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Abstract: In this research, we investigate a generalized form of Vidale-Wolfe (GVW) model. 

One key element of our modeling work is that the GVW model contains two useful indexes 

representing advertiser’s elasticity and the word-of-mouth (WoM) effect, respectively. 

Moreover, we discuss some desirable properties of the GVW model, and present a deep neural 

network (DNN)-based estimation method to learn its parameters. Furthermore, based on three 

realworld datasets, we conduct computational experiments to validate the GVW model and 

identified properties. In addition, we also discuss potential advantages of the GVW model over 

econometric models. The research outcome shows that both the ad elasticity index and the 

WoM index have significant influences on advertising responses, and the GVW model has 

potential advantages over econometric models of advertising, in terms of several interesting 

phenomena drawn from practical advertising situations. The GVW model and its deep learning-

based estimation method provide a basis to support big data-driven advertising analytics and 

decision makings; in the meanwhile, identified properties and experimental findings of this 

research illuminate critical managerial insights for advertisers in various advertising forms.  
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1. Introduction 

Advertising is an important component in the marketing mix for a firm, which includes a 

variety of promotional ways across a rich set of media vehicles. Advertising response is one of 

kernel concepts in the advertising field, which relates market responses (e.g., sales or market 

share) to advertising expenditure. Essentially, the ad-response relationship captures the 

potential influence of advertising expenditure and related market determinants on market 

responses of interest. More importantly, it’s the basis for various advertising decisions such as 

budget planning and media selection. Thus, for decades, advertising responses have been a 

research hotspot attracting plenty of attentions from both academia and industries (e.g., [1,2]).  

In the literature, quite a few advertising response models have been developed to 

quantitatively describe the ad-response relationship. According to the mathematic form, 

advertising response models can be categorized into two classes: analytic models and 

econometric models. There was a research surge on advertising response models from 1970s 

to 1980s. In the last two decades, the Internet has witnessed the advent of a large number of 

digital media vehicles (e.g., search portals, social media platforms, e-commerce platforms, 

online gaming, mobile apps, online videos, banners, etc.) that promised a variety of novel 

advertising forms[3]. In the meanwhile, advertising environments have evolved into a vastly 

complex communication system[4]. This calls for another revisiting of advertising response 

models.  

The objective of this study is to investigate a generalized form of Vidale-Wolfe advertising 

model (GVW) and its applicability. Our motivation for choosing VW-type models lays on the 

fact that they combine several important market factors that influence advertising decisions, 

such as the carryover effect of past advertising on current sales, the saturation level, the possible 

diminishing returns to cumulative advertising expenditure, and the word-of-mouth (WoM) 

effect, in a time-varying manner[5]. In this research, we present a generalized form of VW 

model, which is dynamic in nature and flexible in terms of parameters. First, one key element 

of our modeling work is that the GVW model explicitly represents an advertiser’s elasticity 

with respect to advertising expenditure and the WoM effect among potential consumers by two 

additional indexes, respectively. As observed by prior studies, the advertising elasticity[6] and 

the word-of-mouth effect[7,8] are highly prominent in online advertising, especially in e-

commerce markets. Second, we discuss desirable properties of the GVW model, and develop 

a deep neural network (DNN)-based method to learn its modeling parameters. Furthermore, 

based on three real-world datasets, including a benchmark dataset on traditional advertising 
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and two datasets obtained from advertising campaigns by two large e-commerce companies on 

Google AdWords and Facebook Ads, respectively, we conduct computational experiments to 

validate our model and identified properties. In addition, we also discuss potential advantages 

of the GVW model over econometric models.  

On one hand, methodologically, the GVW model and its deep learning-based estimation 

method provide a basis to support big data-driven advertising analytics and decision makings. 

On the other hand, identified properties and experimental findings of this research illuminate 

critical managerial insights for advertisers in various advertising forms.  

The remainder of this paper is organized as follows. The next section provides a review of 

the VW model. Section 3 presents a generalized VW model. Section 4 discusses some desirable 

properties analytically. Section 5 presents a deep neural network (DNN)-based estimation 

method. Section 6 reports experimental results to validate our model and identified properties, 

and discusses potential advantages of the GVW model over econometric models. Finally, we 

conclude this work in Section 7.  

2. Review of the Vidale-Wolfe Model 

Vidale and Wolfe[9] developed a differential equation to capture the advertising response 

dynamics, which is given as follows. 

x
•

= ρu(1 − x) − δx, x(0) = x0      (1) 

In Equation (1), i.e., the VW model, x and 1 − x represent the sold portion and unsold 

portion of the potential market (i.e., a fixable pool of customers), respectively; 𝑢 represents a 

firm’s advertising effort at time t. The pioneering VW model has been developed by 

introducing a concept called advertising effectiveness (i.e., ρ) that describes sales (or market 

share) generated from each advertising dollar at the level of zero sales. Specifically, ρ denotes 

the ad effectiveness index that represents the effectiveness of advertising expenditure, i.e., the 

response to advertising that acts positively on the unsold market share. In addition, δ denotes 

the decay index describing the loss of customers probably due to forgetting and competition 

that acts negatively on the sold portion of the market. In summary, the VW model encapsulates 

the two opposite forces on the ad-response relationship by using two parameters, namely ρ 

and δ, in the positive and negative direction, respectively.  

Another related influential advertising response function is the Lanchester model[10], which 

is given as 

x
•

𝑖 = ρ𝑖u𝑖(1 − x𝑖) − ρ𝑗u𝑗x𝑖 , {i, j} = {1,2}.      (2) 
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where u𝑖 and u𝑗 denote the advertising efforts of advertiser i and j, respectively. Note that 

Equation (2) is specified for the duopolistic competition where x𝑖 + x𝑗 ≤ 1.  

As noticed by Little[11], the Lanchester model can be interpreted as a competitive 

generalization of VW model. A large body of contemporary research in advertising has 

extended the VW and Lanchester models to various situations. In the following section, we 

analyze the evolution of VW and Lanchester models in an integrative way, rather than 

introducing them separately, because these two models formally share a set of common 

parameters.  

3. The GVW Model  

In this section, we present a generalized form of the VW model (i.e., the GVW model). In detail, 

we will first examine two important components in the advertising effectiveness: the 

advertising effort and its potential Word-of-Mouth effect, through a systematic analysis of the 

extant literature on advertising response models. Then we present the GVW model which is 

developed by extending the VW model with the two additional indexes.  

3.1 The Advertising Effort and Elasticity 

In the VW and Lanchester models, the linear form of advertising effort (𝑢) assumes a uniform 

return from each advertising dollar, which is neither realistic nor attainable through advertising 

practices. Theoretically, the function form of advertising effort, i.e., 𝑢 = f(b)  where b 

represents advertising expenditure, should be in line with the law of diminishing marginal 

utility (i.e., the marginal return decreases as the investment increases, holding other factors 

constant) in order to render these models more applicable.  

In this stream, plentiful research (e.g., [12]) investigated desirable forms of advertising 

effort. Either in the VW model under the monopolistic setting or in the Lanchester model under 

the competitive setting, the exponential form (bα), as suggested by Little[11], has been widely 

accepted because it exhibits the trend of diminishing marginal returns in advertising activities 

in a quite simple way[13]. In the exponential form, α stands for the ad elasticity, which we will 

explore in detail in Section 3.3. In particular, analytically, the exponential form of advertising 

effort makes the pulsing policy superior over the uniform policy.  

The ad elasticity index is usually fixed as 1/2 (i.e., 𝑢 = b1/2), which raises a favorable 

property for response functions, based on which analytical solutions can be derived[14,3]. 

However, Erickson[15] empirically estimated the ad elasticity index (i.e., the power index of the 

exponential form), found its value ranges from 0.116 to 0.726. Thus, it’s of necessity to take 

the ad elasticity as a variable, rather than a constant.  
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3.2 The Word-of-Mouth Effect 

In order to capture the additional effect generated from advertising efforts (i.e., potential 

communications between individuals comprising the sold portion and those comprising the 

unsold portion of the potential market), Sethi[16] extended the VW model by using a square-

root form of the untapped potential (i.e., √1 − x, where x denotes the sold portion) to capture 

the possible Word-of-Mouth (WoM) effect. Sethi’s work is coincident with Sorger’s 

modification[17] on the Case model[18]. Mathematically, √1 − x can be approximated by 1 −

x + x(1 − x). The positive effect raised by the modification from the linear form in the VW 

and Lanchester models to the nonlinear form is called an excess advertising term (i.e., x(1 −

x)).  

Likewise, the square-root form of the unsold market makes the analytical analysis possible 

in certain settings. However, as far as we knew in the extant literature, there is little empirical 

evidence for the square-root form of the WoM Effect.  

3.3 A Generalized Form of the Vidale-Wolfe Model 

In order to fit flexible decision scenarios in various advertising forms, we present a generalized 

form of VW model (GVW), given as follows.  

x
•

= ρbα(1 − x)β − δx, x(0) = x0      (3) 

In the GVW model, i.e., Equation (3), α is the ad elasticity index is represented as the 

percentage change in the advertising effort to the change of one percentage in the advertising 

expenditure, i.e., (Δ𝑏α/bα)/(Δb/b), which can be interpreted as the effective advertising 

effort elasticity connecting the change in effective advertising effort to the change in 

advertising expenditure; β is the WoM (i.e., word-of-mouth) index representing an additional 

process of WoM communication between the sold portion and the unsold portion of the 

potential market. Mathematically, (1 − 𝑥)𝛽 can be approximated by 1 − x + 2(1 − β)x(1 −

x), where (1 − β) quantifies the communication level between the sold and unsold portions. 

The value of β might depend on application domains. For example, the reviewing feature of 

e-commerce entitles consumers to interact with each other, which thus raises a high WoM 

Effect. Specifically, the WoM Effect (i.e., (1 − β)) increases as β decreases. We will explore 

it in detail later in Sections 4 and 6.3.  

4. Properties  

In this section, we study some desirable properties of the GVW model. For more intuitive 

understanding, we discuss the response to a rectangular pulse of advertising and the steady-

state response.  
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As for a rectangular pulse of advertising, we mean that a constant advertising, 𝑏(𝑡) ≡ 𝑏0, 

which is started at 𝑡 = 0 and lasts until 𝑡 = 𝑇 when it drops to zero. For 𝑡 ∈ [0, 𝑇], we have 

𝑥
•

= 𝜌𝑏0
𝛼(1 − 𝑥)𝛽 − 𝛿𝑥.      (4) 

Furthermore, we expand the nonlinear expression (1 − 𝑥)𝛽 into Taylor series in 𝑥 = 0 

maintaining the second order, which is given as  

(1 − 𝑥)𝛽 ≈ 1 − 𝛽𝑥 +
𝛽(𝛽−1)

2
𝑥2.      (5) 

Substituting Equation (5) into (4) yields 

𝑥
•

= 𝑘1𝑥2 + 𝑘2𝑥 + 𝑘3,       (6) 

where 𝑘1 =
𝜌𝛽(𝛽−1)𝑏0

𝛼

2
≤ 0, 𝑘2 = −𝜌𝛽𝑏0

𝛼 − 𝛿 < 0, 𝑘3 = 𝜌𝑏0
𝛼

.  

Solving 0 = 𝑘1𝑥2 + 𝑘2𝑥 + 𝑘3 yields 

�̂� =
−𝑘2±√𝑘2

2−4𝑘1𝑘3

2𝑘1
.  

Let 𝑥 = 𝑧 + �̂�, then  

𝑧
•

= (2𝑘1�̂� + 𝑘2)𝑧 + 𝑘1𝑧2.      (7) 

Solve Bernoulli’s Equation (7), we obtain 

𝑧 = [
𝑘1

2𝑘1�̂�+𝑘2
(𝑒−(2𝑘1�̂�+𝑘2)𝑡 − 1) +

1

𝑥0−�̂�
𝑒−(2𝑘1�̂�+𝑘2)𝑡]−1. 

Thus, we have  

𝑥(𝑡) = {
[

𝑘1

2𝑘1�̂�+𝑘2
(𝑒−(2𝑘1�̂�+𝑘2)𝑡 − 1) +

1

𝑥0−�̂�
𝑒−(2𝑘1�̂�+𝑘2)𝑡]−1 + �̂�,    0≤𝑡 ≤ 𝑇

𝑥(𝑇)𝑒−𝛿(𝑡−𝑇),                                                                                 t>T 
.      (8) 

 

Figure 1. The Response to a Rectangular Pulse of Advertising (the GVW Model) 

The evolution of market share described in Equation (8) is illustrated in Figure 1. Note that 

the steady-state level of market share (�̅�) corresponds to a constant advertising level (�̅� = 𝑏0). 
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Basically, the evolution pattern of market share over time defined by the GVW model is 

consistent with that by the VW model. In the GVW model, the increasing period of market 

share is determined by all four modeling parameters, and the decreasing period is affected by 

the ad decay index (δ). We will study the effects of the ad elasticity index (α) and the WoM 

index (β) on market share in the increasing period in Section 6.3.  

Next, we discuss the steady-state response of market share. In the steady state, the market 

share remains unchanged. That is, 𝑥
•

= ρ�̅�α(1 − x)β − δ�̅� = 0.  

Then we can obtain the advertising level in the steady state, which is given as 

�̅� = [
𝛿�̅�

𝜌(1−�̅�)𝛽]
1

𝛼      (9) 

Based on Equation (9), we can obtain the relationship between steady-state market share 

and advertising, which is illustrated in Figure 2 (left). From Figure 2 (left), we can see that, as 

expected, the steady-state market share is positively related to the steady-state advertising level. 

Moreover, it exhibits the trend of diminishing marginal returns. 

 

Figure 2. The Steady-State Response (the GVW Model) 

Next, we examine the effect of the ad elasticity on the steady-state market share. The 

derivative of the steady-state (�̅�) with respect to the ad elasticity index is 
𝑑�̅�

𝑑𝛼
= (

𝜕�̅�

𝜕�̅�
) (

𝜕�̅�

𝜕𝛼
) +

𝜕�̅�

𝜕𝛼
. 

From Equation (9), we can obtain  

{

𝜕�̅�

𝜕𝛼
< 0, �̅� < �̃�

𝜕�̅�

𝜕𝛼
> 0, �̅� > �̃�

,      (10) 

where �̃� satisfies 
𝛿�̃�

𝜌(1−�̃�)𝛽
= 1.  

Equation (10) characterizes the relationship between the steady-state market share and the 

ad elasticity. This indicates that, the effect of the ad elasticity on the steady–state market share 

depends on whether the steady state market share is above or below a threshold value, as 

illustrated in Figure 2 (middle).  

Then we discuss the effect of the WoM index on the steady-state market share. The 

derivative of the steady-state with respect to the WoM index is 
dx̅

dβ
= (

∂x̄

∂b̅
) (

∂b̅

∂β
) +

∂x̅

∂β
. From 
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Equation (9), we can obtain 
𝜕�̅�

𝜕𝛽
< 0. As illustrated in Figure 2 (right), the steady-state market 

share monotonically increases with the WoM effect (i.e., (1 − β)).  

5. A Deep Neural Network (DNN)-based Parameter Estimation Method  

In this section we develop a Deep Neural Network (DNN)-based estimation method to assess 

the parameters of the GVW model (i.e., Equation 3). The DNN is particularly effective for 

estimating nonlinear models on large and noisy datasets[19].  

The estimation problem of the GVW model can be formulated as follows. 

{
min

Θ
{ε1 = ∑ (Y𝑡𝑙

−T
l=1 x𝑡𝑙

)2} 

ẋ = ρbα(1 − x)β − δx, x(0) = x0

,      (11) 

where Ytl
 is the observed market share at time tl, ε1 is the error between observed values 

and model predictions, Θ(ρ, α, β, δ) is the vector of parameters to be estimated. We aim to 

obtain a set of estimates of model parameters by minimizing the error ε1.  

However, it is impossible to avoid integration of the nonlinear dynamic equation when 

solving problem (11). To this end, we turn to solve the following problem which is equivalent 

to problem (11).  

min
Θ

{ε2 = ∑ (
dy

dt
|

t=𝑡𝑙

−T
l=1

dx

dt
|

t=𝑡𝑙

)2},     (12) 

where y satisfies y(t) = Yt.  

In order to solve problem (12), we need to calculate the value of 
dy

dt
|

t
. In this research, we 

construct a DNN to approximate 
dy

dt
|

t
. The DNN consists of one input layer with units Z =

(z1, z2, ⋯ zK0
), m (m > 1) hidden layers with output activations Hi = (h1

i , h2
i , ⋯ hKi

i ) (i =

1, ⋯ m ), and one output layer with units Y̅ = (y̅1, y̅2, ⋯ y̅K) . Output activations for hidden 

layers (i = 1, ⋯ m) and units for the output layer (i = m + 1) can be calculated as follows.  

hk
i = σi(h̅k

i ), h̅k
i = ∑ wkj

i hj
i−1 +

Ki−1
j=1 b̅k

i , k = 1, ⋯ Ki−1,      (13) 

where wkj
i  and b̅kj

i  represent the constant weight and the bias term, respectively, σi is the 
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activation function, Ki is the number of nodes in the i − th hidden layer. Note that hk
0 = zk,

k = 1, ⋯ K0 and hk
m+1 = y̅k, k = 1, ⋯ K, where K0 is the number of input units and K is 

the number of output units.  

 

Figure 3. The Deep Neural Network (DNN) based Parameter Estimation Method for the GVW Model 

The structure of the DNN model is shown in Figure 3. We set the input 𝑍 = tl and the 

output Y̅ = Ytl
 . Moreover, the activation function for a hidden layer is nonlinear, which is 

specified as the rectified linear unit (ReLU). The ReLu typically raises a better performance in 

the training of deep neural networks on complex datasets, and its simple derivative form 

provides a convenience for calculations[20]. Furthermore, we use the same σ for hidden layers, 

i.e., σi(z) = σ(z) = {
z, z > 0
0, z ≤ 0

 , and its derivative σ′(z) = {
1, z > 0
0, z ≤ 0

 . Additionally, the 

activation function for the output layer is linear, i.e., σm+1(z) = z.  

The DNN is trained to obtain values of weights and biases that minimize the loss function 

f(Θ̅), where Θ̅ represents the unknown parameters of the DNN comprising the weights and 

biases. The loss function is represented as the sum of squares of the difference between the 
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output Ytl
 and the corresponding predicted value y̅(tl) obtained by the DNN, i.e., f(Θ̅) =

∑ [Ytl
−T

l=1 y̅(tl)]2 . The training procedure discussed above is based on the Levenberg-

Marquardt algorithm[21].  

Then we use 
dy̅

dt
 to approximate 

dy

dt
. The output of the DNN, i.e., y̅(t) is represented as 

follows.  

y̅(t) = ∑ wk
m+1hk

m(t) +
Km
k=1 b̅m+1      (14)  

Differentiating (14) with respect to t, we obtain 

dy̅

dt
= ∑ wk

m+1 dhk
m(t)

dt

Km
k=1 , and  

dhk
i (t)

dt
= ReLU′(h̅k

i ) ∑ wkl
i dhj

i−1(t)

dt

Ki−1
j=1 , k = 1, ⋯ Ki, i = 1, ⋯ m.      (15) 

Given that the DNN parameters Θ̅  are determined, we obtain the following simpler 

optimization problem:  

min
Θ

{ε3 = ∑ [
dy̅

dt
|

t=tl

− (T
l=1 ρb|t=tl

α
(1 − y̅|t=tl

)β − δy̅|t=tl
)]2}.      (16) 

Thus, the parameter estimation for the GVW model can be achieved by solving the 

nonlinear programming problem (Equation 16). The detailed procedure for DNN-based 

parameters estimation of the GVW model is described in Algorithm 1. 

Algorithm 1. (DNN-based Parameters Estimation) 

Input: the advertising expenditure 𝑏𝑡𝑙
, the market share 𝑌𝑡𝑙

, 𝑙 ∈ (1, ⋯ 𝑇) 

Output: the vector of model parameters 𝛩(𝜌, 𝛼, 𝛽, 𝛿) 

Procedure 

Step 1: Formulate the original optimization problem (11), and transform problem 

(11) into problem (12). 

Step 2: Train the DNN model (call Sub-Procedure DNN Training). 

Step 3: Calculate 
dy̅

dt
 according to Equation (15), and use it to approximate 

dy

dt
. 
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Step 4: Transform problem (12) into problem (16). 

Step 5: Obtain parameter estimates for the GVW model by solving problem (16). 

End Procedure 

Sub-Procedure: DNN Training  

Step 1: Construct the DNN. 

Step 2: Train the DNN to obtain Θ̅. 

Step 3: Obtain y̅(t) according to Equation (14). 

End Sub-Procedure  

 

6. Experimental Study 

The nonlinearity feature of the GVW model with respect to advertising expenditure, raised by 

the two newly added parameters (i.e., the ad elasticity and the WoM indexes), is attractive in 

terms of its flexibility and adaptability to complex advertising situations. In the meanwhile, 

this feature makes the GVW untractable. In this section, we design computational experiments 

to validate the proposed GVW model and identified properties.  

Our experimental evaluation serves the following twofold purposes. First, we are intended 

to apply the GVW model on three separate datasets about a traditional advertising, search 

advertising (on Google Adwords), and social media advertising (on Facebook Ads), 

respectively, in order to verify whether the two newly added modeling parameters, namely the 

ad elasticity index (α) and the WoM index (β), work in practical situations. Second, we conduct 

sensitivity analysis to further explore properties of our GVW model. Specifically, we evaluate 

possible influences of two newly added indexes on the relationship between market share and 

advertising expenditure in our GVW model. Next, we provide details about our experimental 

setup and some key results.  

6.1 Data Description  

We collected three realworld datasets from advertising campaigns. The first dataset is annual 

domestic sales and advertising by the Lydia Pinkham Medicine Company from 1907 to 1960, 

which has widely used in prior adverting research[22]. The second dataset records search 

advertising campaigns by a large U.S. electronic commerce retailer during a 33-month period, 

spanning 4 calendar years, which contains approximately 7 million records from almost 55,000 
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advertisements. The third dataset records historical information of social media advertising 

campaigns on Facebook by a European electronic commerce retailer operating in 8 countries. 

It contains 62,802 records from 95 advertising campaigns during a 20-month period. Finally, 

we also generate data from historical advertising reports to support computational experiments 

to verify properties of the GVW model. 

6.2 Empirical Analysis 

We estimate the GVW model on the three datasets using Algorithm 1. The DNN is trained to 

obtain an approximation of 
dy

dt
|

t
 in our deep learning-based algorithm of parameter estimation, 

as described in Section 5. We first present the DNN training setting. The DNN models are with 

hidden layers size of 4 × 8 , 16 × 32 , 32 × 32  for Lydia Pinkham, Google and Facebook 

datasets, respectively. For the DNN training, key hyperparameters related to the combination 

coefficient in the Levenberg-Marquardt algorithm consists of the initial value (InV), an 

increase factor (InF) to increase its value, and a decrease factor (DeF) to decrease its value, 

which are set as InV=0.001, InF=10, DeF=0.1. The maximum number of epochs to train is 

1000. In addition, the Mean Squared Error (MSE) is adopted to evaluate the performance of 

the DNN.  

 

Figure 4. Training and Validation Loss on Lydia-Pinkham (left), Google (middle) and Facebook (right)  

Figure 4 illustrates the training and validation loss of the training epochs. For the three 

DNN models, we can observe that the best validation performance with the lowest MSE occur 

at a certain epoch during the training process. Moreover, we use a linear regression to further 

investigate the DNN performance. The fitting curves between the predicted and observed 
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market shares on the three datasets are shown in Figure 5, and Figure 6 presents histograms of 

the DNN prediction error. From Figures 5 and 6, each DNN model yields a strong predictive 

power and provides a good approximation.  

 

Figure 5. Predicted Market Shares on Lydia-Pinkham (left), Google (middle) and Facebook (right)  

 

Figure 6. Histograms of Prediction Error on Lydia-Pinkham (left), Google (middle) and Facebook (right) 

Based on the DNN trained models, the parameter estimates of the GVW model on the three 

datasets are given in Table 1. 

Table 1. Parameter Estimates 

Datasets Parameters MSE 

ρ α β δ 

Lydia Pinkham 

Pinkham 

Pinkham 

Pinkham 

4.037 E-05 0.801 0.675 -0.010 2.820 E-06 

Google 9.537 E-04 0.422 0.948 -3.556 E-04 7.150 E-08 

Facebook 1.435 E-04 0.688 0.590 -4.117 E-05 7.180 E-07 

From Table 1, we can see the following phenomena focusing on the ad elasticity index and 

the WoM index. (1) As for the ad elasticity index (α), its estimated value ranges from 0.422 to 
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0.801. In other words, the effect of diminishing returns is largest in search advertising, followed 

by social media advertising, and the traditional advertising exerts the least effect. The possible 

reason is that, compared to other advertising forms such as social media advertising, people 

involved in search advertising have more specific goals[23], thus advertising campaigns have 

less information effect; and the Lydia Pinkham advertising happened in the last century, at that 

time there was less competitive advertisers, thus advertising campaigns have more chances to 

obtain effectiveness.  

(2) As for the WoM index (β), its estimated value ranges from 0.590 to 0.948. In other 

words, the effect of the WoM (i.e., (1 − β)) is largest in social media advertising, followed by 

the traditional advertising, and search advertising exerts the least effect. The possible 

explanation for this phenomenon lies in the communication level characterized in advertising 

environments. That is, social media advertising facilitates online communications among 

people, which thus improve the WoM effect of advertising campaigns; in the traditional 

advertising, people communicate offline through face-to-face talking or other traditional 

manners, where the WoM effect works well; and in search advertising, people individually 

search for relevant information through search engines, thus has less chance to communicate 

between each other, which leads to the least WoM effect.  

(3) In our case, the estimated value of the ad elasticity index is closed to 0.5 in search 

advertising (α = 0.422) only, and that of the WoM index is closed to 0.5 in social media 

advertising (β = 0.590) only. Thus, we can conclude that, although the VW derivatives with 

α = 0.5 and/or β = 0.5 make the analytical analysis possible, they are rarely realistic in 

practical situations. In this sense, this also confirms the advantage of the GVW model over the 

VW model and its derivatives.  

6.3 Sensitivity Analysis  

Next, we design computational experiments to conduct a sensitivity analysis with respect to 

modeling indexes. In particular, we focus on the ad elasticity and the WoM indexes because 

the two newly added indexes make the GVW model distinguishable from other VW-type 

models. For each model index, we investigate its effect on the relationships between market 

share and advertising expenditure. The datasets used in the following experiments were 
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generated from historical advertising logs. In the following experiments, the ad effective index 

is set as 0.10, the decay index is set as 0.01. 

First, we investigate the influence of the ad elasticity index (α). In this experiment, the 

WoM index is set as 1.0, for comparison purposes. Figure 7 illustrates market share at different 

advertising levels, with different ad elasticity indexes. Note that the curve with α = 1.0 is 

defined by the VW model.  

 

Figure 7. The Relationship between Market Share and Advertising Expenditure with Different Ad 

Elasticity Indexes  

From Figure 7, we can observe the followings. Overall, given a certain advertising level, 

market share monotonically increases with the ad elasticity index. We also notice an interesting 

phenomenon. That is, the relationship between market share and advertising expenditure is 

concave in the situation with small ad elasticity indexes, which reveals decreasing marginal 

returns on advertising expenditure; however, it exhibits S-shape in the situation with large 

values of ad elasticity, which captures the phenomena of both increasing and decreasing 

marginal returns on various levels of advertising expenditure. In particular, the VW model with 

α = 1.0 shows S-shape responses, while its derivative model with α = 0.5 exhibits nearly 

concave responses.  

Next, we study the influence of the WoM index (β). In this experiment, the ad elasticity 

index is set as 1.0, for comparison purposes. Figure 8 illustrates market share at different 

advertising levels, with different WoM indexes. Note that the curve with β = 1.0 is defined 

by the VW model.  

From Figure 8, we can see that, given a certain advertising level, a larger WoM effect (i.e., 
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a smaller β) results in a higher market share. This is because a smaller WoM index means a 

higher level of communications between the sold portion and the unsold portion of the potential 

market, which enlarges the advertising effectiveness from each unit of expenditure. Moreover, 

the advertising responses are S-shape regardless of the WoM effect. This indicates that the 

WoM index has little effect on the shape of advertising responses.  

 
Figure 8. The Relationship between Market Share and Advertising Expenditure with Different WoM 

Indexes 

6.4 Comparison with Econometric Models 

In this section, we discuss potential advantages of VW-type models, especially the proposed 

GVW model, over econometric models of advertising.  

First of all, compared to econometric models, VW-type models describe the relationship 

between market responses and advertising expenditure in a more parsimonious way[5]. 

Moreover, they are more suitable for optimal advertising decisions over time due to their 

differential-equation forms[2].  

Next, we make a comparison between the GVW model and a commonly accepted form of 

econometric models with respect to several interesting phenomena of advertising effectiveness 

drawn from advertising practices[11]. As common in the literature, the econometric model of 

advertising for comparison takes sales in unit as the dependent variable (s𝑡), and advertising 

expenditure (b𝑡) and the lagged dependent variable (s𝑡−1) as independent variables, as is given 

by Equation (17). Note that sales can be conveniently transformed to market share by dividing 

a constant denoting the total sales, thus we use the two terms interchangeably in this 
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comparison. Hereafter, we use Econbase as the short name for the econometric model defined 

by Equation (17).  

log st = log c0 + c1 log st−1 + c2 log bt + 𝜇𝑡    (17) 

Through a systematic comparison between the GVW model and the Econbase model, we 

can obtain the following conclusions. Note we omit the details because of the lack of space. (1) 

Although the GVW model and the Econbase model show a similar pattern of market share over 

time, as a response to a rectangular pulse of advertising, there is some difference in the 

evolution after the cessation of advertising campaigns. (2) Both the GVW model and the 

Econbase model capture the steady-state response and the carryover effect of advertising in a 

similar manner. (3) Although both models capture the phenomenon of diminishing returns, the 

Econbase model accompanies a strict condition. (4) The GVW model takes into account the 

saturation level and the WoM effect, which are ignored by the Econbase model.  

7. Conclusions and Future Work 

In this research, we present a generalized form of VW model (GVW) that explicitly represents 

advertiser’s elasticity with respect to advertising expenditure and the WoM effect among 

potential consumers by two additional indexes. Moreover, we discuss some desirable 

properties of the GVW model through analytical analysis, and present a deep neural network 

(DNN)-based estimation method to learn its parameters. Based on three realworld datasets, 

Computational experiments have been conducted to evaluate the GVW model and identified 

properties. Furthermore, we discuss potential advantages of VW-type models (especially the 

GVW model) over econometric models.  

From the methodological perspective, the GVW model and its deep learning-based 

estimation method could support a rich set of big data-driven advertising analytics and decision 

makings for advertisers in various advertising forms.  

This research generates several interesting insights. First of all, our empirical results 

highlight that it’s against reality to fix the two newly added indexes, namely the ad elasticity 

index and/or the WoM index, as constants such as 1.0 and 0.5. This challenges the prior 

research in this stream, although such a treating brings a big convenience for analytical analysis.  

Second, both the ad elasticity index and the WoM index have significant influences on the 

relationships between market share and advertising expenditure. On one hand, given a certain 

level of advertising expenditure, a higher ad elasticity (α), or a higher WoM effect (i.e., (1 −

β)) leads to a larger market share. Moreover, advertising responses exhibit concave when the 
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ad elasticity is small, while they become S-shaped when the ad elasticity is large; the WoM 

index has little effect on the shape of advertising responses.  

Third, the ad elasticity index and the WoM index affect the steady-state market share in 

different ways. The effect of the ad elasticity on the steady–state market share depends on 

whether the steady state market share is above or below a threshold value. In other words, there 

exists a critical steady–state market share. Above it the steady–state market share 

monotonically increases with the ad elasticity; below it the steady–state market share 

monotonically decreases with the ad elasticity. As for the WoM index, the steady–state market 

share monotonically decreases with it.  

Fourth, the GVW model has potential advantages over econometric models of advertising, 

in terms of several interesting phenomena drawn from advertising practices, including the 

saturation level, the WoM effect and diminishing returns. Note that econometric models can 

capture diminishing returns on a strict complex condition related to multiple coefficients and 

advertising variables.  

In this direction, several interesting perspectives deserve further research efforts: (1) 

estimation methods for time-varying parameters of the GVW model and empirical studies in 

different advertising media; (2) optimal advertising strategy based on the GVW; and (3) 

application of the GVW model to multi-channel advertising decisions due to its strength of 

encoding the potential heterogeneity among different media vehicles. 
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