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Relevancy Identification 
Across Languages and 
Crisis Types 
Abstract 

Social media plays a vital role in information sharing 

during disasters. Unfortunately, the overwhelming 

volume and variety of data generated on social media 

makes it challenging to sieve through such content 

manually and determine its relevancy. Most 

automated approaches to classify crisis data for 

relevancy are based on classic statistical features. However, such approaches do not 

adapt well to situations when applied on a new crisis event, or to a new language that 

the model was not trained on. In crisis situations, training a new model for particular 

crises or languages is not a viable approach. In this paper, we introduce a hybrid 

semantic-statistical approach for classifying data with regards to relevancy to a given 

crisis. We demonstrate how this approach outperforms the baselines in scenarios 

where the model is trained on one type of crisis and language, and tested on new crisis 

types and additional languages. 

INTRODUCTION 
Social media platforms have become a prime source for information in crises situations, enhanc-
ing situational awareness of the citizens and enabling humanitarian relief agencies to target their 
efforts better, 14. Hurricane Harvey disaster saw over 7 million tweets in just over a month (digi-
tal.library.unt.edu/ark:/67531/metadc993940/). One recent study found that damage maps pro-
duced by the Federal Emergency Management Agency (FEMA) for hurricane Harvey missed 
around 46% of the damage reported on Twitter by impacted individuals, 15. While this creates a 
source of potentially vital information, it is challenging to manually sieve through overwhelming 

Prashant Khare 
The Open University, UK 

Grégoire Burel 
The Open University, UK 

Harith Alani 
The Open University, UK 



  

This is an accepted version of the article for publication in IEEE Intelligent Systems, and is not final edited version. Content may change in 
edited version. Citation information: DOI 10.1109/MIS.2019.2917443, IEEE Intelligent System 1541-1672 (c) 2019 IEEE. 

 MAGAZINE NAME HERE 

volumes of data, given that most of this information bear minimal or no relevance to particular 
crisis situations, even when crisis-specific hashtags are used, 6. 

Previous approaches that focus on classifying crisis data as crisis related or not related, apply 
supervised or unsupervised approaches and rely on statistical features from text, such as n-
grams, text length, parts of speech etc. and have a bias towards the nature of the data. For exam-
ple, such models are likely to see a drop in accuracy when applied to a new crises type or a lan-
guage that were not in training data. Retraining the models for a new crises type or language is a 
costly process, thus rendering it inadequate for crisis situations when immediate action is re-
quired. 

We have previously shown that including semantic features enhances classifier performance 
when models are trained on one type of crises (example floods) and applied to another (example 
earthquakes), 7. We also observed that machine translation and semantic features enhance classi-
fiers’ accuracy when training models on data in one language (example English) and applying it 
to data in different languages (example Spanish), 8. However, what remains unknown is how 
such models perform when these two independent scenarios of cross-language and cross-crises 
come together, which was not explored in the previous works, 7,8.  

In this paper, we tackle the problem when a model is trained on certain types of crises in a par-
ticular language (example earthquake posts in English), and tested on others (example floods in 
Italian). We create a multilingual dataset by translating the crises data into 6 different languages 
and then perform cross-crisis classification on multilingual data. We analyse the role of seman-
tics and translation in the scenario where the model is trained on certain types of crises events 
(example floods) in a particular language (example Italian) and tested on a new type of crisis 
(not observed in training data) in a new language (example earthquakes in English). We evaluate 
the proposed approach in two scenarios: (1) when test data is not in the same language as of the 
training data; and (2) when test data is in the same language as of the training data (via transla-
tion). The main contributions are: 

1. Build statistical-semantic classification model with semantics extracted from DBpedia. 
2. We use 26 crises events to classify relevancy from crises events across 7 types (floods, 

typhoons, earthquakes, shooting, explosion, bombing, train crashes), and in 6 lan-
guages (English, Spanish, Italian, German, Portuguese, and French). 

3. Evaluate 6 classifiers with multiple features, languages, and type of crises, resulting in 
a total of 1152 experiments. 

4. Show that translating data to the same language combined with DBpedia semantics 
outperforms the baseline by over 16% in cross-lingual cross-crisis classification sce-
narios. 

RELATED WORK 
Social media posts during crises are not always useful or relevant.  Olteanu and colleagues, 11 
suggested categorising Tweets into related and informative, related but not informative, and not 
related. Much research focused on classification of such content using supervised machine learn-
ing methods that rely on statistical and linguistic features such as POS tags, user mentions, 
hashtags, text length, etc. These approaches range from traditional methods such as Support 
Vector Machines (SVM), 5 Naive Bayes, and Conditional Random Fields, 3 to deep learning 
using word embedding, 2. 

In an attempt at domain adaptation, 4 authors analyse the performance of classifier when trained 
and tested on events from earthquakes and floods. They show that a classifier trained on Italian 
is likely to perform well on test events from Spanish, instead of English. However, the approach 
lacked a rigorous cross language scenario as it focused only on two types of events originating in 
Italian and Spanish languages. Few more domain adaptation approaches, 9,12 investigated learn-
ing from one type of crisis event and testing on a new type. However, these works consider only 
two types of the crises and also did not consider the aspect of language. 
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In previous work, 7 we used semantic information to build a relevance classifier that is adaptive 
to new types of crisis events. Adversarial training and graph embedding have also been used to 
study domain adaptability to different crises events, 1 although it was limited to only two crises 
types and one event per type.  Previous work, 8 examined if semantic information and machine 
translation can render classifiers more adaptive to multilingual crisis data. Tuning classification 
tools to be adaptive to multilingual data is a complex task that requires enough data to build 
separate models for each language. 

Some solutions explored in the literature are: (a) translating the data or resources (such as lexi-
cons) from one language to target language and training the models, 10; (b) training on weakly 
labelled data, 13; (c) building multilingual distributed word-representation via Wikipedia, 16. 

In contrast, we focus on the role of semantic knowledge, and automatic language translation, in 
classification of information relevancy in cross-lingual and cross-crisis scenarios. 

RELEVANCY IDENTIFICATION ACROSS LANGUAGE 
AND CRISIS TYPES 
We aim to (1) study the accuracy of supervised binary classification models designed for identi-
fying crisis-related Tweets, when the type of crises and the languages used during the training 
phase diverge from those observed when using the models (example training on floods in Eng-
lish and applying to earthquakes in French), and (2) study the impact of semantic features and 
machine translation for alleviating crisis-type and language bias during training and usage. 

For this, we train a binary classification model on certain type of crises in a particular language 
and evaluate it on new crises types in new languages. The proposed approach used for building 
and evaluating the different models used in this paper consists of 5 phases as shown on Fig. 1: 

1. Input Data and Preprocessing: An annotated dataset containing multiple crises types is 
processed for alleviating training and evaluation bias. 

2. Training/Evaluation Sets Generation: The datasets are divided into training and evalu-
ation datasets in order to evaluate the models in a cross-crisis-type and cross-language 
situations. 

3. Feature Engineering: This phase builds the statistical and semantic features that are 
used by the binary classifier. 

4. Model Selection and Training: A binary classifier is trained using crisis-related and 
not-related annotations. 

5. Model Usage and Evaluation: Model is evaluated on the held-out data. Depending on 
the approach, the language of the evaluation documents may be reconciled with the 
training language using machine translation. 

Input Data and Pre-processing 
To train cross-lingual and cross-type binary classifiers, we require multiple mono-lingual and 
mono-crisis-type datasets so a particular crisis-type and language can be used as training data 
and other crises-types and languages can be used for evaluation purposes. Twitter datasets are 
often composed of duplicates (example retweets) and multilingual posts that need to be sorted 
before using them for training a cross-type and cross-language classification model. Multilingual 
data in a training data may invalidate cross-lingual settings of the envisioned experiments. Final-
ly, it is important that a binary classifier has a balanced amount of positive and negative samples 
during training to avoid bias towards a specific class. 

We identify duplicated tweets by matching them, one by one, after removing user-handles (i.e., 
'@' mentions), special characters, and URLs. If the strings match, we discard the new one.  With 
regards to language, we perform an ‘identify and translate’ language normalisation approach 
where we first use automatic methods for identifying the language of a tweet and then use ma-
chine translation for generating monolingual versions of crisis-types datasets. 
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We determine language via 3 language detection APIs: detectlanguage (detectlanguage.com), 
langdetect (pypi.org/project/langdetect/), and TextBlob (textblob.readthedocs.io/en/dev/) and 
label the language of each tweet with what is agreed by at least 2 of the APIs. More than 30 lan-
guages were found in the dataset with English (en), Italian (it), Spanish (es), and Portuguese (pt) 
representing nearly 93% of the data. We create a multilingual dataset for 6 languages: English 
(en), Italian (it), Spanish (es), French (fr), German (de), and Portuguese (pt) using Google Trans-
lation API (Neural Machine Translation System), for its superior accuracy, 17. Each tweet is 
translated to the other 5 languages. If it is not in one of the 6 chosen languages, then it is trans-
lated to all 6 languages. As a result, each annotated tweet is available in 6 different languages. 
This results in multiple mono-lingual and mono-crisis-types datasets. 

 

Figure 1. Pipeline for relevancy identification across language and crisis types 

Training & Evaluation Sets 
Since now we have monolingual datasets for multiple languages, we categorically create the 
train and test data. As we aim to create the training data in a certain language and for certain 
crises types, we choose a monolingual dataset in one of the languages and only select the crises 
events which are not of the types we aim to create the test data in. Next, to create a test data in a 
different language, we take another monolingual dataset in a language different than the lan-
guage of the training data, and specifically select the crises events we aim to evaluate the model 
on. These test events do not exist in the training data. 

Feature Engineering 
We define two feature types: statistical and semantic features. Statistical features, the quantified 
statistical and linguistic properties of text, are considered as the baseline approach in our experi-
ments. Whereas semantic features contain named entities and associated semantic information 
from knowledge graphs. 

Statistical Features 
For each post we extract the statistical features, same as in previous works, 7-8: 
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• Number of - nouns, verbs, pronouns, words, hashtags. 
• Tweet length and Unigrams 

We chose spaCy (www.spacy.io) library to extract Part of Speech (POS) features. The data is 
tokenised to unigrams with the regexp tokenizer in NLTK (www.nltk.org). Stopwords are re-
moved through a dedicated list of words (raw.githubusercontent.com/6/stopwords-
json/master/stopwords-all.json). Furthermore, TF-IDF vector normalisation is applied over the 
unigrams to weigh the tokens in accordance with their relative importance within the dataset, and 
represent the data in the vector space. 

Semantic Features 
Semantic features aim to represent information in crisis data in a more generic form across lan-
guages and crisis types. These features broaden the context of documents by making them less 
crisis-specific, thereby reducing the problem of data scarcity. 

We use Babelfy (babelfy.org/) service for the NER task, and for extracting the semantic features 
we use DBpedia (wiki.dbpedia.org/) as the knowledge base. Given the multilingual nature of 
knowledge bases such as DBpedia, some of the semantics such as labels can be extracted in Eng-
lish regardless of the language of the post, thus bringing multilingual data closer contextually via 
the added semantic vocabulary. Generalization of semantics in one language also reduces poten-
tial data sparsity resulting from varying morphological forms of entities across languages. 

We extract DBpedia properties as the semantic features. The NER service Babelfy returns a 
DBpedia URI for each annotated entity (if available). We query the following properties associ-
ated with the DBpedia URIs via SPARQL: dct:subject, rdfs:label (only in English), rdf:type(only 
of the type http://schema.org and http://dbpedia.org/ontology), dbo:city, dbp:state, dbo:state, 
dbp:country and dbo:country (the location properties fluctuate between dbp and dbo). 

Babelfy is NER service that is built on top of multilingual knowledge base BabelNet 
(babelnet.org). BabelNet has a common synset for entities representation in multiple languages. 
For instance, police and policía (police in Spanish) point to the same synset (unique entity node) 
in BabelNet- police. Hence the same DBpedia URI is returned for both the terms originating in 
different languages. We extract the additional DBpedia semantics, to associate multiple entities 
across the same and different languages. For instance, guardie di sicurezza (‘security guards’ in 
Italian) and police have the same subject as Security_guard. As a consequence, such semantics 
connect concepts from different types of crisis events as well as languages. 

We look at two actual tweets that originate in different languages and two different types of 
events (Post A is from earthquakes in English and Post B from floods in Italian), gain contextual 
similarity as semantics are expanded; and also the similarity that translation can provide. 

Post A – “#WorldNews! 15 feared dead and 100 people could be missing in #Guatemala after 
quake” 

Babelfy Entities - Feared, dead, people, missing, quake 

DBpedia Properties - dbr:Death, dbc:Communication, dbr:News, dbc:Geological_hazards, 
dbr:Earthquake 

Google Translate to it - #Notizie dal mondo! 15 temuti morti e 100 persone potrebbero mancare 
a #Guatemala dopo il 

 

Post B - “Inondazioni in Sardegna, recuperato il cadavere di un poliziotto: almeno 10 tra morti 
e dispersi: E’ morto uno d…” 

Babelfy Entities - Inondazioni, recuperarto, cadavere, poliziotto, morti, dispersi, morto 

DBpedia Properties - dbc:Death, dbc:Geological_hazards, dbr:Death, dbr:flood 

Google Translate to en - Floods in Sardinia, recovered the corpse of a policeman: at least 10 
dead and missing: He died one d . 
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Model Selection and Training 
In previous works, 7 the appropriateness of Support Vector Machine (SVM) Linear Kernel for 
crisis relevancy classification was validated over RBF kernel, Polynomial kernel, and Logistic 
Regression. Hence, we opt for SVM with a Linear Kernel as the classification algorithm. 

To evaluate the use of semantic features compared to the more traditional statistical features, we 
design following classification models and evaluate them separately: 

• SF: This model uses only the statistical features and is the baseline. 
• SFSem: This model combines statistical features with semantic features from DBpedia 

(labels in English, type, and other DBpedia properties). 

Model Usage and Evaluation 
Using the held-out data previously created, we now evaluate the trained models by calculating 
the precision (P), recall (R) and F1-measure (F1). We consider two different cases for evaluating 
the data: (1) the model is evaluated directly by simply generating the features associated with 
any evaluation document (tweet) using the different features described earlier; and (2) before 
generating the features, we reconcile the languages used in the evaluation documents with the 
language used in the training data using machine translation. In any case, the training and test 
data still contain different crises types. 

For the first use case, we use the same model notation as the training models: SF and SFSem. 
For the evaluation method that uses machine translation prior to the feature generation we use 
the following notation: 

• SFT: The model uses only statistical features, as SF, but the test data (example Portu-
guese) is translated to the language of the training data (example English). 

• SFSemT: The same model as SFSem but the test data (example German) translated to 
the same language as the training language (example Italian). 

DATASETS 
We use CrisisLexT26 dataset, 11 which is an annotated dataset consisting of 26 international 
crisis events of different types. Each event has 1000 labelled tweets in the following categories: 
Related and Informative, Related and Not Informative, Not Related, and Not Applicable and 
contains document in multiple languages. As shown in Table 1, the 26 events can be broadly 
grouped in 10 different types of crises (original language distribution shown). The categorisation 
is the same from previous work, 8 and is based on common understanding of the nature of the 
crises. For instance, Floods and Typhoons are treated as similar crisis types, since typhoons often 
result in floods. In this article we used all 10 event types groups for training the cross-crisis types 
binary classifiers. 

For binary classification (i.e., related/not related) we merge the documents from all 26 crises 
labelled Related and Informative with Related but not Informative labels to create the Related 
class, and merged Not Related with Not Applicable to create the Not Related class. This allows 
us to train a binary relevance classifier. Then, we remove duplicates as described earlier. These 
processes yield 21378 unique tweets that are labelled Related and 2965 unique tweets labelled 
Not Related. 

To avoid classification bias towards the majority class, we balance the data (whole data, and data 
per crisis event) by randomly under-sampling the majority class and matching the number of 
Related tweets with Not Related ones, across each event. This results in a final dataset with over-
all size of 5931 tweets (2966 Related and 2965 Not Related). And then language normalisation 
was performed to generate 6 versions of the monolingual datasets via Google Translation API: 
en, it, es, pt, de, and fr. 
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For the language reconciliation in SFT and SFSemT models we do not need to generate new 
translations of the evaluation datasets since each crises-type is already translated as part of the 
language normalisation preprocessing task. Instead of translating the evaluation datasets we 
simply use the corresponding translated version of the relevant held-out data using the translated 
crises-types created during the preprocessing task. Overall, we had 26 crises events across 10 
types and 6 monolingual datasets for each event. We chose to experiment on crises from 
floods/typhoons, earthquakes, train crashes, and bombing/explosion/shooting types. 

Table 1:  Event types and original language distribution (en:English, it:Italian, es:Spanish) 

Event type Event Instance Event type Event Instance 
Wildfire/Bushfire Colorado Wildfire 

(CWF), Australian Bush-
fire (ABF) 

 

en-99.1%, it-0%, es-
0.1%, other-1.6% 

Haze Singapore (SGR) 
 

en-97.47%, it-0%, es-
0%, other-2.53% 

Earthquake Costa Rica (COS), Italian 
(ITL), Bohol (BOL), 
Guatemala (GAU) 

 

en-43.6%, it-18.6%, es-
30.9%, other-6.9% 

Helicopter Crash Glasgow (GLW) 
 

en-99.89%, it-0%, es-
0.11%, other-0% 

Flood/Typhoons Typhoon- Yolanda 
(TPY), Pablo (TYP) 

Flood- Colorado (CFL), 
Queensland (QFL), Al-

berta (ALB), Philippines 
(PHF), Sardinia (SAR) 

 

en-82%, it-12.7%, es-
1.1%, other-4.2% 

Building Collapse Savar Building (SVR) 
 

en-86.9%, it-0.82%, es-
5.19%, other-7.1% 

Terror/Shooting/Explosion Los Angeles (LAX), 
Boston Bomb (BOB), 
West Texas (WTX) 

 
en-95.1%, it-0.1%, es-

2.1%, other-2.7% 

Location Fire Brazil Pub (BRZ), Vene-
zuela Refinery (VNZ) 

 

en-20.3%, it-0.1%, es-
45.8%, other-33.9% 

Train Crash Spain Train (SPT), Lac 
Megantic (LAM) 

 

en-47.9%, it-0.1%, es-
28%, other-24% 

Meteor Russia (RUS) 
 

en-87.56%, it-0.64%, es-
2.56%, other-9.24% 

 

RESULTS 
We select the following crisis events and event types: 

1. Train the models on rest of the crises event types except Bombing/Shooting/Explosion 
and evaluate on LAX, BOB, and WTX; 

2. Train on rest of the crises event types except train crash and evaluate on SPT and 
LAM; 
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3. Train on rest of the crises event types except floods and typhoons and evaluate on ty-
phoon - TPY, TYP, floods- ALB, QFL, CFL, PHF, and SAR; 

4. Train on rest of the crises events except earthquakes and evaluate on earthquakes- 
GAU, ITL, BOL, and COS. 

We already have all the events available in 6 different languages. For each pair of training data 
type and test data event, each time the training data is in a certain language the test data can be in 
the other 5 languages. This makes 30 cross-lingual cases for each event, as the training data can 
be in 6 different languages. Given that we have 16 test events overall, there are 480 evaluation 
cases in each feature model. There are 2 feature models: SF and SFSem. And the times when 
both training and testing data are in same language are 6 (considering translation). Hence, there 
are 96 such evaluation cases in each feature model. There are 2 translation models: SFT and 
SFSemT. Hence, effectively we performed 1152 different experiments overall. Detailed results 
are made available via shared repository (www.github.com/pkhare/cross_lingual_crises). 

The results of performance of models and comparison over the baseline are outlined into follow-
ing subsections: 

Train and test in cross-lingual set ups 
We measure SFSem performance over the SF baseline. Figure 2(a) shows the violin plots com-
paring, on average, across all 480 observations in each model. From the plots there is a clear 
indication that SFSem performs out rightly better over the baseline SF, with an increased overall 
mean and a reduced deviation in the peaks. From Table 2, we observe the mean values: SF has 
an avg. F1 score of 0.556 with a standard deviation of 0.07 and SFSem has an avg. F1 score of 
0.610 with a standard deviation of 0.06. The performance of SFSem when compared to baseline 
SF is statistically significant (via 2 sample t-test) with a p-value<0.001. 

Test data language reconciled with training data 
Here we study SFT and SFSemT performance over the baseline SF. Figure 2 (a) shows that when 
test data is in the same language as that of the training data, the average F1 score increases (with 
or without semantics). However, adding semantics reduces the deviation. From Figure 2 (a) the 
highest mean is in SFSemT with a consistent distribution in comparison to rest of the models, 
over the baseline SF. From Table 2, we observe the mean values: SF has an average F1 score of 
0.556 with a standard deviation of 0.07, SFT has an average F1 score of 0.625 with 0.07 standard 
deviation, and SFSemT has an average F1 score of 0.638 with a standard deviation of 0.058 (sta-
tistically significant over baseline with a p-value<0.001). 

Overall performance across all models 
Figure 2 (a) shows plots for all the models and by also taking Table 2 (showing average overall 
F1 score and also across each crises type evaluated) into consideration we see that SFSemT is the 
best performing feature with an average F1 score of 0.638 and an average gain of around 16.42% 
over the baseline SF. Without translation SFSem is the best performing feature with an average 
F1 score of 0.610 with an average gain of 11.24% over the baseline SF. This shows that adding 
the semantics does help us alleviate the over fitting that may occur due to language and/or crisis 
types in training data. 

We analysed the performance when the training and test data were in the same or different lan-
guage (across all the tested events) as shown in Fig 2 (b) and Fig 2 (c). Note that in Fig 2 (b) and 
(c), when the language of training and test data is the same, it is the case of SFTand SFSemT re-
spectively across all the events in that particular language. We observe in SFT: German had the 
highest avg. F1- 0.653 (std. dev. of 0.085) and Italian with lowest avg. F1- 0.606 (std. dev. of 
0.09); in SFSemT French had highest avg. F1- 0.65 (std. dev. of 0.07) and Italian with lowest avg. 
F1- 0.62 (std. dev. of 0.05). 
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The lowest standard deviation in SFT was observed for English- 0.043 (average F1 score 0.63). 
In SFSemT, Italian recorded an avg. of 0.62 (low standard deviation of 0.052). A much better 
performance was exhibited by Spanish, which recorded an avg. of 0.63 (low standard deviation 
of 0.058). 

 
Figure 2. (a) Avg. F1 score distribution across models (b) SF and SFT across languages (c) SFSem 
and SFSemT across languages 
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Table 2:  Overall performance and performance across crises types 

 SF SFT SFSem SFSemT 

 P R F1 P R F1 P R F1 P R F1 

Floods/Typhoons 

AVG. 0.618 0.583 0.551 0.698 0.66 0.643 0.684 0.648 0.628 0.711 0.683 0.672 

Earthquakes 

AVG. 0.556 0.551 0.529 0.604 0.589 0.569 0.622 0.608 0.584 0.638 0.625 0.608 

Bombing/Explosion/Shooting 

AVG. 0.598 0.586 0.571 0.631 0.627 0.623 0.607 0.602 0.598 0.609 0.605 0.602 

Train Crash 

AVG. 0.644 0.618 0.608 0.708 0.691 0.685 0.603 0.592 0.583 0.625 0.613 0.604 

Overall (across 1152 experiments) 

AVG. 0.602 0.58 0.556 0.663 0.64 0.625 0.644 0.623 0.610 0.663 0.645 0.638 

STD 0.08 0.06 0.07 0.08 0.06 0.07 0.06 0.06 0.06 0.066 0.059 0.058 

 

DISCUSSION AND FUTURE WORK 
It is challenging to get a large-scale annotated data across several languages and event types; 
hence we simulated the scenarios by translating the original data (for each crisis event) to 6 dif-
ferent languages. Google Cloud allows a maximum of 10M-character translation per 100 se-
conds per projects (https://cloud.google.com/translate/quotas). Machine translation, much like 
NLP tools and semantic expansion via knowledge bases, might be less accurate or unavailable 
for non-European or low resourced languages. Some of the statistical features are language inde-
pendent. However, our aim was to explore the feasibility of these methods in such problems. 
And we observed that both methods enhance the classification accuracy. The translation brings 
vocabulary in the same language, whereas the semantics align the context. Also, the 16 crises 
events were majorly across four types. Next, we aim to obtain a wider representation of crises 
types. 

Previously, 8 we performed cross-lingual experiments with balanced and unbalanced datasets. 
Unbalanced datasets, while often representing real world data distributions, create bias towards 
the dominant class. While we have managed to categorically break down the events based on 
their types, we cannot ignore the possibility of some overlap residue. In future work, we could 
take similarity measurements to quantify and reduce any such remaining overlap. 
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CONCLUSIONS 
For better use of social media platforms during crises events, it is crucial to efficiently determine 
the relevant content. In this paper, we took a wider and more realistic scope of the problem, 
where the type of the crisis, and the language of incoming content, vary a lot, which could have 
serious consequences on the validity of any given content-relevancy classification model. We 
were able to test various models, built on different approaches. Primarily, we explored the im-
pact of adding semantics and automatic language translation, independently and in combinations. 
We showed that if translation is not feasible then the combination of statistical and DBpedia 
features is the best performing approach; and if translation is viable then a combination of trans-
lation, statistical and DBpedia features is the best performing approach. 
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