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 

Abstract — Automatic facial expression recognition is one of 

the important challenges for computer vision and machine 

learning. Despite the fact that many successes have been achieved 

in the recent years, several important but unresolved problems 

still remain. This paper describes a facial expression recognition 

system based on the random forest technique. Contrary to the 

many previous methods, the proposed system uses only very 

simple landmark features, with the view of a possible real-time 

implementation on low-cost portable devices. Both supervised and 

unsupervised variants of the method are presented. However, the 

main objective of the paper is to provide some quantitative 

experimental evidence behind more fundamental questions in 

facial articulation analysis, namely the relative significance of 3D 

information as oppose to 2D data only and importance of the 

labelled training data in the supervised learning as opposed to the 

unsupervised learning. The comprehensive experiments are 

performed on the BU-3DFE facial expression database. These 

experiments not only show the effectiveness of the described 

methods but also demonstrate that the common assumptions 

about facial expression recognition are debatable. 

 
Index Terms— Facial expression recognition, random forest, 

non-linear manifold learning, supervise and non-supervised 

learning.  

 

1. INTRODUCTION 

ACIAL expression analysis has attracted a significant 

research interest during past several years due to its 

importance for providing cues helping to understand human 

behaviour, analyse emotions and assess intentions. As an active 

research field with extensive applications in many different 

areas, large body of literature exists on 2D/3D static and 

dynamic recognition systems, with significant progress made 

towards achieving high recognition rate. De la Tore et al. [1] 

provide a comprehensive overview of methods summarising 

the fundamental approaches and the recent advances in 

automatic facial expression analysis from 2D intensity images 

or video sequences. Sandbach et al. [2] offer a survey 

describing the use of both static and dynamic 3D data. Facial 

expression recognition systems are typically composed of two 

subsystems: feature extraction and feature classifier. Many 

publications mainly focus on extracting sophisticated highly 

discriminative facial features. These features can be either 
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hand-designed or learned from the training data. It is known 

that some features are more critical for analysing facial 

expressions than the others and the feature selection procedure 

can be applied to improve the performance [3], [4]. Indeed, 

extracting complex 2D or 3D features can improve the systems 

performance, but often requires more computational resources. 

This may not be acceptable for real-time applications 

particularly run on inexpensive portable devices. It is also often 

claimed, when 3D information is being used, that due to the 

lack of depth information, 2D data is not suitable to represent 

intrinsic facial structure and therefore not proper for complex 

facial expressions recognition. However, 3D information is still 

expensive to collect and is not available for many scenarios. 

With very few exceptions, most reported facial expression 

recognition systems are based on supervised learning, which 

requires labelled data in the training process. Very little 

attention has been paid to the unsupervised systems. The work 

in [5] clusters the similar facial events using an unsupervised 

learning, but only works for small number of subjects. 

Considering the time and cost involved in producing the 

labelled data as well as often questionable quality of such 

ground truth, an unsupervised system would be particularly 

useful. For facial expression recognition the popular 

classification algorithms, include: Linear Discriminant 

Analysis (LDA) and Support Vector Machine (SVM), often 

combined with a boosting algorithm for feature selection [6]. 

The discriminant function in LDA has an intuitive 

interpretation as it maximises between-class and minimises 

within-class scatter, but only handle the data when the relation 

between them is linear. Although SVM is very successful, it is 

intrinsically designed to solve binary classification problems. 

Although it has been adapted to work with multiple classes, 

one-vs-all the SVM approach may lead to asymmetries which 

are not really justified by the training data [7]. On the other 

hand, a random forest is naturally designed for solving 

multi-class classification problems with an additional 

uncertainty encoded in its probabilistic output. Such techniques 

have become very popular recently given their capability to 

provide good discrimination, to reduce over-fitting, and 

enabling simple parallel implementation. In this work, simple 

landmark features are used for the facial expression recognition 

in both supervised and unsupervised approaches. Recently a 

number of methods have been proposed for efficient, robust 

and accurate 2D facial landmark detection and tracking [8] 

including commercial products [9], making them feasible for 

application on portable devices.  

    Although similar questions on the significance of the 3D 

versus 2D data have been addressed in some papers, these are 

based on rather limited tests. Furthermore, the majority of these 
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papers deal with the face recognition. The authors have been 

unable to identify published papers addressing these issues in a 

systematic way for the facial expression recognition problems. 

For example, in the recently published paper [10] a limited 

comparison between the 3D and 2D datasets has been 

performed as part of a validation process of the developed 

comprehensive database, but with 2D images showing only the 

frontal faces. In [11] a simple comparison has been made 

between 3D technique and 2D based methods with the 2D data 

rendered directly from the 3D data – this though have been 

done without error analysis, e.g. due to environmental changes. 

Additionally only the labeled data was used in these tests. 

     Instead of developing the “best method” that outperforms 

the state-of-the-art, the purpose of this paper is mainly to 

explore more fundamental but important questions which have 

rarely been investigated in the previous works. This is not to 

say that all the possible experimental configurations have been 

investigated or all questions answered, indeed far from this, but 

the authors hope that the reported results and the proposed 

methodology are of general interest and are robust enough as to 

assist in the further discussions of these topics.  

    The paper is structured as follows: Section 2 highlights the 

contributions of the paper. Section 3 presents the methods used 

for facial expression recognition, justifying its selection. An 

extensive set of experiments is described in Section 4 to address 

two main questions: (i) are the 3D landmarks, as opposed to 2D 

landmarks only, significant for improving facial expression 

recognition, (ii) is the availability of the labelled training data 

really significant. This section also includes a link to some 

previously published results. The discussions of the results are 

provided in Section 5.  

2. CONTRIBUTIONS 

This paper presents a random forest based subject-independent 

facial expression recognition system for six prototypical 

emotions: anger, disgust, fear, happiness, sadness and surprise, 

using both supervised and unsupervised approaches. In the 

supervised method random decision forest is used to perform 

the multiclass classification. In the unsupervised setting, the 

density forest is employed to identify the local neighbourhood 

structures in the feature space subsequently used to calculate 

the affinity matrix defining diffusion maps manifold. Contrary 

to the most existing papers, instead of putting effort on 

extracting and selecting complex features, the focus of this 

paper is on using simple landmark features, and assessing how 

well the proposed recognition system can deal with the problem 

in such case. 

The important contribution of this paper is the exploration of 

more fundamental questions: whether, in case of used simple 

features, 3D information is significantly helpful for recognising 

specific facial expressions. Is the labelled training data really 

needed or is it possible to build an unsupervised system having 

comparable performance to the supervised facial expression 

recognition system? Given 2D data only, is maintaining a 

consistent facial pose necessary for achieving good recognition 

performance? To the best of authors' knowledge, the 

quantitative consideration of such questions is rarely provided 

in the previous works.  

3. METHODOLOGY 

To answer the questions presented in Section 2, this section 

describes the proposed methods used for facial expression 

recognition. The simple landmark features are described first, 

followed by the details of the random forest classifier. The 

proposed implementation is based on the random forest 

classification and manifold forest presented in [7]. The use of 

the proposed random forest methodology with simple facial 

landmarks features is considered as a good compromise 

between performance and flexibility of the methodology 

enabling consistent tests for different considered scenarios 

leading to robust and compact results which could be reported 

in a short paper. 
  

3.1 Feature description 

Given a set of face features 
1{ }N  representing 

N different subjects with each subject having F faces in the 

database and each face described by features derived from P 

landmarks. In this paper, 83 landmarks are used as defined in 

the BU-3DFE database [12]. Each subject, is represented by 

the feature set 1{ }k k k

F F F , where 
1k D

j

F  is the 

feature vector representing face j of subject k, and D is the 

dimension of the feature vector. The feature vector is defined as 

the difference between all the landmarks’ position of the given 

face and the corresponding landmarks’ position of the reference 

face showing subjects’ natural expression: 
k k k

j j F S S , 

where 
k

S  is the neutral expression face vector of subject k. 

Each face is represented by a face vector: 
1

1[ ]k k k T D

j j Pj

 S p p , where 
k

ijp  is a row vector 

representing coordinate of 
thi landmark either in 3D or 2D, thus 

D = 3P for 3D data and D = 2P for 2D data. 

 

3.2 Supervised random forest classification 

In the supervised system, given a set of extracted features 

from the training data together with training labels , the 

objective is to build suitable classifier. In this paper the random 

decision forest is used as a classifier. In the forest the trees are 

built by randomly selecting single feature (a randomly selected 

entry in the feature vector F) at each internal node. The data 

reaching the decision node is assigned to its left or right child 

 
Figure 1. Embedding of the facial expressions data in the 

2-dimensional diffusion maps space.  
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node according to the results of the decision function. The 

threshold 
m of the decision function at node m is selected as a 

result of the maximisation of the information gain: 
* arg max

m

m mI


   , where the information gain is defined as, 

   
 ,

i

m i

m m m

i L R m

I H H


                   (1) 

where  indicates a cardinality for the dataset. 
m

denotes the 

training data reaching node m, and 
L

m ,
R

m are the subsets 

assigned to the left and right child nodes. The entropy is defined 

as,  

  ( ) log( ( ))m

c

H p c p c


 
C

                (2) 

where  represents a set of all classes, and p(c) is the 

probability of class c.  

After forest is trained, a new sample can be simply put 

through each tree. Depending on the result of the decision 

function at each internal node, the new data is sent to the left or 

right child node until it arrives at a leaf containing posterior 

probability of the data belonging to the specific class. The final 

decision is made based on the average of the responses from all 

the trees in the forest [7]. 

 

3.3 Unsupervised manifold forest clustering 

In the unsupervised system, a collection of training data is 

given in the absence of class labels. It is assumed that data is 

adequately represented by the Gaussian distributions. In that 

case the entropy  mH in Equation (2) can be calculated 

analytically as: 

   
1

log (2 ) ( )
2

m mH e                  (3) 

where ( )m  is the covariance matrix of 
m

. In this case, the 

data with relatively high dimensional structure, 
D , is 

hard to be represented or analysed, but such complex data 

might by governed by a small number of parameters. Once the 

trees have been built, a parameter-free binary affinity model is 

applied in the proposed method: if two samples end up at the 

same leaf node of the given tree, the entry of the affinity matrix 
t

W for tree t is set to 1, and to 0 otherwise. Thus for the 

ensemble of T trees the affinity matrix W  is calculated by 

averaging over all affinity matrices from each single tree: 

1

1 T t

tT 
 W W .  

    The manifold forests are constructed upon diffusion maps 

[13] with the neighbourhood topology learned through random 

forest data clustering. The diffusion maps technique has the 

capability to recover underlying structure of a complex 

manifold, thus is used for mapping the data from a high D 

dimensional space to a reduced, d dimensional space, d D . 

The optimal embedding   is defined via eigenvalues   and 

its corresponding eigenvectors   of the Laplace-Beltrami 

operator [13], such as, 

1 1( ) ( ), , ( )
T

n n n

d d     F F F                (4) 

Once the features have been embedded into the 

low-dimensional space, a Gaussian mixture model (GMM) 

algorithm is applied to cluster them into pre-defined number of 

classes.  Figure 1 illustrates the embedding of the training data 

in the 2-dimensional reduced space.  

The embedding function   only provides a mapping for the 

samples which are included in the given training set. For a new 

data, its’ location in the manifold needs to estimated, an 

efficient way is to interpolate out-of-sample data onto the 

learned lower-dimensional feature space, rather than re-training 

the whole manifold. For each new sample, such interpolation 

can be calculated based on the Nyström extension [14].  

 

3.4 Missing data  

The random forests can be easily adopted to handle the cases 

with outliers and missing data. Many of more advanced facial 

landmark detection techniques automatically recognise outliers 

not returning the corresponding landmarks. Therefore, for 

brevity of the presentation, only the missing data problem is 

further investigated in this paper, as the outliers problem can be 

often reduced to the missing data problem. In the paper it is 

assumed that the landmarks are only missing in a test set, and so 

the missing entries could be predicted based on the available 

training data. In the proposed approach the missing values are 

replaced  by the corresponding training set averages calculated 

separately for each class , that is, the data with at least one 

missing entry is replicated C-times, where C is the number of 

classes. Subsequently all these modified versions of the data are 

put through the random forest and the final decision is made 

based on the average of the responses from the forest for all the 

amended versions of that data. 

4. EXPERIMENTAL RESULTS 

The performance of the random forests based methods for 

facial expression recognition is tested on the BU-3DFE 

database [12]. The database consists of the neutral expressions 

and 6 basic prototypic expressions each with 4 levels of 

expression intensity. 90 subjects from the database are used in 

the experiments, and all the experiments are performed using 

9-fold cross-validation scheme. For all the tests the data from 

the same subject is only used for training or testing, never for 

both. All the results shown in this section are in percentages.  

Table 1 lists the results of using the random forest classifier 

(RF) against two commonly used classifiers: Support Vector 

Machine (SVM) (libsvm [15] implementation was used in the 

experiments) and Linear Discriminant Analysis (LDA) under 

supervised manner. Based on the results shown in the table, RF 

provide better overall recognition rate and outperform the other 

two methods for most facial expressions. It should be 

emphasized again that the purpose of the paper is not to 

propose a new “best” method, but to investigate the effect of 

using 2D and 3D data. The random forest methodology is 

selected as it provides robust results, and is flexible, i.e. it is 

inherently designed to deal with a multi-class classification 

problem, is easily adopted to solve clustering problem and 

effectively handles missing data.  
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4.1 Forest parameters 

The first experiment examines the influence of the forests' 

design parameters on the performance of the classifiers. The 

effect of tree depth was investigated by varying maximum tree 

depth: 4, 6, 8, 10, 12, 14 and 16, in the training process, with 

fixed number of trees T = 1000 in the forest. 3D data is used in 

this experiment. As the forest size is sufficiently large, the 

results shown in Figure 2 (left) are only from a single trial for 

each tree depth, as the repeated experiments produce very 

similar results. It is observed that for supervised learning, 

smaller trees may not be able to separate the data well. 

Although the results remain about the same when applying 

deeper trees - since the random forests are able to handle 

over-fitting well – large computational resources are required. 

In the case of unsupervised learning, the recognition accuracy 

does not strongly depend on depth of trees used in the forests.  

    The effect of different number of trees in a forest was also 

tested. The experiments were repeated 10 times for different 

number of trees (T = 10, 50, 100, 300, 500, 1000) with fixed 

maximum tree depth of 10 for supervised and 8 for 

unsupervised approach. The results shown in Figure 2 (right) 

indicates that having more trees in the forests seen to be 

beneficial as increasing number of trees helps to get smoother 

posterior for both methods. This is though at the increased 

processing time. To achieve desired trade-off between accuracy 

and computational cost, in the following experiments depths 12 

and 8 for supervised and unsupervised method are set, 

respectively, and T = 1000 for both.   

 

4.2 Supervised vs Unsupervised 

In this set of experiments, the tests start on the 3D data in order 

to compare the performance of the proposed methods employed 

in supervised and unsupervised learning. The experiments were 

performed using Matlab on a workstation with an Intel 

I7-3770S CPU 3.1GHz processor and 8Gb RAM. The average 

processing times for each face are 0.065s and 0.107s, 

respectively. 

    The confusion matrices for supervised and unsupervised 

 
AN DI FE HA SA SU Overall 

SVM 83.06 72.22 59.44 82.50 75.28 87.78 76.71 

LDA 72.78 71.39 62.78 80.83 80.28 87.22 75.88 

RF 77.50 73.06 53.06 93.33 83.61 95.28 79.31 

Table 1. Comparison of the proposed random forest 

classifier with SVM and LDA classifiers. 

 

 AN DI FE HA SA SU 

AN 77.50 2.50 1.94 2.22 15.83 0.00 

DI 8.06 73.06 6.39 5.56 2.50 4.44 

FE 2.22 5.83 53.06 18.61 8.89 11.39 

HA 1.11 0.56 4.72 93.33 0.28 0.00 

SA 13.06 1.67 1.11 0.28 83.61 0.28 

SU 0.28 0.56 2.22 0.00 1.67 95.28 

 

 AN+SA DI+FE HA SU 

AN+SA 87.22 12.41 0.19 0.19 

DI+FE 5.37 84.07 4.44 6.11 

HA 0.00 17.78 82.22 0.00 

SU 0.00 9.26 0.00 90.74 

Table 2. (Top) Confusion matrix for 3D data in supervised 

learning. The average recognition rates are 79.31%. Total 

1000 trees are used in the forest with the maximum the 

depth 12.  (Bottom) Confusion matrix for 3D data in 

unsupervised learning. The average recognition rates are 

85.93%. Total 1000 trees are used in the forest with the 

maximum tree depth 8.  

 

 
Figure 2. Effect of forest parameters. The average recognition 

rate (%) as function of: varying tree depth (left), and number of 

trees in the forest (right).  

 

 
Figure 4. The average recognition rate (%) and the standard 

deviation as function of dimensionality of the reduced space. The 

standard deviation was calculated based on 10 experiments with 

random initialisation of the GMM algorithm. 

 
                                   (a)                                                                   (b)                                                               (c) 

Figure 3. Recognition rate (%) for (a) the supervised method with 6 classes (b) supervised method with 4 classes, and (c) 

unsupervised method  with 4 classes as a function of different expressions and different expressions' intensities.  
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learning are reported in Table 2. The average recognition rates 

are 79.31% and 85.93%, respectively. All expression 

intensities are used in the supervised method, whereas the 

expressions with the lowest intensity (Level 1) are not used for 

unsupervised learning, since they are very close to the neutral 

expression. Additionally, due to a very similar facial 

deformation, anger and sadness as well as disgust and fear are 

grouped into the same clusters as they are likely to be confused 

at a lower expression levels [16] (especially when the class 

labels are not given in the learning process). Figure 3 

summarises the recognition rates for different expressions and 

expression intensities. On average, higher intensities achieve 

better performance. For comparison this figure also shows the 

results obtained for the supervised method with the same data 

grouping as used for the unsupervised method. In that case the 

supervised method performs slightly better with the 87.53% 

average recognition rate. 

     The recognition performance could be affected by the 

dimensionality of the reduced space d. The next test examined 

the relation between manifold dimensionality and the 

recognition rate. The average recognition rate and the standard 

deviation are tested based on 10 random trials with various 

dimensionalities (d = 2, 3, 4, 5, 7, 10, 20) of the reduced space. 

As observed in Figure 4, it seems that the average recognition 

rate and stability of the results are better when the embedded 

dimensionality is relatively low (blue line). To further 

investigate the causes of this worsening performance with 

increased dimensionality of the reduced space, the true class 

information was used for initialisations of the GMM clustering. 

In this case the average recognition rate (red line in Figure 4) 

has slightly decreasing when increase the dimensionality, as 

the data distribution may not be Gaussian in relatively higher 

dimensions. It indicates that the “correct” convergence of 

GMM clustering depends strongly on initialisation in the 

higher dimensional spaces. 

 

 

 

 
Figure 5. 2D faces projected from 3D data with different yaw 

and pitch angles.  

 

 
Figure 6. Multiple rounds cross validation results in 

supervised (left) and unsupervised (right) methods based on 

3D and 2D frontal view data. 

 

(a)                                                 (b) 

 
(c)                                                (d) 

Figure 7. Recognition accuracy as function of the 

measurement noise level. (a) 3D data using supervised 

learning. (b) 2D data using supervised learning. (c) 3D data 

using unsupervised learning. (d) 2D data using unsupervised 

learning. 

 

  AN DI FE HA SA SU Overall 

3D  78.74 75.27 56.90 92.87 81.92 95.21 80.16 

2D 

Frontal 
view 

75.59 76.87 52.99 92.82 72.69 95.18 77.69 

3 yaw, 3 
pitch 

angles 
77.25 78.66 53.88 93.60 70.93 95.81 78.35 

5 yaw 
angles 

79.93 78.15 47.48 96.07 69.33 96.59 77.93 

5 pitch 
angles 

78.59 77.19 46.22 94.74 67.78 97.19 76.95 

 

  AN+SA DI+FE HA SU Overall 

3D  80.78 81.21 80.33 94.45 84.09 

2D 

Frontal view 84.66 70.19 88.62 87.98 81.08 
3 yaw, 3 pitch 

angles 
84.14 65.57 88.17 87.81 79.34 

5 yaw angles 86.30 67.78 89.33 87.63 80.85 

5 pitch angles 85.22 68.48 88.74 87.04 80.53 

Table 3 Comparison of 2D and 3D data using supervised 

(Top) and unsupervised learning (Bottom). 
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4.3 3D data vs 2D data 

It is commonly assumed that the use of 3D data can 

considerably improve the facial expression recognition, since 

depth information may help to achieve higher sensitivity and 

specificity when compared to using 2D data only. This 

assumption is though rarely tested quantitatively. The purpose 

of this experiment is to compare the performance of the 

proposed methods when used with 2D and 3D data.   

First of all, it should be pointed out that the outcome of the 

experiments could be significantly influenced by selection of 

datasets for 2D and 3D analysis. In principle these datasets 

should be of similar quality, and preferably acquired at the 

same time. To provide fair comparisons, 2D data is directly 

projected from the 3D data with various rotation angles. The 2D 

features are generated from the BU-3DFE database by 

projecting the 3D landmark feature points with 5 yaw rotation 

angles (0,  15,  30) and 5 pitch rotation angles (0,  15, 
30). Figure 5 shows an example of 2D faces of a subject with 

happiness expression projected from 3D data in various yaw 

and pitch angles. Numbers of different representative data 

configurations are used: 2D frontal view faces only; 5 pitch 

rotation angles without rotation on horizontal direction; 5 yaw 

angles without rotation on vertical direction; the combination 

of 3 yaw and 3 pitch rotations (0,  15). 

    To test stability of the methods, multiple rounds of 

cross-validation using different subset of data are performed. 

The recognition rate for different facial expressions based on 

3D data and 2D frontal view data using both supervised and 

unsupervised learning are shown in Figure 6. The reported 2D 

data results are obtained from the projections by the 

combination of 3 yaw and pitch rotations, as the data projected 

from other rotation angles achieve very similar results. The 

averaged results over all rounds are summarised in Table 3. It 

can be observed from these tables that the use of 3D data 

always produces slightly better overall results than 2D data. In 

the supervised method, apart from AN, FE and SA, the 

improvements achieved for other facial expressions are not 

significant. Unexpectedly, for the unsupervised method and the 

AN+SA and HA expressions the recognition on 2D data 

outperforms the recognition based on 3D data. 

 

4.4 Sensitivity to noise and missing data 

Issues like pose, shadows, illumination, etc. could strongly 

affect the classification performance and therefore the results 

would be heavily depended on the database used. The use of the 

simple landmarks make it possible to replace these difficult to 

control “environmental” influences with the effects these 

“environmental” aspects have on the detected landmarks which 

are easier to control and model as these can be robustly and 

systematically simulated. To facilitate this, along the Gaussian 

noise, the missing data is also introduced to analyse effects of 

self-occlusion as well as shadows and illumination changes - as 

in the context of facial expression recognition with simple 

landmarks, the outlier problem could be often replaced by the 

missing data problem.  

    The first set of experiments is designed to test the impact of 

noise present in the 3D and 2D data on the performance of the 

supervised and unsupervised classification. In these 

experiments, each face landmark position is perturbed by the 

additive Gaussian noise. The tests are conducted with 5 

different levels of noise, which are set to 5%, 10%, 15%, 20% 

and 25%. Figure 7 (a-b) illustrates the results for the supervised 

classification using 3D and 2D data, respectively, where 2D 

data is obtained by projecting using the combination of 3 yaw 

and pitch rotations. Following the same experimental setup 

figure 7 (c-d) shows the results obtained for the unsupervised 

learning. As observed in the figure, the noise does not 

significantly affect results for some of the expressions, such as 

SU, DI and FE in the supervised learning. Similarly the results 

for SU and HA expressions are not significantly affected for the 

unsupervised classification. Overall, as demonstrated, both the 

3D and 2D based recognition are affected by the noise in a 

rather similar manner.  

In the second set of experiments the effects of the missing 

data are investigated. To simulate the missing data, up to 80% 

of the landmarks were randomly discarded in supervised 

learning, and up to 30% were dropped in unsupervised learning. 

The recognition rates are tested based on 10 random trials with 

various rates of missing landmarks. Figure 8 illustrates the 

average recognition rates as a function of the missing data rate. 

Since a relatively large number of trees were applied in the 

experiments (T = 1000), the standard deviations are very small, 

thus they are not shown in the figure. As it can be seen from that 

figure, the performance remains acceptable with 20% of 

missing data (or even higher for the supervised learning) for the 

3D and 2D data irrespectively of the small head pose changes. 

 

4.5 Varied head poses 

The often reported reluctance to use 2D data is based on a belief 

that the inaccurately estimated head pose may very strongly 

affect recognition results. As it is often pointed out in literature, 

small changes in the facial pose can significantly reduce the 2D 

based recognition accuracy [2]. However, this assertion has 

 
Figure 8. Recognition accuracy on 3D and 2D (frontal view) 

data in supervised (left) and unsupervised (right) learning of 

missing data.  

 
Figure 9. Effect on deviated viewing angles in supervised 

(left) and unsupervised (right) learning.  
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rarely been quantitatively tested. For all the experiments, so far 

described in this paper, is has been assumed that the training set 

is representative of the possible different head poses in the test 

dataset. However, collecting the training data for all possible 

different head poses is not feasible in practice, also robustly 

estimating the head pose orientation from 2D data is still a 

challenge [3].  

    The set of experiments described in this section, is designed 

to investigate the effects of varied viewing angles on the 

recognition results when these varied head poses are not 

represented in the training set. The tests consider two scenarios, 

for which all the training data are generated by the frontal view 

projection only. In the first test (test 1), it is assumed that all the 

test expression faces have a varied head pose but that pose is the 

same as the pose of their corresponding neutral face. This 

effectively assumes that although the head pose is unknown it 

does not change between different expressions. Such 

assumption may not be realistic for all possible applications. 

Therefore the second test (test 2) where the head is freely 

rotated is also conducted. In that experiment the neutral faces 

are available only with frontal view projection and the 

corresponding expression faces are acquired with varied head 

poses. That is, the features for a subject are the distances 

between all the landmarks of testing faces (possibly non-frontal 

view) and the corresponding neutral faces (frontal view only). 

This test is to simulate the case when the pose of head changes 

between different expressions. In practice, it is unavoidable to 

have small errors of head pose estimation. This test is to 

validate whether the method using 2D data is able to cope with 

these errors. 

Figure 9 shows the effect of varied viewing angles on the 

supervised and unsupervised classification results. The yaw 

and pitch viewing angles are being changed independently to 

enable a direct comparison with the results reported in [11]. The 

results show that in test 1, the recognition rate does not strongly 

depend on the changing viewing angles. This indicates that 

when subject does not change the head pose during the face 

articulation, the results of facial expression recognition are not 

strongly affected by the unknown head pose. In test 2, although 

the accuracy falls when the head pose variation exceeds 10 

degrees, the results are acceptable for the variations of up to 5 

degrees. For the supervised learning the results reported here 

compare well with results obtained for some complex features. 

They are very similar to the results of the Topographic Context 

method proposed in [11] and significantly outperform the 

Gabor wavelet approach for which test results are also reported 

in [11]. The analysis of the unsupervised learning was not 

included in [11]. Overall, the results illustrate that even for the 

uncontrolled head pose it is still possible to correctly recognize 

expressions from the 2D data.  

 

5. DISCUSSION 

The proposed methods have been quantitatively evaluated 

using the BU-3DFE database in various situations in order to 

answer the questions described in Section 2. Through an 

extensive evaluation it can be concluded that recognition 

system using only simple landmark features, is able to achieve 

acceptable recognition accuracy. Although the results produced 

by applying dense and more sophisticated features (or selecting 

more discriminative feature points) could be superior, the use 

of simple features may be important for real-time applications 

run on low-cost portable devices, as calculation of more 

complex features may require significantly more computational 

resources.  

     In general, the use of 3D information for facial expression 

improves performance when compared to using 2D information 

only. This is as expected, since depth information is included in 

3D data. The improved recognition rate was observed for some 

expressions, such as fear and sadness which reflect negative 

emotion, but not significant improvement was observed for 

other expressions. It is worth noticing that due to complexity of 

data collection, 3D data may not be always available. In such 

cases, using 2D data can still provide acceptable results.  

The collection of the labelled training data is a time 

consuming and expensive task, prone to mistakes possibly 

leading to unreliable labels. It is therefore useful to consider 

approaches which do not require such data. In the paper it has 

been shown that by simplifying the problem, by grouping some 

of the expression together, it is possible for an unsupervised 

system to obtain similar recognition performance to a 

supervised facial expression recognition system.  

Based on the reported results obtained for varied head poses, 

if the head pose does not change during face articulation the 

result is not dependent on the unknown head pose and therefore 

the recognition rate is not affected even the pose has not been 

seen in training set. In the case of the freely moving head the 

system can still handle small pose variations. 

 

6. CONCLUSIONS AND PERSPECTIVES 

In this paper random forest based approaches are presented that 

recognise the prototypical expressions only using very simple 

landmark features. The paper shows the possibility of using 

unlabelled training data for facial expression recognition, and 

quantitatively investigates the effect of analysing the facial 

events from 3D and 2D information. It is not claim that the 

random forest classifier with simple features is better than 

current state-of-the-art methods which mainly focus on 

extracting complex features. The important aspect of the paper 

is to show how well facial expressions with simple features can 

operate under different conditions, including using 2D data 

with unknown head pose and unlabelled training data.  

The paper has discussed the use of decision forests in both 

supervised and unsupervised scenarios. But it is very likely in 

many real scenarios that only a small set of data are labelled 

with a large set of unlabelled data. Hence a semi-supervised 

classification would be considered in future research, including 

dynamic data sets. 
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