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Abstract
In this paper, we propose FedGP, a framework
for privacy-preserving data release in the federated
learning setting. We use generative adversarial net-
works, generator components of which are trained
by FedAvg algorithm, to draw privacy-preserving
artificial data samples and empirically assess the
risk of information disclosure. Our experiments
show that FedGP is able to generate labelled data
of high quality to successfully train and validate su-
pervised models. Finally, we demonstrate that our
approach significantly reduces vulnerability of such
models to model inversion attacks.

1 Introduction
The rise of data analytics and machine learning (ML) presents
countless opportunities for companies, governments and in-
dividuals to benefit from the accumulated data. At the
same time, their ability to capture fine levels of detail po-
tentially compromises privacy of data providers. Recent re-
search [Fredrikson et al., 2015; Shokri et al., 2017; Hitaj et
al., 2017] suggests that even in a black-box setting it is possi-
ble to argue about the presence of individual examples in the
training set or recover certain features of these examples.

Among methods that tackle privacy issues of ma-
chine learning is the recent concept of federated learning
(FL) [McMahan et al., 2016]. In the FL setting, a central
entity (server) wants to train a model on user data without ac-
tually copying these data from user devices. Instead, users
(clients) update models locally, and the server aggregates
these models. One popular approach is the federated averag-
ing, FedAvg [McMahan et al., 2016], where clients do local
on-device gradient descent using their data, then send these
updates to the server where they get averaged. Privacy can
further be enhanced by using secure multi-party computation
(MPC) [Yao, 1982] to allow the server access only average
updates of a big group of users and not individual ones.

Despite many advantages, federated learning does have a
number of challenges. First, the result of FL is a single
trained model (therefore, we will refer to it as a model re-
lease method), which does not provide much flexibility in the
future. For instance, it would significantly reduce possibili-
ties for further aggregation from different sources, e.g. differ-
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Figure 1: Architecture of our solution for two clients. Sensitive data
is used to train a GAN (local critic and federated generator) to pro-
duce a private artificial dataset, which can be used by any ML model.

ent hospitals trying to combine federated models trained on
their patients data. Second, this solution requires data to be
labelled at the source, which is not always possible, because
user may be unqualified to label their data or unwilling to do
so. A good example is again a medical application where
users are unqualified to diagnose themselves but at the same
time would want to keep their condition private. Third, it
does not provide provable privacy guarantees, and there is no
reason to believe that the aforementioned attacks do not work
against it. Some papers propose to augment FL with differen-
tial privacy (DP) to alleviate this issue [McMahan et al., 2017;
Geyer et al., 2017]. While these approaches perform well in
ML tasks and provide theoretical privacy guarantees, they are
often restrictive (e.g. many DP methods for ML assume, im-
plicitly or explicitly, access to public data of similar nature or
abundant amounts of data, which is not always realistic).

In our work, we address these problems by propos-
ing to combine the strengths of federated learning and re-
cent advancements in generative models to perform privacy-
preserving data release, which has many immediate advan-
tages. First, the released data could be used to train any ML
model (we refer to it as the downstream task or the down-
stream model) without additional assumptions. Second, data
from different sources could be easily pooled, providing pos-
sibilities for hierarchical aggregation and building stronger
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models. Third, labelling and verification can be done later
down the pipeline, relieving some trust and expertise require-
ments on users. Fourth, released data could be traded on data
markets1, where anonymisation and protection of sensitive in-
formation is one of the biggest obstacles. Finally, data pub-
lishing would facilitate transparency and reproducibility of
research studies.

The main idea of our approach, named FedGP, for fed-
erated generative privacy, is to train generative adversarial
networks (GANs) [Goodfellow et al., 2014] on clients to pro-
duce artificial data that can replace clients real data. Since
some clients may have insufficient data to train a GAN lo-
cally, we instead train a federated GAN model. First of all,
user data still remain on their devices. Second, the feder-
ated GAN will produce samples from the common cross-user
distribution and not from a specific single user, which adds
to overall privacy. Third, it allows releasing entire datasets,
thereby possessing all the benefits of private data release as
opposed to model release. Figure 1 depicts the schematics of
our approach for two clients.

To estimate potential privacy risks, we use our post hoc pri-
vacy analysis framework [Triastcyn and Faltings, 2019] de-
signed specifically for private data release using GANs.

Our contributions in this paper are the following:

• on the one hand, we extend our approach for private data
release to the federated setting, broadening its applica-
bility and enhancing privacy;

• on the other hand, we modify the federated learning pro-
tocol to allow a range of benefits mentioned above;

• we demonstrate that downstream models trained on ar-
tificial data achieve high learning performance while
maintaining good average-case privacy and being re-
silient to model inversion attacks.

The rest of the paper is structured as follows. In Section 2,
we give an overview of related work. Section 3 contains some
preliminaries. In Section 4, we describe our approach and
privacy estimation framework. Experimental results are pre-
sented in Section 5, and Section 6 concludes the paper.

2 Related Work
In recent years, as machine learning applications become a
commonplace, a body of work on security of these meth-
ods grows at a rapid pace. Several important vulnerabilities
and corresponding attacks on ML models have been discov-
ered, raising the need of devising suitable defences. Among
the attacks that compromise privacy of training data, model
inversion [Fredrikson et al., 2015] and membership infer-
ence [Shokri et al., 2017] received high attention.

Model inversion [Fredrikson et al., 2015] is based on ob-
serving the output probabilities of the target model for a given
class and performing gradient descent on an input reconstruc-
tion. Membership inference [Shokri et al., 2017] assumes an
attacker with access to similar data, which is used to train a
”shadow” model, mimicking the target, and an attack model.

1https://www.datamakespossible.com/value-of-data-2018/
dawn-of-data-marketplace

The latter predicts if a certain example has already been seen
during training based on its output probabilities. Note that
both attacks can be performed in a black-box setting, without
access to the model internal parameters.

To protect privacy while still benefiting from the use of
statistics and ML, many techniques have been developed
over the years, including k-anonymity [Sweeney, 2002], l-
diversity [Machanavajjhala et al., 2007], t-closeness [Li et
al., 2007], and differential privacy (DP) [Dwork, 2006].

Most of the ML-specific literature in the area concentrates
on the task of privacy-preserving model release. One take on
the problem is to distribute training and use disjoint datasets.
For example, [Shokri and Shmatikov, 2015] propose to train
a model in a distributed manner by communicating sani-
tised updates from participants to a central authority. Such
a method, however, yields high privacy losses [Abadi et al.,
2016; Papernot et al., 2016]. An alternative technique sug-
gested by [Papernot et al., 2016], also uses disjoint training
sets and builds an ensemble of independently trained teacher
models to transfer knowledge to a student model by labelling
public data. This result has been extended in [Papernot et al.,
2018] to achieve state-of-the-art image classification results
in a private setting (with single-digit DP bounds). A differ-
ent approach is taken by [Abadi et al., 2016]. They suggest
using differentially private stochastic gradient descent (DP-
SGD) to train deep learning models in a private manner. This
approach achieves high accuracy while maintaining low DP
bounds, but may also require pre-training on public data.

A more recent line of research focuses on private data
release and providing privacy via generating synthetic
data [Bindschaedler et al., 2017; Huang et al., 2017;
Beaulieu-Jones et al., 2017]. In this scenario, DP is hard
to guarantee, and thus, such models either relax the DP
requirements or remain limited to simple data. In [Bind-
schaedler et al., 2017], authors use a graphical probabilis-
tic model to learn an underlying data distribution and trans-
form real data points (seeds) into synthetic data points, which
are then filtered by a privacy test based on a plausible deni-
ability criterion. This procedure would be rather expensive
for complex data, such as images. Fioretto and Van Hen-
tenryck [2019] employ dicision trees for a hybrid model/data
release solution and guarantee stronger ε-differential privacy,
but like the previous approach, it would be difficult to adapt
to more complex data. Alternatively, Huang et al. [2017] in-
troduce the notion of generative adversarial privacy and use
GANs to obfuscate real data points w.r.t. pre-defined pri-
vate attributes, enabling privacy for more realistic datasets.
Finally, a natural approach to try is training GANs using
DP-SGD [Beaulieu-Jones et al., 2017; Xie et al., 2018;
Zhang et al., 2018]. However, it proved extremely difficult to
stabilise training with the necessary amount of noise, which
scales as

√
m w.r.t. the number of model parameters m. It

makes these methods inapplicable to more complex datasets
without resorting to unrealistic (at least for some areas) as-
sumptions, like access to public data from the same distribu-
tion.

On the other end of spectrum, McMahan et al. [2016] pro-
posed federated learning as one possible solution to privacy
issues (among other problems, such as scalability and com-
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https://www.datamakespossible.com/value-of-data-2018/dawn-of-data-marketplace


munication costs). In this setting, privacy is enforced by
keeping data on user devices and only submitting model up-
dates to the server. It can be augmented by MPC [Bonawitz et
al., 2017] to prevent the server from accessing individual up-
dates and by DP [McMahan et al., 2017; Geyer et al., 2017]
to provide rigorous theoretical guarantees.

3 Preliminaries
This section provides necessary definitions and background.
Let us commence with approximate differential privacy.

Definition 1. A randomised function (mechanism)M : D →
R with domainD and rangeR satisfies (ε, δ)-differential pri-
vacy if for any two adjacent inputs d, d′ ∈ D and for any
outcome o ∈ R the following holds:

Pr [M(d) = o] ≤ eε Pr [M(d′) = o] + δ. (1)

Definition 2. Privacy loss of a randomised mechanismM :
D → R for inputs d, d′ ∈ D and outcome o ∈ R takes the
following form:

L(M(d)‖M(d′)) = log
Pr [M(d) = o]

Pr [M(d′) = o]
. (2)

Definition 3. The Gaussian noise mechanism achieving
(ε, δ)-DP, for a function f : D → Rm, is defined as

M(d) = f(d) +N (0, σ2), (3)

where σ > C
√

2 log 1.25
δ /ε and C is the L2-sensitivity of f .

For more details on differential privacy and the Gaussian
mechanism, we refer the reader to [Dwork and Roth, 2014].

In our privacy estimation framework, we also use some
classical notions from probability and information theory.

Definition 4. The Kullback–Leibler (KL) divergence between
two continuous probability distributions P and Q with corre-
sponding densities p, q is given by:

DKL(P‖Q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx. (4)

Note that KL divergence between the distributions of
M(d) and M(d′) is nothing but the expectation of the pri-
vacy loss random variable E[L(M(d)‖M(d′))].

Finally, we use the Bayesian perspective on estimating
mean from the data to get sharper bounds on expected privacy
loss compared to the original work [Triastcyn and Faltings,
2019]. More specifically, we use the following proposition.

Proposition 1. Let [l1, l2, . . . , ln] be a random vector drawn
from the distribution p(L) with the same mean and variance,
and let L and S be the sample mean and the sample standard
deviation of the random variable L. Then,

Pr

(
E[L] > L+

F−1n−1(1− γ)√
n− 1

S

)
≤ γ, (5)

where F−1n−1(1 − γ) is the inverse CDF of the Student’s t-
distribution with n− 1 degrees of freedom at 1− γ.

The proof of this proposition can be obtained by using the
maximum entropy principle with a flat (uninformative) prior
to get the marginal distribution of the sample mean L, and
observing that the random variable E[L]−L

S/
√
n−1 follows the Stu-

dent’s t-distribution with n−1 degrees of freedom [Oliphant,
2006].

4 Federated Generative Privacy
In this section, we describe our algorithm, what privacy it can
provide and how to evaluate it, and discuss current limita-
tions.

4.1 Method Description
In order to keep participants data private while still maintain-
ing flexibility in downstream tasks, our algorithm produces a
federated generative model. This model can output artificial
data, not belonging to any real user in particular, but coming
from the common cross-user data distribution.

Let {u1, u2, . . . , un} be a set of clients holding private
datasets {d1, d2, . . . , dn}. Before starting the training pro-
tocol, the server is providing each client with generator G0

i
and critic C0

i models, and clients initialise their models ran-
domly. Like in a normal FL setting, the training process af-
terwords consists of communication rounds. In each round t,
clients update their respective models performing one or more
passes through their data and submit generator updates 4Gti
to the server through MPC while keeping Cti private. In the
beginning of the next round, the server provides an updated
common generator Gt to all clients.

This approach has a number of important advantages:

• Data do not physically leave user devices.

• Only generators (that do not come directly into contact
with data) are shared, and critics remain private.

• Using artificial data in downstream tasks adds another
layer of protection and limits the information leakage
to artificial samples. This is esprecially useful given
that ML models can be attacked to extract training
data [Fredrikson et al., 2015], sometimes even when
protected by DP [Hitaj et al., 2017].

What remains to assess is how much information would an
attacker gain about original data. We do so by employing a
notion introduced in an earlier work [Triastcyn and Faltings,
2019] that we name Differential Average-Case Privacy.

It is important to clarify why we do not use the standard
DP to provide stronger theoretical guarantees: we found it
extremely difficult to train GANs with the amount of noise
required for meaningful DP guarantees. Despite a number
of attempts [Beaulieu-Jones et al., 2017; Xie et al., 2018;
Zhang et al., 2018], we are not aware of any technically sound
solution that would generalise beyond very simple datasets.

4.2 Differential Average-Case Privacy
Our framework builds upon ideas of empirical DP
(EDP) [Abowd et al., 2013; Schneider and Abowd, 2015] and
on-average KL privacy [Wang et al., 2016]. The first can be
viewed as a measure of sensitivity on posterior distributions



of outcomes [Charest and Hou, 2017] (in our case, generated
data distributions), while the second relaxes DP notion to the
case of an average user.

More specifically, we say the mechanismM is (µ, γ)-DAP
if for two neighbouring datasets D,D′, where data come
from an observed distribution, it holds that

Pr(E[|L(M(D)‖M(D′))|] > µ) ≤ γ. (6)

For the sake of example, let each data point in D,D′ rep-
resent a single user. Then, (0.01, 0.001)-DAP could be in-
terpreted as follows: with probability 0.999, a typical user
submitting their data will change outcome probabilities of the
private algorithm on average by 1%2.

4.3 Generative Differential Average-Case Privacy
In the case of generative models, and in particular GANs, we
don’t have access to exact posterior distributions, a straight-
forward EDP procedure in our scenario would be the follow-
ing: (1) train GAN on the original dataset D; (2) remove a
random sample from D; (3) re-train GAN on the updated set;
(4) estimate probabilities of all outcomes and the maximum
privacy loss value; (5) repeat (1)–(4) sufficiently many times
to approximate ε, δ.

If the generative model is simple, this procedure can
be used without modification. Otherwise, for models like
GANs, it becomes prohibitively expensive due to repetitive
re-training (steps (1)–(3)). Another obstacle is estimating the
maximum privacy loss value (step (4)). To overcome these
two issues, we propose the following.

First, to avoid re-training, we imitate the removal of ex-
amples directly on the generated set D̃. We define a simi-
larity metric sim(x, y) between two data points x and y that
reflects important characteristics of data (see Section 5 for
details). For every randomly selected real example i, we re-
move k nearest artificial neighbours to simulate absence of
this example in the training set and obtain D̃−i. Our intu-
ition behind this operation is the following. Removing a real
example would result in a lower probability density in the
corresponding region of space. If this change is picked up by
a GAN, which we assume is properly trained (e.g. there is
no mode collapse), the density of this region in the generated
examples space should also decrease. The number of neigh-
bours k is defined by the ratio of artificial and real examples,
to keep density normalised.

Second, we relax the worst-case privacy loss bound in step
(4) by the expected-case bound, in the same manner as on-
average KL privacy. This relaxation allows us to use a high-
dimensional KL divergence estimator [Pérez-Cruz, 2008] to
obtain the expected privacy loss for every pair of adjacent
datasets (D̃ and D̃−i). There are two major advantages of this
estimator: it converges almost surely to the true value of KL
divergence; and it does not require intermediate density esti-
mates to converge to the true probability measures. Also since
this estimator uses nearest neighbours to approximate KL di-
vergence, our heuristic described above is naturally linked to
the estimation method.

2Because e0.01 ≈ 1.01.

Table 1: Accuracy of student models trained on artificial samples of
FedGP compared to non-private centralised baseline and CentGP. In
parenthesis we specify the average number of data points per client.

Setting Dataset Baseline CentGP FedGP

i.i.d.
MNIST (500) 98.10% 97.35% 79.45%
MNIST (1000) 98.55% 97.39% 93.38%
MNIST (2000) 98.92% 97.41% 96.23%

non-
i.i.d.

MNIST (500) 97.31% 83.26%
MNIST (1000) 98.78% — 95.89%
MNIST (2000) 98.76% 96.88%

Finally, having obtained sufficiently many sample pairs
(D̃, D̃−i), we use Proposition 1 to determine DAP parame-
ters µ and γ. This is an improvement over original DAP, be-
cause this way we can get much sharper bounds on expected
privacy loss.

4.4 Limitations
Our approach has a number of limitations that should be taken
into consideration.

First of all, existing limitations of GANs (or generative
models in general), such as training instability or mode col-
lapse, will apply to this method. Hence, at the current state
of the field, our approach may be difficult to adapt to inputs
other than image data. Yet, there is still a number of privacy-
sensitive applications, e.g. medical imaging or facial analy-
sis, that could benefit from our technique. And as generative
methods progress, new uses will be possible.

Second, since critics remain private and do not leave user
devices their performance can be hampered by a small num-
ber of training examples. Nevertheless, we observe that even
in the setting where some users have smaller datasets overall
discriminative ability of all critics is sufficient to train good
generators.

Lastly, our empirical privacy guarantee is not as strong as
the traditional DP and has certain limitations [Charest and
Hou, 2017]. However, due to the lack of DP-achieving train-
ing methods for GANs it is still beneficial to have an idea
about expected privacy loss rather than not having any guar-
antee.

5 Evaluation
In this section, we describe the experimental setup and im-
plementation, and evaluate our method on MNIST [LeCun et
al., 1998] and CelebA [Liu et al., 2015] datasets.

5.1 Experimental Setting
We evaluate two major aspects of our method. First, we show
that training ML models on data created by the common gen-
erator achieves high accuracy on MNIST (Section 5.2). Sec-
ond, we estimate expected privacy loss of the federated GAN
and evaluate the effectiveness of artificial data against model
inversion attacks on CelebA face attributes (Section 5.3).

Learning performance experiments are set up as follows:
1. Train the federated generative model (teacher) on the

original data distributed across a number of users.



Table 2: Average-case privacy parameters: expected privacy loss
bound µ and probability γ of exceeding it.

Setting Dataset µ γ

i.i.d. MNIST (500) 0.0117

10−15
MNIST (1000) 0.0069
MNIST (2000) 0.0021
CelebA 0.0009

non-i.i.d. MNIST (500) 0.0090
10−15MNIST (1000) 0.0044

MNIST (2000) 0.0020

2. Generate an artificial dataset by the obtained model and
use it to train ML models (students).

3. Evaluate students on a held-out test set.
We choose two commonly used image datasets, MNIST

and CelebA. MNIST is a handwritten digit recognition
dataset consisting of 60000 training examples and 10000 test
examples, each example is a 28x28 size greyscale image.
CelebA is a facial attributes dataset with 202599 images, each
of which we crop to 128x128 and then downscale to 48x48.

In our experiments, we use Python and Pytorch frame-
work.3 For implementation details of GANs and privacy eval-
uation, please refer to [Triastcyn and Faltings, 2019]. To train
the federated generator we use FedAvg algorithm [McMahan
et al., 2016]. As a sim function introduced in Section 4.3 we
use the distance between InceptionV3 [Szegedy et al., 2016]
feature vectors.

5.2 Learning Performance
First, we evaluate the generalisation ability of the student
model trained on artificial data. More specifically, we train
a student model on generated data and report test classifica-
tion accuracy on a held-out real set. We compare learning
performance with the baseline centralised model trained on
original data, as well as the same model trained on artificial
samples obtained from the centrally trained GAN (CentGP).

Since critics stay private and can only access data of a sin-
gle user, the size of each individual dataset has significant
effect. Therefore, in our experiment we vary sizes of user
datasets and observe its influence on training. In each experi-
ment, we specify an average number of points per user, while
the actual number is drawn from the uniform distribution with
this mean, with some clients getting as few as 100 data points.

We also study two settings: i.i.d. and non-i.i.d data. In the
first setting, distribution of classes for each client is identical
to the overall distribution. In the second, every client gets
samples of 2 random classes, imitating the situation when a
single user observes only a part of overall data distribution.

Details of the experiment can be found in Table 1. We ob-
serve that training on artificial data from the federated GAN
allows to achieve 96.9% accuracy on MNIST with the base-
line of 98.8%. We can also see how accuracy grows with the
average user dataset size. A less expected observation is that
non-i.i.d. setting is actually beneficial for FedGP. A possible

3http://pytorch.org

Figure 2: Results of the model inversion attack. Top to bottom: real
target images, reconstructions from the non-private model, recon-
structions from the model trained by FedGP.

Table 3: Face detection and recognition rates (pairs with distances
below 0.99) for images recovered by model inversion attack from
the non-private baseline and the model trained by FedGP.

Baseline FedGP
Detection 25.5% 1.2%

Recognition 2.8% 0.1%

reason is that training critics with little data becomes easier
when this data is less diverse (i.e. the number of different
classes is smaller). Comparing to the centralised generative
privacy model CentGP, we can also see that FedGP is more
affected by sharding of data on user devices than by overall
data size, suggesting that further research in training feder-
ated generative models is necessary.

5.3 Privacy Analysis
Using the privacy estimation framework (see Sections 4.2
and 4.3), we fix the probability γ of exceeding the expected
privacy loss bound µ in all experiments to 10−15 and com-
pute the corresponding µ for each dataset and two settings.
Table 2 summarises the bounds we obtain. As anticipated,
the privacy guarantee improves with the growing number of
data points, because the influence of each individual example
diminishes. Moreover, the average privacy loss µ, expect-
edly, is significantly smaller than the typical worst-case DP
loss ε in similar settings. To put it in perspective, the av-
erage change in outcome probabilities estimated by DAP is
∼1% even in more difficult settings, while the state-of-the-art
DP method would place the worst-case change at hundreds
or even thousands percent without giving much information
about a typical case.

On top of estimating expected privacy loss bounds, we test
FedGP’s resistance to the model inversion attack [Fredrik-
son et al., 2015]. More specifically, we run the attack on
two student models: trained on original data samples and on
artificial samples correspondingly. Note that we also exper-
imented with another well-known attack on machine learn-
ing models, the membership inference [Shokri et al., 2017].
However, we did not include it in the final evaluation, because
of the poor attacker’s performance in our setting (nearly ran-
dom guess accuracy for given datasets and models even on the
non-private baseline). Moreover, we only consider passive
adversaries and we leave evaluation with active adversaries,

http://pytorch.org


e.g. [Hitaj et al., 2017], for future work.
In order to run the attack, we train a student model (a sim-

ple multi-layer perceptron with two hidden layers of 1000 and
300 neurons) in two settings: the real data and the artificial
data generated by the federated GAN. As facial recognition
is a more privacy-sensitive application, and provides a bet-
ter visualisation of the attack, we pick the CelebA attribute
prediction task to run this experiment.

We analyse real and reconstructed image pairs using Open-
Face [Amos et al., 2016] (see Table 3). It confirms our theory
that artificial samples would shield real data in case of the
downstream model attack. In the images reconstructed from
a non-private model, faces were detected 25.5% of the time
and recognised in 2.8% of cases. For our method, detection
succeeded only in 1.2% of faces and the recognition rate was
0.1%, well within the state-of-the-art error margin for face
recognition.

Figure 2 shows results of the model inversion attack. The
top row presents the real target images. The following rows
depict reconstructed images from the non-private model and
the model trained on the federated GAN samples. One can
observe a clear information loss in reconstructed images go-
ing from the non-private to the FedGP-trained model. De-
spite failing to conceal general shapes in training images (i.e.
faces), our method seems to achieve a trade-off, hiding most
of the specific features, while the non-private model reveals
important facial features, such as skin and hair colour, expres-
sion, etc. The obtained reconstructions are either very noisy
or converge to some average feature-less faces.

6 Conclusions
We study the intersection of federated learning and private
data release using GANs. Combined these methods enable
important advantages and applications for both fields, such as
higher flexibility, reduced trust and expertise requirements on
users, hierarchical data pooling, and data trading.

The choice of GANs as a generative model ensures scal-
ability and makes the technique suitable for real-world data
with complex structure. In our experiments, we show that
student models trained on artificial data can achieve high ac-
curacy on classification tasks. Moreover, models can also be
validated on artificial data. Importantly, unlike many prior
approaches, our method does not assume access to similar
publicly available data.

We estimate and bound the expected privacy loss of an av-
erage client by using differential average-case privacy thus
enhancing privacy of traditional federated learning. We find
that, in most scenarios, the presence or absence of a single
data point would not change the outcome probabilities by
more than 1% on average. Additionally, we evaluate the pro-
vided protection by running the model inversion attack and
showing that training with the federated GAN reduces infor-
mation leakage (e.g. face detection in recovered images drops
from 25.5% to 1.2%).

Considering the importance of the privacy research, the
lack of good solutions for private data publishing, and the ris-
ing popularity of federated learning, there is a lot of potential
for future work. In particular, a major direction of advanc-

ing current research would be achieving differential privacy
guarantees for generative models while still preserving high
utility of generated data. A step in another direction would be
to improve our empirical privacy concept, e.g. by bounding
maximum privacy loss rather than average, or finding a more
principled way of sampling from outcome distributions.
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