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Accurate and fast recognition of Non-Cooperative Target (NCT) is an essential technology for Tethered Space 

Robots (TSR) when implementing on-orbit service. NCT is the spacecraft objects which could not be identified 

and located through the communication channels in the outer space. One of the approaches to resolve this problem 

is the use of intelligent computer vision system to track the object and hence to carry out operation and support 

tasks. By treating multi-object detection as the multi-peak optimization problem, this paper proposed a 

multi-circle detection method for recognition of circular modules on NCT and a multi-template matching method 

for other modules. Incorporating the concept of species into the Artificial Bee Colony (ABC) algorithm, a 

multi-peak optimization algorithm named as Species based Artificial Bee Colony (SABC) was proposed and 

applied to the above multi-object detection problem. In order to test and verify SABC, benchmark tests consisted 

of five multi-peak functions were conducted to verify the effectiveness for higher accuracy and shorter execution 

time in finding multiple optima. Firstly, we applied SABC into circle detection and design complete detection 

flow. Circular modules of NCT were adopted to the experiments and it was verified that the proposed multi-circle 

detection method based on SABC can locate circles with higher success rate and better accuracy than other 

methods. Furthermore, we employed SABC to multi-template matching and conducted experiments using 

simulated cases of China space missions as well as the Chang’e Camera Point System (CPS) developed by the 

Hong Kong Polytechnic University with China National Space Agency. Practical applications of multi-objects 

detection for NCT with kinds of noises, weakened brightness and shoot in continuous flights were evaluated in the 

experiments, and the results demonstrated that our methods were robust under different kinds of circumstances 

and thus confirmed its feasibility and effectiveness. 
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1 Introduction 

1.1 Background 

In recent decades, the aerospace industry has flourished [1]. Thousands of artificial satellites are running on 

various types of orbits. Between all kinds of space missions in the past few decades, many spacecrafts failed to 

enter into the track properly or became invalid in orbit. The geosynchronous orbital resources are limited, that is, 

the number of geostationary satellites that can be accommodated is limited, therefore, the orbital value is 

extremely high. Due to the failure of on-orbit devices, exhaustion of fuel, or the expiration of satellite life, some 

geosynchronous orbit satellites has been useless, but they still occupy precious orbital positions. Therefore, 

on-orbit service for such invalid (non-cooperative) satellites, such as refueling, component upgrades or arresting 

the derailments is of great significance [2]. Several on-orbit service tasks [3,4] have already been carried out . 
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On-orbit service technology has wide applications and commonly includes repairing, upgrading, refueling 

and re-orbiting spacecraft on-orbit [5]. Traditional space robots, such as the ETS-VII, Canadian Arm and Track 

Express, lack flexibility due to the rigid body structure and the length of the manipulator. The tethered space robot 

(TSR) system [6,7], as a new type of space robot, uses space tethers to overcome these shortcomings and is 

helpful for capturing NCT. The TSR includes a robot platform, a space tether, and an operating robot, as shown in 

Fig. 1. 

Fig. 1. Tethered space robot (TSR) system 

National Academies, Space Studies Board (SSB) and Aeronautics and Space Engineering Board (ASEB) 

defined NCT in the evaluation report of the maintenance plan of the Hubble Space Telescope as follow [8]: 

Non-cooperative targets are those space targets without a communication response device or active identification 

sensor and are not able to be identified and located by other spacecrafts through communication signal feedback. 

NCT have the following characteristics [9]: (1) No dedicated interface is installed to capture the docking; (2) No 

suitable reflector or sensor for measurement. (3) The movement of the target satellite cannot be controlled. 

Because the NCT cannot provide effective cooperative identification information to the tracker, it is difficulty to 

perform space operations such as grasping by mechanical arm and autonomous rendezvous and docking. 

Under the conditions without cooperation information, making full use of the natural structural features and 

surrounding features of NCT on the photos to recognize target spacecraft is the key technology for space NCT 

on-orbit service. Compared with sensors such as microwave radar and lidar, the vision-based navigation system 

has the advantages of higher precision, lower power consumption and cost [10], etc. It has become the main 

detection method for space missions in short distance. Target recognition can be acquired using the two methods, 

template-based or feature-based ones. In this paper, recognition based on shape feature and template matching is 

the emphases for research. 

Since the key structures of artificial targets are mostly composed of cubes and cylindrical modules, it is a 

worth considering method to recognize artificial targets based on simple shape features imaged by optical sensors. 

Common components installed on NCT are usually selected as the region of interest (ROI) to operate the robot 

[11], including the bolts that can separate the satellite from the rocket, the docking rings, and the apogee rocket 

engine injections, the span of solar panels and so on, as shown in Fig. 2. A proper grasping structure should be a 

necessary equipment for the spacecraft, which ensures the generalization of the grasping system and has a simple 



and reliable shape (rectangle, triangle, circle, etc.) Furthermore, another method based on template matching has 

been widely used for object recognition and tracking problems in aerospace [12-16]. The templates can be 

selected as a sub-image such as an module in NCT or an object always exists in its surroundings. In view of the 

above analysis, when charged coupled device (CCD) cameras on operating robots communicate with computer 

vision system, which consists of above advanced image detection algorithms, TSR can accurately and quickly 

capture NCT. 

Fig. 2. Common detection components on non-cooperative targets 

1.2 Related works 

Object localization based on computer vision has been widely used for grasping NCT. For example, a novel 

template matching algorithm is presented to solve the problem of NCT recognition during short-distance 

rendezvous events [17]. Chen et al. [18] introduces a novel object localization method for target grasping by 

predicting object regions before extracting them by using the features of histogram of oriented gradients and 

support vector machine, which can reduce the search area of targets remarkably and runs fast. Liu et al. [19] shows 

a practical detection method based on ellipse fitting for the adapter ring on NCT. In this paper, we first adopt 

circle-detection method to recognize circular modules on NCT. Selecting the circular modules on NCT, such as the 

circular bolts, docking ring or motor injector as grasping structure, how to accurately detect and identify NCT is 

viewed as a circle detection problem. Then template matching method is employed to recognize other modules. To 

recognize multiple objects at one same time, multi-circle detection and multi-template matching are the main work 

of this paper. 

Circle detection problem has been widely studied. Most detection methods can be classified into two 

categories: technologies based on Hough transform and least square fitting method [20]. Hough transform has 

been widely used and improved in circle detection [21-25]. For example, an improved Hough transform technique 

is applied to the development of automatic biometric iris recognition systems [23]. Least square fitting method is 

also applied to circle detection. Zelniker et al. used convolution-based least square fitting method to estimate the 

parameter of circular object [26]. Frosio and Borghese [27] employed prior knowledge of foreground and 

background statistics to estimate the likelihood of circular object parameter. However, contradiction between 

computation cost and accuracy for the methods based on Hough transform still exists, and the methods based on 

least squares have low robustness.  

The template matching approach is derived from the idea of searching for assigned image sections or given 

features within an interrelated image [28]. The template can occupy only a limited image area, or it can have the 



same size as the search image. The matching function is accomplished by exploiting a correlation relationship. 

Researchers have proposed many kinds of correlation laws, among which Sum of Hamming Distances (SHD), 

Normalized Cross Correlation (NCC), Sum of Absolute Difference (SAD), Sum of Squared Difference (SSD), and 

distance transformation ones are the most commonly used. In view of the above analysis, a template matching 

algorithm is worth considering to deal with this troublesome problem. Template matching technique has been 

widely used for object recognition and tracking problems. For example, the multi-template matching method was 

applied for for cucumber recognition in natural environment [13]. An efficient auto-detection method using a 

multi-template matching technique for PCB components detection is described [14]. Since most of the template 

matching methods are so time consuming that they can’t be used to many real time applications, Cai et al. [15] use 

coarse-to-fine searching strategy to improve the matching efficiency and propose a partial computation 

elimination scheme to further speed up the searching process. Jisung Yoo et al. [16] presents a histogram-based 

template matching method that copes with the large scale difference between target and template images. The 

degree of matching is often determined by evaluating the normalized cross correlation (NCC) value. The NCC has 

long been an effective and simple similarity measurement method in feature matching. The basic idea of template 

matching is to loop the template through all the pixels in the captured image and compare the similarity. To 

recognize NCT, the idea of multi-template matching (MTM) is the focus of this work. 

Optimization has been widely applied to various fields [29]. In essence, multi-object detection including 

multi-circle detection and multi-template matching can be viewed as optimization process of multi-peak function 

[30]. Multi-peak optimization is used to locate all the optima within the search space and has been widely studied 

by many scholars. A number of intelligent algorithms based on kinds of techniques have been proposed to solve 

multi-peak optimization problem [31-35]. A “niche” ABC algorithm is proposed since niche technology can 

maintain swarm diversity and avoid the algorithm from converging only to the global optimal solution [32]. For 

the shortcomings of insufficient search ability and low optimization accuracy, DENG Tao [33] proposed an 

improved artificial fish swarm hybrid algorithm (AFSHA) to solve the multi-peak optimization problem. In order 

to improve the swarm diversity of invasive weed optimization (IWO) algorithm, a niche weed optimization 

algorithm (NIWO) is proposed [34], which divides weed swarms according to the Euclidean distance among 

individuals in the swarm and adopts adaptive niche strategy to determine the number of categories. However, most 

multi-peak optimization methods still exist the defects of lower accuracy and longer running time. Thus, the 

concept of species is proposed to realize multi-peak optimization [31,35].  

Artificial bee colony algorithm was proposed by the Turkish scholar Karaboga [36] in 2005, and the basic 

idea is inspired by the idea that the bee colony collaborate to take honey through division of labor and information 

exchange. ABC has the advantages of faster convergence speed, less control parameters, higher searching 

accuracy, stronger robustness and more simple operation [37, 38]. WANG Jiaoyan [39] pointed out that the quality 

of solution solved by ABC algorithm is relatively good compared with Genetic Algorithm (GA), Differential 

Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm. Such characteristics have motivated 

the use of ABC to solve different sorts of engineering problems such as signal processing [40], flow shop 

scheduling [41], structural inverse analysis [42], clustering [43], vehicle path planning [44] and electromagnetism 

[45].  



In view of the above analysis, the aim of this paper is to propose a species based artificial bee colony 

algorithm (SABC) for multi-peak optimization and further to solve the multi-object detection for NCT. The rest of 

this paper is organized as follows: ABC algorithm will be briefly introduced in Section 2. Section 3 gives detailed 

description of the novel algorithm SABC and verifies its optimized performance for multi-peak functions. Section 

4 applies SABC to circle detection and illustrates the method to evaluation the circular integrity and accuracy. In 

section 5, we provide contrast experiments on circular modules of NCT in various environments to verify the 

proposed circle-detection method. Similarly, SABC is employed by MTM and further applied to recognition of 

NCT in Section 6. Section 7 concludes this work. 

2 Artificial Bee Colony Algorithm 

The basic model for the bee colony to achieve collective wisdom contains four elements: food sources, 

employed bees, onlooker bees and scouts, and two basic behaviors: recruitment of bees and the abandonment of 

food sources [36, 38]. The process that bees search food sources can be summarized as the following three steps: 

a) employed bees find food sources and share the food sources information through waggle dancing; b)

onlooker bees choose food sources to take honey according to the food sources information provided by employed

bees; c)  if the quality of certain food source is not improved after several trials, the employed bee gives up the

food source, and becomes a scout near the hive to continue to search for a new food source. When high-quality

food source is found, it will turn into an employed bee.

ABC algorithm is put forward as a swarm intelligence algorithm by imitating the bee's honey-taking behavior. 

ABC algorithm is different from genetic algorithm and other swarm intelligence algorithms, with role conversion 

as its unique mechanism [36, 38]. The bees collaborate to find high-quality food sources by the conversion of 

three different roles: employed bees, onlooker bees and scouts [36]. In the optimization process of ABC algorithm, 

the roles of the three kinds of bees vary: employed bees maintain the quality of solution; onlooker bees improve 

the convergence rate; scouts enhance the ability to get rid of the local optimal [38].  

The algorithm is to start from a randomly generated initial swarm. Then half of the individuals with better 

fitness values begin search, and competitive survival strategy is used to reserve individuals, which is called 

“employed bees search”. The other half with worse fitness values are treated as the onlooker bees and scouts. Each 

onlooker bee uses the "roulette wheel selection" method to select a good individual, and greedily search round it to 

form another half of new swarm. This process is called “onlooker bees search”. The individuals generated by 

employed bees and onlooker bees form a new swarm, meanwhile, “scouts” are introduced to the new swarm to 

avoid loss of swarm diversity. After the abovementioned processes, the swarm completes the update for once. The 

algorithm approaches the optimal solution through iterating and calculating continuously, preserving good 

individuals and giving up inferior individuals. 

A nonlinear minimization problem is taken as an example to describe the operation process of ABC algorithm 

in detail. The problem of minimizing the nonlinear function can be expressed as L Umin f(X), XX X≤ ≤ , where 
UX  and LX  are the upper and lower bounds respectively of the variable 1 2( , ,..., )nX X X X= , and X  is the n

-dimension vector. To solve a nonlinear minimization problem by ABC algorithm, the first step is to generate the



initial swarm containing NP  individuals within the range of X . Assuming maximum cycles number of the 

algorithm is maxCycle , the i - th  individual in the t - th  iteration swarm can be expressed as 
t t t
i i ix = (x (1),...,x (n)) , where i = 1,2,...,NP

. 

Steps of the ABC algorithm are described as follows: 

a  Initialization 

Generate the NP  individuals randomly satisfying the constraint in the search space of the optimization 

problem to form an initial swarm. The employed bees are consisted of the first half of the individuals with better 

fitness values, and the other half performs as the onlooker bees and scouts. 

b  Employed bees search 

Each employed bee generates a new food source in the neighborhood of its present position. A greedy 

selection process is applied. If the fitness value of the new is better, then old solution is replaced; otherwise, the 

old remains. 

c  Onlooker bees search 

Each onlooker bee selects one of the new employed bees. The probability of selecting an employed bee is 

proportional to its fitness. After the employed bee is selected, the onlooker bee will go to the selected employed 

bee and select a new food source position inside the neighborhood of the selected employed bee. If the fitness of 

the new solution is better than before, such position is adopted; otherwise, the last solution remains. 

d  Scouts search 

If an individual isn’t improved further through for a predetermined number of cycles noted as Limit , the 

corresponding individual change into a scout generated randomly. 

3 Species based Artificial Bee Colony Algorithm 

Multi-peak optimization is used to find all the optima in the search space. This optimization problem has 

been widely concerned by scholars. A number of similar algorithms have been proposed [31-35]. Inspired by [35], 

this paper introduces the concept of species into the ABC algorithm, and proposes a novel algorithm called species 

based the artificial bee colony (SABC) to solve multi-peak optimization problem. 

3.1 Species 

The introduction of species to swarm intelligent optimization algorithm has been proven to be a feasible 

method to solve multi-peak optimization problem [31, 35]. The species technique aims to generate multiple 

species in parallel by dividing the large swarm and search synchronously for multiple optima. The core of the 

SABC algorithm is the concept of species. A species can be defined as a group of individuals with similar 

characteristics. This similarity can be determined by the European distance. The shorter the European distance 

between the two individuals, the greater their similarity is. A distance parameter sγ  is introduced to donate the 

distance between the species center and the edge. The center of a species, also called species seed, is usually 



defined as the individual with the highest fitness value. All individuals within sγ  from the seed are considered to 

belong to the same species.  

Steps of dividing the swarm into species can be summarized as follows: 

a  Rank all individuals by fitness values (in descending order) 

b  Find the individual with the highest fitness value as the first species seed 

c  Assign each individual to different species according to Euclidean distance and determine the seeds of each 

species. 

d  Repeat steps c  until all individuals are divided. 

The Fig. 3 illustrates the iterative process of dividing species. 

Taking the optimization objective function with four global optima for example, the swarm distributions in 

iterative order are shown in Fig. 3. Fig. 3 a is the swarm distribution after initialing, and it is evenly distributed. 

Then the swarm is divided into four species and searches within every species for several times. Fig. 3 b shows 

the updated swarm, and the four species and their seeds are indicated. After several iterations, as seen from Fig. 3 

c, the swarm converged to the four best values gradually and the species are more obvious. The final distribution 

is as Fig. 3 d, and all individuals are almost around the four optima. In this process, the bee colony evolves 

gradually as iteration, and finally the algorithm locates all the optima successfully. 
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Fig. 3. Iterative process of dividing species 

3.2 Species Based Artificial Bee Colony Algorithm 

Here, we propose a new multi-peak optimization algorithm SABC by incorporating the concept of species 

into ABC. The novelty of SABC lies that it searches according to ABC mechanism within species instead of the 

whole swarm. In SABC, after initializing and ranking the fitness values of all individuals, the swarm is divided 

into some species according to the Euclidean distance as described in section 3.1, and each species searches 

independently as ABC mechanism.  

Initialization is given in formula (1), where UX  and LX  are the upper and lower bounds respectively, NP  
and D  are the individuals number and dimension, and Foods  is the position vector storing the position of all 

individuals. At the same time, a vector Bas  is initialized to record the number that each individual stays in the 

same location continuously. 

( )L U LFoods X X X rand(NP,D)= + − ⋅  (1) 

Referred to Figure. 4, the principle of SABC is illustrated in detail. As seen from Fig. 4 a, the individuals are 

distributed evenly in the search space after initialing. Then all individuals are divided into some species and the 

seeds are determined. The locations of individuals within every species are stored in sFoods{q}  separately, and 

the corresponding flags are stored in sBas{q} , where the parameter q  is used as an index to distinguish species. 

Fig. 4 b illustrates how to divide the swarm into species, where the discrete points donate individuals. Here, the 

number of species is assumed as three, but in fact, the number and scale of the species are also related to sγ  and 

the range of search space. The locations of the seeds are also pointed out in Fig. 4 b, and it can be seen that every 

species is composed of the individuals within the globe whose center is the seed and the radius is sγ . After 

determining the species, the individuals within species are divided into three the kinds of bees to start search. As 

shown in Fig. 4 c, three different colors are used to show three kinds of bees. The method of determining three 

kinds of bees has been described in section 2. 

Employed bee: within species, every employed bee will search a new food source according to formula (2). 

sol{q}(i, j)= sFoods{q}(i, j)+(sFoods{q}(i, j) - sFoods{q}(neibour, j)) (rand - 0.5) 2⋅ ⋅ (2) 

Where i  and j  respectively represent index of a randomly chosen employed bee from the current species 

and its random dimension, neibour  represents a randomly chosen employed bee in addition to i . sol{q}(i, j)  

and sFoods{q}(i, j)  respectively represent new food source and the current food source. Different from ABC, 

since SABC searches within species, all formulas are added the 'q' . Then fitness values of sol{q}(i, j)  and 

sFoods{q}(i, j)  are compared and the better is reserved using greedy selection. If the employed bee keeps the old 

food source, the flag vector should be updated as 1sBas{q}(i)= sBas{q}(i)+ . This is “employed bees search” of 

SABC. 

Then, probability vector P{q}  is obtained by formula (3) for employed bees in every species, which is 

proportional to honey in food source.  



P{q}= (0.9 sFitness{q} / max(sFitness{q}) 0.1⋅ + (3) 

Onlooker bee: every onlooker bee selects a good food source sFoods{q}(i, j)  from the updated employed 

bees using the "roulette wheel selection" method. As known from the formula (3), the food source with greater 

fitness has more probability to be selected, so that the swarm constantly converges. Then, the onlooker bee 

searches a new food source sol{q}(t, j)  in the neighborhood of sFoods{q}(i, j) , as formula (2). Finally, 

sFoods{q}(i, j)  and sol{q}(t, j)  are compared to reserve the better as a new onlooker bee. This is the “onlooker 

bees search” of SABC. 

Scout : after all employed bees and onlooker bees search, if some bee i  keeps in a same location for Limit  

times, that is sBas{q}(i) Limit> , the current food source will be abandoned and the bee will become a scout. The 

scout will randomly search a new food source in the search space as formula (1), so that the swarm diversity 

won’t be lost. This is “onlooker bees search” of SABC. 

In one cycle, all species independently search once according to the above process. Finally, both the location 

sFoods{q}  and flag sBas{q}  of every species are restored respectively in Foods  and Bas  to prepare for 

next iteration.  

divide 
species

divide the bees
 into three kinds

employed bees
onlooker bees
scouts

a c

seedseed

b

Fig. 4. Principle of SABC 

According to principle, the implementation of SABC can be summarized by the following steps: 

Step 1. Initialize following parameters: the number of individuals NP , the maximum of keeping in the same food 

source continuously Limit , maximum cycles maxCycle , the current cycle iter , the number of scouts 

SearchNumber  and the radius of species sγ . The location and flag vector of swarm are named as Foods  and 

Bas  respectively. 

Step 2. Divide species and determine the seeds. Rank all individuals in descending order and divide them into 

species according to steps in section 3.1. Individuals belonged to species q  are stored sFoods{q}  and their 

flags vector is called as sBas{q} . For species q , the following steps a - e  are executed: 

a . Within the species q , individuals are classified into three kinds of bees according to the fitness values, and 



the flag vector sBas{q}  is used to record how many times the bees keeping in the same food source 

continuously. 

b . Every employed bee i  searches for a new food source. If the new is better than the current food source, 

the current location of the food source is replaced, and sBas{q}(i)  is reset as zero, otherwise update the flag 

vector as 1sBas{q}(i)= sBas{q}(i)+ . 

c . Calculate probability probability vector P{q}  according to fitness of employed bees. Every onlooker bee 

chooses an employed bee in probability P{q}  and search around it to generate a new food source, then reserve 

the better one. 

d . If the number of certain employed bee or onlooker bee keeping in same location continuously more than 

Limit , the bee will give up the current food source and become a scout to search a new food source. 

e . If the species q  achieves the above search process, the updated location sFoods{q}  and the flag vector 

sBas{q}  are restore into the swarm. 

Step 3. Two stop criteria are employed: either all optima have been found or the number of cycles iter  attains 

an upper limit maxCycle . Output locations and fitness corresponding to seeds of all species if a termination 

criterion is met.  

The procedure of SABC is exhibited in Fig. 5. 
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Fig. 5 Flowchart of SABC 

3.3 Benchmark test 

Five benchmark functions are used to test the performance of the newly proposed method. Table 1 shows 

definition, range of variables and comment of the test functions. All above benchmarks are maximization of 

objectives. An Intel (R) Core(TM) i5-6500 CPU @ 3.20GHz 8.00G RAM computer is used to execute all 

experiments under MATLAB programming. 



Table 1 Benchmark test functions 

Function Range comment 

6F1(x)= sin (5 x)π  [0,1] 
Five global optima 

with equal heights 

2
6x - 0.1F2(x)= exp -2log(2) sin (5px)

0.8
  ⋅ ⋅     

[0,1] 
One global optimum 

and four local optima 

3
4 0.056F3(x)= sin (5 (x ))π −  [0,1] 

Five global optima 

unevenly spaced 

2 2 2 2F4(x, y)= 200 - (x + y - 11) - (x + y -7) [-6,6] 
Four global optima 

with equal heights 

2 2sin(4 y - x) sin(2 x)F5(x, y)= (1 - 2y - ) +(y - )
20 2
π π

[-10,10] 
Five global optima 

with equal heights 

Table 2 Benchmark test results 

Function Measurement sγ SGA SPSO SABC 

F1 

Accuracy 

Time (s) 

Success rate* (%) 

0.1 

-7.92 e-05±2.58 e-04

0.5851 

100 

0±0 

0.2252 

100 

0±0 

0.0622 

100 

F2 

Accuracy 

Time (s) 

Success rate* (%) 

0.1 

-3.60 e-04±3.09 e-05

0.6265 

96 

-1.56 e-05±2.02 e-04

0.0726 

100 

-7.23 e-06±1.17 e-06

0.0385 

100 

F3 

Accuracy 

Time (s) 

Success rate* (%) 

0.1 

-4.58 e-05±6.39 e-05

0.6646 

94 

0±0 

0.1171 

100 

0±0 

0.0693 

100 

F4 
Accuracy 

Time (s) 
3 

-0.0763±7.94 e-03

0.6375 

-2.39 e-07±8.94 e-07

0.6654 

-1.80 e-09±1.00 e-09

0.2155 



Success rate* (%) 100 100 100 

F5 

Accuracy 

Time (s) 

Success rate* (%) 

0.15 

0.0815±4.79 e-03 

0.6931 

100 

7.62 e-03±6.37 e-04 

0.3614 

100 

5.05 e-04±5.45 e-05 

0.1503 

100 

* The success rate represents the percentage of finding all the optima successfully in 50 trials

In order to enhance the algorithm analysis, the concept of species is also introduced to GA and PSO to 

compare with SABC [30]. The experimental parameters are fixed as: 2000maxCycle = , 60NP = , 20Limit = . 

The inertia weight ω  and the acceleration coefficient 1 2c ,c  of SPSO are set as 2 and 0.85 respectively. 

Crossover probability and mutation probability of SGA are set as 0.75 and 0.1 respectively. Other parameters are 

the same as SABC. Each algorithm runs 50 times, the related indictors are recorded in Table 2 to show the 

optimization performance. 

As can be seen from Table 1, F1 , F2  and F3  are univariate functions, while F4  and F5  are bivariate 

functions. And F1  F4  and F5  all have global optima with equal heights, while global optima of F2  and 

F3 are unevenly distributed. It can be observed from Table 2, SPSO and SABC can locate all the optima every 

time for all functions, while SGA has 96% and 94% success rate for F2  and F3 , which means SGA has 2 and 3 

misdetections out of 50 trials. Considering execution-time needed in these three algorithms, SABC works faster 

for each function. Then, comparing the optimization accuracy, optima solved by SABC are the most stable and 

closest to the theoretical values.  

After experiments and comparison, it can be concluded that the proposed algorithm SABC has excellent 

performance in multi-peak optimization problem. 

4 The application of SABC in circle detection 

In this section, multi-circle detection is considered to be a multi-peak optimization problem, and we design a 

multi-circle detection method by employing SABC. The three-edge-point positioning method [30] is used to 

represent a circle, which can effectively narrow the search space and eliminate the infeasible location. 

4.1 Representation of the circle 

In this representation method, all edge points in the image are stored as an index to their relative position in 

the edge array V  after extracting edges. Three edge points stored in the form of a sequence number 

corresponding to their coordinates , ,i j kV V V  can determine a circle passing through them. Each circle is

represented by center ( )0 0x , y  and radius. Through coordinates of three points on the edge map, the circle C
passing through them can be determined by the following formulas: 

2 2 2
0 0(x - x ) +(y - y ) = r (4)
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Thus, the parameters of circle can be represented by sequence numbers of three edge points , ,i j k : 

[ ]0 0x , y ,r = T(i, j,k)  (7) 

Where T  is the transformation composed of the computations formula (4-6) . 

The test set for the points is { }1 2, ,..., NsS s s s= , where sN  is the number of tested points on the circle edge, 

and the test set of points S  is sampled uniformly from the circle edge. Each point is  is a two-dimensional vector, 

and its coordinates i i(x , y )  is obtained according to the following formula: 

0

0

2cos

2sin

i
s

i
s

ix x r
N

iy y r
N

π

π

 = + ⋅

 = + ⋅


(8) 

4.2 Assessment of circular accuracy 

Each circle corresponds to an individual in the swarm, and the algorithm finds the optimal solution, that is, 

the circle is detected. Generally, the fitness function is used to assess individuals. Here, for assessment of circular 

accuracy, the fitness function indicates the existence situation of tested points over the edge in the actual circle, 

and it is defined as: 

1

0
(C) ( ( , )) /sN

i i si
F E x y N−

−
= ∑ (9) 

Where ( , )E x yi i  is gray value of the coordinates ( , )i ix y  on the image, so [ ](C) 0 255F ∈ . The fitness

value reflects the degree of overlap between the circle constructed by the test points and the circle presented in the 

actual image. Therefore, the greater (C)F  implies better accuracy. For clarity, a parameter CP  is defined to 

evaluate the percentage of coinciding with the actual circle. 

/c t sP N N= (10) 

Where Nt  is the number of test points that are actually present in the edge image, so [ ]0 1CP ∈ . The 

greater CP  also implies better accuracy. Guided by this fitness function, the set of candidate circles 

corresponding to all seeds is evolved using the SABC algorithm so that the multiple optimal candidate circles can 

fit into actual circles. A circle will be seen as being correctly detected if the corresponding individual fitness meets 



the set value (180), and its center 0 0x , y  and radius r  are determined. Then differences with the theoretical 

values of the actual circle , ,x y r∆ ∆ ∆  [46] are computed to describe detection accuracy. 

The complete process of the proposed multi-circle detection algorithm based on SABC is exhibited in Fig. 6. 

Initialize  a colony randomly in the 
range [1, k], set the relevant parameters: 

NP, Limit, maxCycle, Iter, Bas

Calculate  fitness values of all 
individuals, divide bees into species

Search within species according to 
SABC algorithm 

Output mean values of optimal circles, 
including :time, Pc, success rate, Δx, Δy, 

Δr and detection result

Acquire image

Obtain edge image by canny operator, 
and count the number of edge pixels 

“k”

Reduce noise

Fig. 6 Flowchart of the circle detection method based on SABC 

It is worth mentioning that the number of detected circles is a pre-set value, and the algorithm searches until 

all circles has been correctly detected or the cycle reaches maxCycle . 

5 The application of SABC in multi-circle detection 

In this section, two test images are firstly introduced for experimental tests to verify SABC’s performance in 

circle detection, then the method is further applied to detect circular modules on NCT. 

5.1 Test experiments on drawn sketches 

Two test images with randomly distributed circles are firstly used to test the proposed performance of 

multi-circle detection method. The distance between two individuals in a species is defined as the distance 

between the centers of the circles corresponding to the two individuals. The number of circles in each test image 

and the distance between the circles are known, and the species radius sγ  is set as a smaller value than the 

distance between the two nearest circles. Fig. 7 exhibits the test images, detection results in edge maps, detection 

results in original images, and the detected circles and its centers are marked with the same color. 

The algorithm parameters are set as: NP = 500 , maxCycle = 2000 , Limit = 30 , 200sN = , sγ  of two 

images are considered as 170 and 100 respectively. The inertia weight ω  of SPSO is adjusted between 0.2 and 

0.9, and acceleration coefficient 1 2,c c  are set as 2. Crossover probability and mutation probability of SGA are set 

as 0.75 and 0.1 respectively. 



Original images Edge images Detection results

(a) Three circles

(b) Six circles

Fig. 7. Test images and the detection results 

Each algorithm runs independently for 50 times. The running results including average execution time, the 

average and standard deviation of the CP , the success rate and ( , ) / rx y∆ ∆ ∆  are given to show performance of 

SABC in Table 3.  

As can be seen from the running results, for Fig. 7, only SABC algorithm can locate all circles every time, 

while SGA and SPSO algorithm have several failures. Specifically, for Fig. 7. b, the success rate of SGA and 

SPSO algorithm only can reach 82% and 80%, which means that 9 and 10 times out of 50 experiments fails to 

locate all circles. As far as execution time, the new algorithm SABC works fastest and time consumption is stable, 

while the SPSO and SGA use too long time. Furthermore, CP  of SABC can reach 96% and 93%, which is higher 

than that of SPSO and SGA and indicates higher coinciding rate and detection accuracy. 

From the results, SABC can locate multiple circles with high success rate and accuracy as well as less 

computational time. All the above demonstrates good performance of SABC in multi-circle detection. 

Table 3 The running results on the two test images out of 50 runs 

Image Method SGA SPSO SABC 

Figure. 7 a Average time(s) 3.2966 2.6328 1.8633 



CP  (A. v and S. d) 0.9120±0.0503 0.9285±0.0363 0.9637±4.56 e-04 

Success rate (%) 88 90 100 

( , ) /x y r∆ ∆ ∆ (0.32,0.68)/0.46 (0.22, 0.39)/0.34 (0.11, 0.35)/0.25 

Figure. 7 b 

Average time(s) 3.9778 3.1350 2.0709 

CP  (A. v and S. d) 0.9076±4.32 e-02 0.9183±1.05 e-04 0.9391±2.69 e-05 

Success rate (%) 92 94 100 

( , ) /x y r∆ ∆ ∆ (1.01, 0.52)/0.53 (0.42, 0.24)/0.42 (0.39, 0.19)/0.31 

* The success rate represents the percentage of finding all circles successfully in 50 trials.

5.2 Detection for circular modules on non-cooperative targets 

In this section, the results of the application of SABC for circular modules on NCT were reported and 

compared with SGA and SPSO. Moreover, to fully verify our method, another approach GHC [46] was used as 

contrast, which is based on region-growing of gradient and histogram distribution of Euclidean distance and has 

been proved to be better than many other methods. As classical circle-detection method: Randomized Hough 

transform (RHT) [47] was also introduced for comparison. 

For us, photographs of real rockets, spacecraft or space stations are difficult to obtain limited to 

confidentiality and cost. So it is a desirable method to use photographs of real models of these spacecraft. In our 

experiments, the models of spacecraft “Shenzhou 8” and space station ‘‘Tiangong 1” from China were used as 

shown in Fig. 8 [46]. As shown in Fig. 8, there are several circular components on the model, such as a hatch gate, 

docking rings, nozzles of engines, antenna of radar, etc.  

Fig. 8 The models of spacecraft ‘‘Shenzhou 8” and space station ‘‘Tiangong” 

As shown in Fig. 9(a)–(d), four circular modules were used to test performance of the five methods. (a) is a 

circular antenna. (b) is the image of docking ring. (c) and (d) show the motor injectors. After running all methods 

on four images, the detected results were also shown in Fig. 9. Among the four images, (a) has a single circle, 

others have multiple circles, on which the multiple-circle recognition capability can be tested. It is observed that, 

for the simple image (a), the five methods all can detect the circle successfully. With the number of circles 

increasing in (b) and (c), detection by the first four methods stills were correct, while the RHT began misdetection 



and missed detection. Specifically, RHT detected false circle in (b) and missed the correct circles in (b) and (c). 

Then in (d), GHC was also defeated by the three methods based on optimization algorithms due to a missed 

detected circle. So, as far as the correctness of detection results, the SGA, SPSO, and SABC work better than 

GHC and RHT. Moreover, the experiments (b), (c) and (d) also reflect the good performance of our method in 

multiple-circle recognition. 

Table 4 showed the comparison results between SGA, SPSO and SABC dealing with the above four images. 

From the table, the data intuitively indicated that method based on SABC performs best from execution-time, 

accuracy, success rate, deviation with theoretical values, which once again confirmed the previous results. 

The contrast between SABC, GHC and RHT was shown in Table 5. As it shown, we can find that the average 

time consumption of our method is much less than others’. Further, the detection deviation ( , ), rx y∆ ∆ ∆  by 

SABC were much smaller. 

Fig. 9 Detection results for circular modules on non-cooperative targets 

Table 4 The running results of the three algorithms on Fig. 10 

Image Algorithm SGA SPSO SABC 

Figure. 9 a 

Average time(s) 2.0754 1.2046 0.9523 

CP  (A. v and S. d) 0.8427±0.7376 0.8893±0.4823 0.9273±6.28 e-04 

Success rate (%) 92 96 100 

( , ) /x y r∆ ∆ ∆ (0.36,0.49)/0.57 (0.32, 0.27)/0.48 (0.11, 0.19)/0.35 

Figure. 9 b 

Average time(s) 2.9658 2.0134 1.1731 

CP  (A. v and S. d) 0.8936±6.85 e-02 0.9073±6.42 e-04 0.9264±5.53 e-05 

Success rate (%) 94 94 100 

( , ) /x y r∆ ∆ ∆ (0.57, 0.61)/0.63 (0.50, 0.54)/0.73 (0.49, 0.35)/0.41 

Figure. 9 c 

Average time(s) 4.0738 3.1692 2.3764 

CP  (A. v and S. d) 0.8274±4.74 e-02 0.8536±2.85 e-04 0.9163±7.23 e-04 

Success rate (%) 90 92 100 

( , ) /x y r∆ ∆ ∆ (0.61, 0.52)/0.68 (0.73, 0.44), 0.62 (0.58, 0.39), 0.43 

Figure. 9 d 
Average time(s) 4.3854 3.9435 2.6852 

CP  (A. v and S. d) 0.8037±2.89 e-02 0.8463±3.64 e-04 0.8846±6.93 e-04 



Success rate (%) 92 90 100 

( , ) /x y r∆ ∆ ∆  (1.25, 0.63),0.76 (0.97, 0.56),0.82 (0.82, 0.46),0.63 

* The success rate represents the percentage of finding all circles successfully in 50 trials.

Table 5 The running results by SABC compared with GHC and RHT 

Image Algorithm SABC GHC RHT 

Figure. 9 a 
Average time(s) 0.9523 1.56 1.09 

( , ) /x y r∆ ∆ ∆  (0.11, 0.19)/0.35 (0.36,0.47)/0.52 (0.25, 0.34)/0.37 

Figure. 9 b 
Average time(s) 1.1731 1.80 2.42 

( , ) /x y r∆ ∆ ∆  (0.49, 0.35)/0.41 (0.65,0.58)/0.61 NAN 

Figure. 9 c 
Average time(s) 2.3764 3.7 0.91 

( , ) /x y r∆ ∆ ∆  (0.58, 0.39), 0.43 (0.72,0.63)/0.72 NAN 

Figure. 9 d 
Average time(s) 2.6852 2.74 3.53 

( , ) /x y r∆ ∆ ∆  (0.82, 0.46),0.63 NAN NAN 

5.3 Detection performance with noise 

The first step in our method is to denoise the images, here a further set of experiments was performed in 

order to evaluate the tolerance of the our method if the original image was directly affected by noise. In the tests, 

we added gaussian noises, speckle noises and salt & pepper noises to the same image separately. Noises of 

different parameters were added to original images and then they were detected by our method.  

Fig. 10 Detection results with noise 

Fig. 10 exhibits two original images: a circular component with two circles. With noise parameters gradually 

increasing from the default value, the detection results are demonstrated in Fig. 10. As observed in Fig. 10, our 

method acquired a good detection result when default parameter. Then the noise intensity was gradually 

increasing. When the images were seriously interfered with noise, the results were not ideal. Specifically, the 

method failed to find the small circle in Fig. 10 when the noise was big enough. Focusing on the misdetections, 

we can discover the undetected circles are indeed too blurry to recognize through human vision, so the 

misdetections by our method can be accepted.  

Based on the results, we can conclude that our method acquires a good detection result under default 

parameter, and Gaussian noises, Speckle noises or Salt and Pepper noises didn’t affect the detection process and 

thus, the proposed method is robust and stable to moderate noises. 

5.4 Detection performance in different light intensity 



Actually, the images photographed under weak light may be not clear. To test the detection performance in 

weaken light, Fig. 9. b and Fig. 9. d were dimmed to compare with the detection results in normal. Fig. 11 shows 

the detection results with the gradually weaken light intensity.  

From the edge maps, we can find that the extracted edges become less when light weakens, which increases 

difficulty for detection. Observing all results, all circles were detected except for only one misdetection in the 

darkest image of Fig. 11. a, in which two small circles were undetected, while detection results on Fig. 11. b were 

all correct. In fact, the missed circles are almost impossible to be identified, which makes the failure of our 

method understandable. 

All the above, we can obtain satisfied results by the method in most cases. Thus, we come to a conclusion 

that the proposed method is effective for detection when light intensity weakens. 

Fig. 11 Detection results with gradually weakened brightness 

5.5 Detection performance during continuous flight 

In the above experiments, images are some static circular components. Although our method performed well 

on these images, it is worth considering the detection performance during continuous flight. Hence, other 

experiments were designed to test the performance during continuous flight. In reality, the circle may be deformed 

and the size of circle may change dramatically due to the movement. Consider the problem of circular 

deformation, the detected circle is perfect no matter how the actual circle deforms, which means the coincidence 

degree between both lowers when serious deformation. In our method, when their coincidence degree meets the 

pre-set value, the circle is considered to be correctly detected. Therefore, to ensure that the circle is still detected, 

lowering the set value is a feasible method when the circle is slightly deformed. However, if deformation is severe, 

our method is also ineffective. Furthermore, our method limits the radius for detected circle. So during continuous 

flight, expanding the range of radius also is helpful for successful detection. 

Here, photos taken during continuous flight of spacecraft were collected from Apollo 9 Magazine for 

experiments. Detection results on two spacecrafts from four continuous views are shown in Fig. 12. From the 

images, we can find that the spacecrafts are gradually become larger with the approaching, and the circles are not 

perfect, which transform to be a shape more like an ellipses. Despite this, our method always finds the two circles 

in Fig. 12. a and the one circle in Fig. 12. b successfully. The slightly transformation does not affect the detection 

results.  

It can be seen obviously that the proposed method is capable of dealing with slightly deformed and gradually 

approaching circles. From all the above experiments, it is enough to prove that our method can achieve excellent 

performance during continuous flight of spacecraft.  

Fig. 12 Detection results during continuous flights 



6 The application of SABC in multi-template matching 

 To enrich multi-object detection, SABC was further introduced into multi-template matching. Similar to 

multi-circle detection, here, we employed SABC to search multiple templates on edge images at one time. The 

multi-template matching problem is formulated as in [48].  

Here, the impact of the SABC algorithm was also evaluated using the open source data set from Chang’e 3 

space mission [49]. The Chang’e 3 space mission from China was successfully launched and the rover “Yutu” 

landed on the moon’s surface in December 2013. However, due to certain technical problem with the solar control 

panel, the rover was not able to travel to the pre-setting destination. At the limited driving range, the rover had 

been operated for over three years on the moon and thousands of photos were obtained in this mission. Using the 

improved Tethered Space Robot in future would help operate and repair the rover and overcome the problem of 

such NCT recognitions and control. 

We used several images from the China’s Chang’e 3 Lander to test our new algorithm. The results provided 

various insights to the development of the Camera Pointing System (CPS) which was mounted on the Lander for 

capturing images of the moon and rover for Chang’e space mission. The CPS developed by the Hong Kong 

Polytechnic University in the early 2013 was used to capture images of the moon as well as the movement of the 

rovers [49-52]. It was capable of 360 degree for image capturing as well as positioning and navigating of the rover. 

In future, the TSR embedded with ABC algorithm can be used for the operation and repair of the rover or 

equipment in the Chang’e missions. In this paper, we tested the proposed method and evaluated the feasibility for 

future space missions of Chang’e. Based on our past experience of the CPS, the proposed SABC algorithm could 

enhance the operation and repair services using TSR system in the future. 

6.1 Multi-template matching by SABC 

Multi-template matching based on the proposed algorithm SABC was applied on three images obtained from 

Chang’e 3, including two rovers and one lander. To be clear, we recorded the template position detected in the 

edge images through MATLAB, and then marked the corresponding detection results on the original images, as 

shown in Fig. 13. Both detected templates were 50×50 pixel in size, and the detected areas were marked with the 

same color as the templates. For comparison, SPSO-based MTM algorithm and SGA-based MTM algorithm [48] 

were also introduced. The performance of the three algorithms is exhibited in Table. 6. 

Fig. 13 Multi-template matching results in the Chang’e missions 

As shown in Table 6, the proposed SABC outperformed other two template matching methods. In case of the 

running time, the SABC-based template matching needed shorter time than SGA and SPSO. Meanwhile, among 

the three images, templates were correctly recognized and positioned in different frames. The targets were 

correctly identified and matching by SABC only failed twice in fifty trials in Fig. 14. b. In general, the correct 

recognition rate was more than 96%, which was quite acceptable. 

Table. 6 Matching performance of SABC, SPSO and SGA 



Image Algorithm SABC SPSO SGA 

Figure. 13 a 

Maximum execution time (s) 

Maximum execution time (s) 

Average time(s) 

0.6825 

2.2408 

1.1498 

0.9672 

3.0895 

1.4973 

1.3974 

3.0137 

1.8804 

Success rate (%) 100 98 96 

Figure. 13 b 

Maximum execution time (s) 

Maximum execution time (s) 

Average time(s) 

0.7317 

3.0325 

1.3684 

0.9738 

3.2870 

1.6505 

1.0368 

3.4693 

2.0737 

Success rate (%) 96 92 90 

Figure. 13 c 

Maximum execution time (s) 

Maximum execution time (s) 

Average time(s) 

0.3026 

0.8286 

0.4194 

0.5964 

1.9685 

1.0875 

1.0568 

2.4502 

1.7653 

Success rate (%) 100 96 94 

* The success rate represents the percentage of finding all circles successfully in 50 trials.

6.2 Multi-template matching for blurred images 

 Considering that the captured image may be blurred during the movement of the target, here the blurred 

images were introduced to verify the MTM based on SABC in blurred images and then the defuzzified images 

were detected again. Fig. 14 gives the results, and the two templates are found in the area with same color frame 

of original images.  

 As depicted in Fig. 14, although the templates were very blurred, the matching results all were right. The 

average time consumption for blurred images is respectively 1.8 s and 1.2 s, which is a little longer than the clear 

images. And their success rate for the two blurred images can achieve higher than 96%. Thus, conclusions can be 

drawn that our multi-template matching is also applicable for moving targets. 

(a) Detection for blurred Lunar Rover

(b) Detection for blurred Lander

Fig. 14 Multi-template matching results for blurred images 

6.3 Multi-template matching for images with noises 

 Experiments were further conducted to show whether the detection performance are affected by noise. To 

simulate the actual situation, two images added three kinds of noises were used for experiment, while the 



templates were no noise added. Fig. 15 shows the matching results by MTM based on SABC. 

As shown in Fig. 15, the original images have been added noises, while the templates were the same as that 

in Fig. 15. Despite of this, it can be seen that the template images were matched relatively well. During the 

experiment process, the noise parameters all were default values, and we find that mismatching will occur when 

the noises are big enough. Moreover, despite of the added noises, time needed is still around 1-2 s, which has no 

much increase, and the success rate stays more than 90%. So it can be concluded that our method is robust to 

general noises. 

(a) Detection for Lunar Rover with noises

(b) Detection for Lander with noises

Fig. 15 Multi-template matching results for images with noises 

7 Conclusions 

With the exploration and use of human beings in outer space, there are more and more kinds of discarded 

spacecraft left in space. But the orbital resources are limited and invalid satellites have become obstacles to 

current and future space activities. Therefore, the implementation of on-orbit service for space debris is essential. 

Such non-specific identifiers and failure to communicate are often called non-cooperative targets (NCT). Accurate 

and fast recognition of NCT is an essential technology for Tethered Space Robots (TSR) when implementing 

on-orbit service. For such targets, recognition based on intelligent computer vision system has more advantages 

than other methods. This paper proposes a multi-object detection method of NCT based on Artificial Bee Colony 

Algorithm. 

In this paper, incorporating ABC with the concept of species, a novel algorithm SABC for the multi-peak 

optimization problem was firstly proposed. Its novelty is that multiple species generated in parallel search 

synchronously as ABC algorithm, so that all multiple optima can be found. The update mechanism and iterative 

process of SABC were given in detail. In contrast to ABC algorithm finding only one optimal solution in one 

iteration, the proposed SABC algorithm is able to find single or multiple optima by running only one optimization 

cycle. In order to evaluate the performance of the proposed algorithm, experiments over five benchmark test 

functions were executed. After comparison with SGA and SPSO, the results showed that the new SABC algorithm 

can solve multi-peak optimization problem with higher accuracy and better success rate in shorter time.  

Further, considering the multi-object detection problem to be a multi-peak optimization process. SABC was 

applied to the multi-circle detection and the multi-template matching. The total flow of the circle detection can be 

summarized three main steps: reducing noise, extracting edge of the original image, then SABC searching for 

circles in the entire edge-map by using a combination of three edge points as candidate circles. A function was 

defined to measure the existence of a candidate circle over the actual circle. Guided by this function, candidate 

circles in every species are evolved using the ABC algorithm so that multiple circles can fit into actual circles 

synchronously. Similarly, SABC was also employed by multi-template matching, so the multiple templates can be 

detected at once. Then, our proposed multi-object detection method, including multi-circle detection and 



multi-template matching, were used as an efficient detector for TSR’s recognition of modules fixed on NCT 

during rendezvousing and capturing process. Simulating different kinds of circumstances, experiments were 

performed on lots of images of modules on NCT. The results verified that our multi-object detection method 

outperformed other related methods in speed and accuracy, and has robustness to light intensity and noise. 

The aim of this study is to show that by incorporating with the concept of species, the proposed SABC can 

effectively serve as an attractive method to successfully solve multi-peak optimization problem. On the basis of 

this, a multi-object detection method is proposed, and experiments using “shenzhou 8” and “Chang’e 3” space 

missions verified good applicability of our method for NCT. In future works, we will make effects to expand our 

method applied to detect more spacecrafts objects and implement more space missions which could enhance the 

operation and repair services using TSR system. 
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