer can fulfill its commitment by sending a receipt to
Cus and then moving to the acceptance state. Conversely, Cus could send payment for the requested goods,
but Mer never commits to sending a receipt. In this case, Mer violates its commitment, and the protocol
moves to the initial state.

 We formalize the protocol by our model M = (S, Rt, {ij  (i, j)  Agt2}, I , V}, where the set Agt
includes two agents (Cus and Mer) plus an environment agent (e), which we specifically use to publish and
store the protocol itself in a public repository to be accessible by all participating agents. To verify the
protocol specification, we used the safety (something bad never happens) and liveness (something good
will eventually happen) properties formalized using our CTLcf. Formally, the safety property 5 expresses
the bad situation as Cus sends payment, but Mer never strongly commits to sending a receipt:

5 = AG  (payment  EF SCC (Mer, Cus, receivedPayment, EF receipt)).

The liveness property 6 states that in all paths globally, if Mer delivers the goods, then there’s a path
such that in the future of that path Cus will strongly commit to send payment when it accepts the delivered
goods:

6 = AG (deliverGoods  EF SCC (Cus, Mer, acceptGoods, EF payment)).

We encoded the protocol as the environment agent, customer agent, and merchant agent along with the
properties in our extended ISPL language and then verified it using the developed model checker. To test

our algorithm’s scalability, we report six experiments in Table 1, where the number of reachable states,
execution time in seconds, and memory in use are defined as a function of the number of agents. From this
table, the number of reachable states reflects that the state space increases exponentially when the number
of agents increases. However, the memory usage increases merely polynomially. With regard to the
execution time, the increase isn’t exponential but faster than the polynomial.

Table 1. Verification results.

 No. agents No. states Time (sec) Memory (Mbytes)

 3 12 0.019 6

 6 144 0.041 9

 12 20,736 0.365 13

 18 2.98598e + 06 1.875 23

 24 4.29982e + 08 6.892 46

 30 6.19174e + 10 19.258 66

Figure 3 depicts the verification results of the first experiment. In this figure, the properties (formulae)

are evaluated into true or false along with the possibility to show a counterexample that demonstrates why
the formula is false.

Figure 3. The verification results of the NetBill protocol. The properties (formulae) are evaluated into true
or false along with the possibility to show a counterexample that demonstrates why the formula is false.

In this article, we argued that the proposed framework for communicative conditional commitments is
expressive and rich enough to accommodate scenarios of practical utility and remedy some limitations in
current semantic models. As future work, we plan to define suitable semantic models for other commitment
actions (e.g., Cancel, Release and Delegate) and then develop their symbolic algorithms. We also plan to
study the computational complexity of the overall model checking algorithm extended by those algorithms.

Acknowledgments
We thank NSERC (Canada), FQRSC (Quebec), Menofia University (Egypt), and EPSRC project EP/J011894/2 (UK)
for their financial support.

References
1. M.P. Singh, “A Social Semantics for Agent Communication Languages,” Issues in Agent Communication,

LNCS 1916, Springer, 2000, pp. 31–45.

2. F. Chesani et al., “Representing and Monitoring Social Commitments Using the Event Calculus,” Autonomous

Agents and Multi-Agent Systems, vol. 27, no. 1, 2013, pp. 85–130.

3. A.K. Chopra et al., “Research Directions in Agent Communication,” ACM Trans. Intelligent Systems and

Technology, vol. 4, no. 2, 2013, pp.1-20.

4. M. El-Menshawy et al., “Reducing Model Checking Commitments for Agent Communication to Model

Checking ARCTL and GCTL*,” Autonomous Agent Multi-Agent Systems, vol. 27, no. 3, 2013, pp. 375–418.

5. J. Bentahar et al., “Communicative Commitments: Model Checking and Complexity Analysis,” Knowledge-

Based Systems, vol. 35, 2012, pp. 21–34.

6. P. Yolum and M.P. Singh, “Reasoning about Commitments in the Event Calculus: An Approach for Specifying

and Executing Protocols,” Annals of Mathematics and Artificial Intelligence, vol. 42, nos. 1–3, 2004, pp. 227–
253.

7. R.H. Bordini et al., “Model Checking Rational Agents,” IEEE Intelligent Systems, vol. 19, no. 5, 2004, pp. 46–
52.

8. M.P. Singh, “Semantical Considerations on Dialectical and Practical Commitments,” Proceedings of 23rd

International Conference on Association for the Advancement of Artificial Intelligent (AAAI), D. Fox and C.P.

Gomes, eds., AAAI Press, 2008, pp. 176–181.

9. P. Schnoebelen, “The Complexity of Temporal Logic Model Checking,” Advances in Modal Logic, vol. 4,

2002, pp. 1–44.

10. W. El-Kholy et al., “Representing and Reasoning about Communicative Conditional Commitments,”
Proceedings of 12th International conference on Autonomous Agents and Multi-Agent Systems (AAMAS), T. Ito

et al., eds., International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS), 2013, pp.

1169–1170.

 11. A. Lomuscio, H. Qu, and F. Raimondi, “MCMAS: A Model Checker for the Verification of Multi-Agent

Systems,” Proceedings of the 20th International Conference on Computer Aided Verification (CAV) , LNCS

5643, A. Bouajjani and O. Maler, eds., Springer, 2009, pp. 682–688.

Warda El Kholy is a Ph.D. candidate at Concordia Institute for Information Systems Engineering, Faculty of
Engineering and Computer Science, Concordia University, Canada; and a lecturer Assistant at

Department of Information Systems, Faculty of Computers and Information, Menofia University, Egypt.
Her research interests are social commitments, temporal and classical logics, Web services, and model
checking. Contact her at: w_elkh@encs.concordia.ca.

Mohamed El Menshawy is an Associate Researcher at Concordia Institute for Information Systems
Engineering, Faculty of Engineering and Computer Science, Concordia University, Canada; and a

https://mail.encs.concordia.ca/horde/imp/message.php?thismailbox=INBOX&mailbox=%2A%2Asearch_obd289tqm00kkggw4ss04&index=3238

lecturer at Department of Computer Science, Faculty of Computers and Information, Menofia University,
Egypt. El Menshawy has a PhD in Electrical and Computer Engineering from Concordia University. His

research interests are social commitments, commitment protocols, logic and formal methods, model
checking and m-health applications. Contact him at: moh_marzok75@yahoo.com.

Jamal Bentahar is an Associate Professor at Concordia Institute for Information Systems Engineering,

Concordia University, Montreal, Canada. His research interests are formal verification, multi-agent
systems, and web and cloud computing. Bentahar has a PhD in Computer Science and Software
Engineering from Laval University, Quebec, Canada. Contact him at: bentahar@ciise.concordia.ca.

Hongyang Qu is a research fellow in the Department of Automatic Control and Systems Engineering,
University of Sheffield, UK. His research interests are formal verification, software engineering, robotics
and autonomous systems. Qu has a PhD in Computer Science from University of Warwick, UK . Email:

h.qu@sheffield.ac.uk.

Rachida Dssouli is a professor and director at Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Canada. Her research interests are communication software

engineering, Quality systems engineering, software testing and verification. Dssouli has a PhD in
Informatics from Université de Montréal, Montreal, Canada. Contact her at:
rachida.dssouli@concordia.ca.

mailto:moh_marzok75@yahoo.com.
mailto:bentahar@ciise.concordia.ca
mailto:h.qu@sheffield.ac.uk
mailto:rachida.dssouli@concordia.ca

