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Heartbeat Rate 
Measurement from 
Facial Video
Mohammad A. Haque, Ramin Irani, Kamal Nasrollahi, and Thomas B. Moeslund, 
Aalborg University

An effective approach 

for measuring 

heartbeat rate from 

facial video uses a 

facial feature point-

tracking method 

that combines a 

good feature to 

track method with a 

supervised descent 

method to overcome 

limitations in current 

systems.

beyond the norm in a fitness assessment or 
during rehabilitation training, for example, 
can show how exercise affects the trainee 
and can indicate whether continuing the ex-
ercise is safe. 

HR is typically measured by an electro-
cardiogram (ECG) reading via sensors placed 
on the body. A recent study noted that blood 
circulation causes periodic subtle changes to 
facial skin color,2 a fact utilized for HR es-
timation3–7 and applications of heartbeat 
signal from facial video in other works.8–10 
These facial color-based methods, however, 
aren’t effective when taking into account 
the sensitivity to color noise and changes 
in illumination during tracking. Thus,  
G. Balakrishnan and col-leagues proposed a 
system for measuring HR based on the fact 
that the flow of blood through the aorta 
causes invisible motion in the head (which 
can be observed via ballistocardiography) 
due to pulsation of the heart muscles11 (and 
an improvement of this method appears else-
where12). These motion-based methods11,12 

extract facial feature points from the fore-
head and cheek (as shown in Figure 1a) 

by a method called good feature to track 
(GFT). They then employ the Kanade-Lucas-
Tomasi (KLT) feature tracker13 to generate 
the motion trajectories of feature points and 
some signal-processing methods to estimate 
cyclic head motion frequency as the subject’s 
HR. These calculations are based on the as-
sumption that the head is (or is nearly) static 
during facial video capture, meaning there’s 
neither internal facial motion nor external 
movement of the head during the data ac-
quisition phase. (We denote internal motion 
as facial expression and external motion as 
head pose.) 

In real-life scenarios, there are, of course, 
both internal and external head motions. 
Current methods, therefore, fail due to their 
inability to detect and track feature points 
in the presence of internal and external mo-
tion as well as low texture in the facial re-
gion. Moreover, real-life scenarios challenge 
current methods due to low facial quality in 
video caused by motion blur, bad posing, and 
poor lighting conditions.14 These low-quality 
facial frames induce noise in the motion tra-
jectories obtained for measuring HR.

Heartbeat rate (HR) is an important physiological parameter that pro-

vides information about the condition of the human body’s cardiovas-

cular system in applications such as medical diagnosis, rehabilitation training 

programs, and fitness assessments.1 Increasing or decreasing a patient’s HR  
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Our proposed system addresses the 
aforementioned shortcomings and 
advances current automatic systems 
for reliably measuring HR. We intro-
duce a face quality assessment (FQA) 
method that prunes the captured 
video data so that low-quality face 
frames can’t contribute to erroneous 
results.15,16 We then extract GFT fea-
ture points and combine them with 
facial landmarks (Figure 1b) ex-
tracted via the supervised descent 
method (SDM).17 A combination of 
these two methods for vibration sig-
nal generation lets us obtain stable 
trajectories that, in turn, allow for 
a better estimation of HR. We con-
ducted our experiments on a publicly 
available database and on a local da-
tabase collected at the lab and at a 
commercial fitness center. Our exper-
imental results show that our system 
outperforms state-of-the-art systems 
for HR measurement.

Theory
Tracking facial feature points to detect 
head motion in consecutive facial video 
frames has been accomplished11,12 by 
using the GFT-based method, which 
uses an affine motion model to express 
changes in the face’s level of intensity. 
Tracking a window of size wx × wy 
in frame I to frame J is defined on a 
point velocity parameter c = (dxdy)T for 
minimizing a residual function fGFT 
that’s defined by

∑ ∑δ δ( )( ) ( ) ( )= − +
=

+

=

+
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where (I(x) − J(x + c)) stands for 
(I(x, y) – J(x + cx, y + cy)), and p = 
(px, py)T is a point to track from the 
first frame to the second. According 
to observations,18 the quality of the 
estimate by this tracker depends on 
three factors: window size, image 

frame texture, and motion between 
frames. Thus, in the presence of vol-
untary head motion (both external 
and internal) and low texture in fa-
cial videos, the GFT-based tracking 
exhibits the following problems:

•	Low texture in the tracking win-
dow. In general, not all parts of a 
video frame contain complete mo-
tion information because of an  
aperture problem. This difficulty 
can be overcome by tracking fea-
ture points in corners or regions 
with high spatial frequency content. 
However, GFT-based systems for 
HR use the feature points from the 
forehead and cheek that have low 
spatial frequency content.

•	Lost tracking in a long video se-
quence. The GFT-based method ap-
plies a threshold to the cost function 
fGFT(c) to declare a point “lost” if 
the cost function is higher than the 
threshold. While tracking a point 
over many frames of a video,11,12 

the point can drift throughout the 
extended sequences and could be 
prematurely declared “lost.”

•	 Window size. When the window 
size (such as wx × wy in Equation 1)  

is small, a deformation matrix to find 
the track is harder to estimate because 
the variations of motion within it are 
smaller and therefore less reliable. On 
the other hand, a bigger window is 
more likely to straddle a depth dis-
continuity in subsequent frames.  

•	 Large optical flow vectors in consec-
utive video frames. When there’s vol-
untary motion or expression change 
in a face, the optical flow or face ve-
locity in consecutive video frames is 
very high, and the GFT-based method 
misses the track due to occlusion.13

Instead of tracking feature points 
with the GFT-based method, facial 
landmarks can be tracked by employing 
a face alignment system. The Active 
Appearance Model (AAM) fitting19 and 
its derivatives20 are some of the early 
solutions for face alignment. A fast and 
highly accurate AAM fitting approach 
that was proposed recently17 is SDM, 
which uses a set of manually aligned 
faces as training samples to learn a 
mean face shape. This shape is then 
used as an initial point for an iterative 
minimization of a nonlinear least square 
function toward the best estimates of 
the positions of the landmarks in facial 

Figure 1. Different facial feature tracking methods: (a) facial feature points 
extracted by the good feature to track method and (b) facial landmarks obtained by 
the supervised descent method. While GFT extracts a large number of points, SDM 
merely uses 49 predefined points to track.

(a) (b)
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test images. The minimization function 
can be defined as a function over ∆x: 

θ( )( ) ( )+ = + −f x x g d x x ,SDM 0 0 *2
2

� (2)

where x0 is the initial configuration of 
the landmarks in a facial image, d(x) in-
dexes the landmarks configuration (x) in 
the image, g is a nonlinear feature extrac-
tor, q* = g(d(x*)), and x* is the configura-
tion of the true landmarks. In the train-
ing images, ∆x and q* are known. By 
utilizing these known parameters, SDM 
iteratively learns a sequence of generic 
descent directions, {∂n}, and a sequence 
of bias terms, {bn}, to set the direction of 
search toward the true landmarks con-
figuration x* in the minimization pro-
cess, which are further applied in the 
alignment of unlabeled faces.17 The eval-
uation of the descent directions and bias 
terms is accomplished by

σ β( )= + ∂ +− − − −x x x ,n n n n n1 1 1 1 	 (3)

where s(xn–1) = g(d(xn–1)) is the feature 
vector extracted at the previous land-
mark location xn–1, xn is the new 
location, and ∂n–1 and bn–1 are defined as

( )( ) ( ) ( )∂ = − × × ×−
−

− − −x x g d xH J2n n n n1
1

1
T
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where H(xn–1) and J(xn–1) are, respec-
tively, the Hessian and Jacobian matrices 
of the function g evaluated at (xn–1). The 
succession of xn converges to x* for all 
images in the training set. 

SDM is free from the problems of 
the GFT-based tracking approach for 
the following reasons:

•	Low texture in the tracking win-
dow. SDM’s 49 facial landmarks 

are taken from face patches around 
the eye, lip, and nose (as shown in 
Figure 1b), which have high spatial 
frequency due to the existence of 
edges and corners.18

•	Lost tracking in a long video se-
quence. SDM doesn’t use any refer-
ence points in tracking. Instead, it 
detects each point around the edges 
and corners in the facial region of 
each video frame by using super-
vised descent directions and bias 
terms as shown in Equations 3, 4, 
and 5. Thus, the problems of point 
drifting or dropping a point too 
early don’t occur.

•	Window size. SDM doesn’t de-
fine the facial landmarks by using 
the window-based “neighborhood 
sense” and, thus, doesn’t use a win-
dow-based point tracking system. 
Instead, SDM utilizes the neigh-
borhood sense on a pixel-by-pixel 
basis along with the descent detec-
tions and bias terms. 

•	Large optical flow vectors in con-
secutive video frames. As men-
tioned elsewhere,13 occlusion can 
occur by large optical flow vectors 
in consecutive video frames. As a 
video with human motion satisfies 
temporal stability constraint,21 in-
creasing the search space can be a 
solution. SDM uses supervised de-
scent direction and bias terms that 
allow for selective searching in a 
wider space with high computa-
tional efficiency. 

Although the GFT-based method 
fails to preserve enough information 
to measure HR when the video indi-
cates facial expression change or head 
motion, it uses a larger number of 
facial feature points (more than 150) 
to track than SDM (only 49 points). 
This causes the GFT-based method to 
generate a better trajectory than SDM 
when there’s no voluntary motion. On 
the other hand, SDM doesn’t miss or 

erroneously track landmarks in the 
presence of voluntary facial motions. 
To exploit the advantages of both 
methods, we can use a combination 
of GFT- and SDM-based tracking 
outcomes. Merely using GFT or SDM 
to extract facial points in cases where 
subjects could have both voluntary 
motion and nonmotion periods doesn’t 
produce competent results. 

The Proposed Method
We follow a four-step procedure from  
facial video acquisition to HR calcu-
lation in this article. Figure 2 shows 
a block diagram of our proposed 
method, which is described in the 
following subsections. 

Face Detection and Face  
Quality Assessment
The first step of the proposed motion-
based system is face detection from 
facial video acquired by a webcam. We 
employed the Haar-like features of P. 
Viola and M. Jones’s work to extract 
facial region from video frames.22 
However, facial videos captured in real-
life scenarios can exhibit low face quality 
due to the problems of pose variation, 
varying levels of brightness, and motion 
blur. A low-quality face produces 
erroneous results in facial feature points 
or landmarks tracking. To solve this 
problem, we use an FQA module,16,23 
which calculates four scores for four 
quality metrics: resolution, brightness, 
sharpness, and out-of-plan face rotation 
(pose). The quality scores are compared 
(with thresholds23 having values of 
150 × 150, 0.80, 0.80, and 0.20, for 
resolution, brightness, sharpness, and 
pose, respectively) to check whether the 
face needs to be discarded. If a face is 
discarded, we concatenate the trajectory 
segments to remove discontinuity.5 As 
we measure the average HR over a long 
video sequence (say, 30 to 60 seconds), 
discarding a few frames (fewer than 
5 percent of the total frames) doesn’t 
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greatly affect the regular characteristic 
of the trajectories but removes the most 
erroneous segments coming from low-
quality face frames.

Feature Points and  
Landmarks Tracking
Tracking facial feature points and gen-
erating a trajectory can record head  
motion in facial video caused by 
heartbeat. Our objective with trajec-
tory extraction and signal process-
ing is to find the cyclic trajectories of 
tracked points by removing the non-
cyclic components from the trajec-
tories. Because GFT-based tracking 
has some limitations, using volun-
tary head motion and facial expres-
sion changes in a video produces 
one of two problems: completely 
missing the track of feature points 
and erroneous tracking. We ob-
served more than 80 percent loss of 
feature points by the system in such 
cases. In contrast, SDM doesn’t miss 
or erroneously track landmarks in 
the presence of voluntary facial mo-
tions or expression change—as long 
as the face is qualified by FQA. Thus, 
the system can find enough trajecto-
ries to measure HR. However, GFT 
uses a larger number of facial points 
to track than SDM, which uses only 
49 points. This causes GFT to pre-
serve more motion information than 
SDM when there’s no voluntary mo-
tion. We propose combining the tra-
jectories of GFT and SDM. To gen-
erate combined trajectories, the face 
is passed to a GFT-based tracker to 
generate trajectories from facial fea-
ture points and then appended with 
SDM trajectories. Let the trajectories 
be expressed by location time-series 
St,n(x, y), where (x, y) is the location 
of a tracked point n in video frame t.

Vibration Signal Extraction 
The trajectories from the previous 
step are usually noisy due to voluntary 

head motion, facial expression, and/
or vestibular activity. We reduce the 
effect of such noise by employing 
filters to the vertical component of 

each feature point’s trajectories. An 
eighth-order Butterworth band pass 
filter with a cutoff frequency of 0.75 
to 5.0 Hz (human HR lies within this 

Figure 2. The block diagram of the proposed system. We acquire the facial video, 
track the intended facial points, extract the vibration signal associated with 
heartbeat, and estimate the HR.
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range11) is used along with a moving 
average filter: 
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where w is the length of the moving 
average window (length is 300 in our 
experiment) and T is the total number 
of frames in the video. These filtered 
trajectories are then passed to the HR 
measurement module. 

HR Measurement 
As head motions can originate from 
different sources and only those caused 
by blood circulation through the 
aorta reflect HR, we apply a principal 
component analysis (PCA) algorithm 
to the filtered trajectories (S) to separate 
the motion sources. PCA transforms 
S to a new coordinate system by 
calculating the orthogonal components 
P via load the matrix L as follows: 

=p S L. ,� (7) 

where L is a T × T matrix with columns 
obtained from the eigenvectors of STS. 
Among these components, the most 
periodic one belongs to heartbeat.11 
We apply discrete cosine transform 
(DCT) to all the components (P)  
to find the most periodic one.12 We 
then employ fast Fourier transform 
(FFT) on the inverse DCT of the  
component and select the first har-
monic to obtain HR. 

Experimental Environment 
and Datasets
We implemented our proposed method 
by using a combination of Matlab (SDM) 
and C++ (GFT with KLT) environments. 
We used three databases to generate re-
sults: a local database for demonstrat-
ing FQA effects, a local database for HR 
measurement, and the publicly avail-
able MAHNOB-HCI database.24 For 
the first database, we collected 6 datas-
ets of 174 videos from 7 subjects to con-
duct an experiment to report the effective-
ness of employing FQA in the proposed 
system. We put four webcams (Logitech 
C310) at 1-, 2-, 3-, and 4-meter distances 
to acquire facial video with four different  

face resolutions of the same subject.  
The room’s lighting condition was 
changed from bright to dark and vice 
versa for the brightness experiment. Sub-
jects were requested to have around 60 
degrees of out-of-plan pose variation for 
the pose experiment. The second data-
base contained 64 video clips and de-
fined 3 scenarios to constitute our own 
experimental database for HR measure-
ment ex-periment, which consists of about 
110,000 video frames of about 3,500 sec-
onds. These datasets were captured in two 
different setups: an experi-mental setup in 
a laboratory and a real-life setup in a 
commercial fitness center. In scenario 1 
(normal), subjects exposed their faces in 
front of the cameras without any facial ex-
pression or voluntary head motion (about 
60 seconds). In scenario 2 (internal head 
motion), subjects made facial expres-
sions (smiling/laughing, talking, and 
angry) in front of the cameras (about 40 
seconds). In scenario 3 (external head mo-
tion), subjects made voluntary head mo-
tion in different directions in front of the 
cameras (about 40 seconds). 

The third database (MAHNOB-
HCI) has 491 sessions of videos that 

Table 1. Dataset names, definitions, and sizes.

Name Definition No. videos

Lab_HR_Norm_Data Video data for HR measurement collected for lab scenario 1 10

Lab_HR_Expr_Data Video data for HR measurement collected for lab scenario 2 9

Lab_HR_Motion_Data Video data for HR measurement collected for lab scenario 3 10

FC_HR_Norm_Data Video data for HR measurement collected for fitness center scenario 1 9

FC_HR_Expr _Data Video data for HR measurement collected for fitness center scenario 2 13

FC_HR_Motion_Data Video data for HR measurement collected for fitness center scenario 3 13

MAHNOB-HCI_Data Video data for HR measurement collected from other sources24 451

Res1, Res2, Res3, Res4 Video data acquired from 1-, 2-, 3-, and 4-meter distances, respectively, for the face  
quality assessment experiment 29 × 4

Bright_FQA Video data acquired during lighting changes for FQA experiment 29

Pose_FQA Video data acquired during pose variations for FQA experiment 29
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are longer than 30 seconds and to 
which subjects consent via a “yes” 
attribute. Among these sessions, data 
for subjects 12 and 26 were missing. 
We collected the rest of the sessions as 
a dataset for our experiment, which 
are hereafter called MAHNOB-HCI_
Data. We used 30 seconds (frames 
306 to 2,135) from each video for HR 
measurement and the corresponding 
ECG signal for the ground truth.5 
Table 1 summarizes all the datasets 
used in our experiment. 

Performance Evaluation 
Our proposed method uses a combi-
nation of the SDM- and GFT-based 
approaches for trajectory generation 
from the facial points. Figure 3 shows 
the calculated average trajectories of 
tracked points in two experimental 
videos. We included the trajectories 
obtained from GFT13,18 and SDM16,17 

for facial videos with voluntary head 
motion, along with some example 
video frames depicting face motion. 
As is shown in the figure, GFT and 
SDM provide similar trajectories 
when there’s little head motion. When 
the voluntary head motion is sizable, 
the GFT-based method fails to track 
the point accurately and thus produces 
an erroneous trajectory because of 
large optical flow. However, SDM 
provides stable trajectory in this case, 
as it doesn’t suffer from large optical 
flow. We also observe that the SDM 
trajectories provide more sensible 
amplitude than the GFT trajectories, 
which in turn contributes to clear 
separation of heartbeat from the noise. 

Unlike other work,11 the proposed 
method utilizes a moving average 
filter before employing PCA on the 
trajectory obtained from the tracked 
facial points and landmarks. Figure 
4a shows the effect of this moving 
average filter, which reduces noise, 
softens extreme peaks in voluntary 
head motion, and provides a smoother 

signal to PCA in the HR detection 
process.

Our proposed method uses DCT 
instead of FFT11 to calculate the 

periodicity of the cyclic head motion 
signal. Figure 4b shows a trajectory of 
head motion from an experimental video 
and its FFT and DCT repre-sentations  

Figure 3. The effect of voluntary head motion in trajectories from 5 seconds of two 
experimental video sequences with small motion (video1) and large motion at the 
beginning and end (video2). Example frames depict (a) small and (b) large motion 
from a video, and trajectories of tracking points extracted by GFT18 in (c) and (d) and 
SDM17 in (e) and (f), respectively.
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after preprocessing. In the figure, we 
see that the maximum power of FFT 
is at frequency bin 1.605. This, in turn, 
gives an HR of 1.605 × 60 = 96.30, 
whereas the actual HR obtained from 
the ECG was 52.04 beats per minute 
(bpm). Thus, the method that used 
FFT in the HR estimation11 doesn’t 

always produce good results. On the 
other hand, using DCT12 yields a result 
of 52.35 bpm from the selected DCT 
component X = 106. This is very close 
to the actual HR. 

We also conducted an experiment 
to demonstrate the effect of employing 
FQA in the proposed system. The 

experiment had three sections for three 
quality metrics: resolution, brightness, 
and out-of-plan pose. Table 2 shows 
the results of HR measurement on six 
datasets. From the results, it’s clear 
that when resolution decreases, system 
accuracy decreases accordingly. Thus, 
FQA for face resolution is necessary to 
ensure a good-sized face in the system. 
The results also show that brightness 
and pose variation influence HR 
measurement. When frames of low 
quality in terms of brightness and 
pose are discarded, HR measurement 
accuracy increases.

Performance Comparison 
We compared the performance of 
the proposed method against state-
of-the-art methods3,5,6,11,12 on the 
experimental datasets listed in Table 1.  
Table 3 lists the accuracy of the 
proposed method’s HR measurement 
results compared with motion-based 
state-of-the-art methods11,12 on our 
local database. We measured the accu- 
racy in terms of percentage of measure-
ment error: the lower the error gener-
ated by a method, the higher that 
method’s accuracy. From the results, 
we observe that the proposed method  
showed consistent performance, al-
though the data acquisition scenarios 
were different with different datasets.  
By using both GFT and SDM trajec-
tories, the proposed method gets 
more trajectories to estimate the HR 
pattern in the case of HR_Norm_
Data and accurate trajectories due to 
non-missing facial points in the cases 
of HR_Expr_Data and HR_Motion_
Data. On the other hand, the previous 
methods suffer from fewer trajectories 
or erroneous trajectories from the data 
acquired in challenging scenarios. (One 
showed an up to 25.07 percent error 
in HR estimation from videos having 
facial expression change.) The proposed 
method outperforms the previous 
methods in both environments (lab and 

Figure 4. The effect of (a) the moving average filter on the trajectory of facial 
points to get a smoother signal by noise and extreme peaks reduction and (b) the 
difference between extracting the periodicity (heartbeat rate) of a cyclic head 
motion signal by using fast Fourier transform (FFT) power and discrete cosine 
transform (DCT) magnitude.
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Table 4. Performance comparison between the proposed and the state-of-the-art-
methods of HR measurement on MAHNOB-HCI database.

Method
Root mean square  

error (bpm) Mean error rate (%)

Poh and colleagues (2010)3 25.90 25.00

Kwon and colleagues7 25.10 23.60

Balakrishnan and colleagues11 21.00 20.07

Poh and colleagues (2011)6 13.60 13.20

Li and colleagues5 7.62 6.87

Irani and colleagues12 5.03 6.61

The proposed method 3.85 4.65

Table 3. Performance comparison between the proposed and the state-of-the-art-
methods of HR measurement on local database.

Dataset name

Average error (%) in HR measurement

Balakrishnan and 
colleagues11

Irani and 
colleagues12

Proposed 
method

Lab_HR_Norm_Data 7.76 7.68 2.80

Lab_HR_Expr_Data 13.86 9.00 4.98

Lab_HR_Motion_Data 16.84 5.59 3.61

FC_HR_Norm_Data 8.07 10.75 5.11

FC_HR_Expr_Data 25.07 10.16 6.23

FC_HR_Motion_Data 23.90 15.16 7.01

fitness center) of data acquisition for all 
three scenarios.

Table 4 shows the performance 
comparison of HR measurement by 
our proposed method and state-of-
the-art methods (both color- and 
motion-based) on MAHNOB-HCI_
Data. We calculate the root mean 
square error (RMSE) in bpm and 
mean error rate in percentage to 
compare the results. We can ob-
serve that Li’s,5 Irani’s,12 and the 
proposed method showed consid-
erably higher results than the other 
methods because they take into 
consideration the presence of vol-
untary head motion in the video. 
However, unlike Li’s color-based 
method, Irani’s method and the pro-
posed method are motion-based. 
Thus, changing the illumination 
condition in MAHNOB-HCI_Data 
doesn’t greatly affect the motion-
based methods, as indicated by the 
results. Finally, we observe that the 
proposed method outperforms all 
these state-of-the-art methods in 
HR measurement accuracy.

Our proposed system’s perfor-
mance for HR measurement 

is highly accurate and reliable not 
only in a laboratory setting with no-
motion, no-expression cases in arti-
ficial light in the face11,12 but also in 
challenging, real-life environments. 
However, the proposed system isn’t 
adapted yet to the real-time appli-
cation for HR measurement due to  
dependency on temporal stability of 
the facial point trajectory. 
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