
1

An Architecture for Argumentation-based Epistemic Planning: A
First Approach with Contextual Preferences

Juan Carlos Teze1,2 and Lluis Godo3

1Grupo de Investigación en Agentes y Sistemas Inteligentes (GINAySI),
Laboratorio de Informática y Sistemas, Facultad de Ciencias de la Administración,

Universidad Nacional de Entre Rı́os, (E3202BHR) Concordia, Entre Rı́os, Argentina
2Institute for Computer Science and Engineering (UNS–CONICET),

Universidad Nacional del Sur (UNS) & Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET),
San Andres 800, Campus Palihue, (8000) Bahia Blanca, Argentina

3Artificial Intelligence Research Institute (IIIA-CSIC)
Campus UAB - 08193 Bellaterra, Barcelona, Spain

Corresponding author: Juan Carlos Teze (email: carlos.teze@uner.edu.ar).

Abstract — Argumentation-based planning systems present an interesting proposal for complex and dynamic domains where
defeasible argumentation is used in the reasoning processes used during the construction of plans by considering the available
knowledge. In many real-world application scenarios, knowledge is provided with explicit priorities. Despite its importance, existing
planning systems do not provide additional reasoning capacities of dynamically changing the preferences expressed by these priorities
when a plan is being constructed. In this work, we present an argumentation and planning architecture, and propose a set of software
engineering guidelines to analyze and design planning systems leveraging this capacity.

Index Terms—Planning, Contextual Preference, Defeasible Argumentation.

I. INTRODUCTION

The introduction of epistemic elements when building plans
to obtain a given goal has revealed an exciting and useful new
perspective in the planning research area. This has been suc-
cinctly described by T. Bolander in [1]: “Epistemic planning
is the enrichment of planning with epistemic notions, that is,
knowledge and beliefs.” Defeasible argumentation is a form
of commonsense reasoning that agents can use to exploit their
knowledge bases (KBs), which are possibly inconsistent [2].
Defeasible argumentation-based epistemic planners (DAEPs,
for short) have shown their potential in complex and dynamic
domains where unresolved contradictory information situa-
tions and incomplete information are present [3], and they are
characterized by the efficient use of defeasible reasoning for all
the epistemic tasks performed over the represented knowledge.
Specifically, the fundamental process in defeasible argumenta-
tion is to confront reasons to support or dismiss a conclusion
that is under scrutiny. An analysis mechanism supports this
process by obtaining arguments and then comparing those in
conflict to decide possible defeaters; this last step requires a
comparison, which in turn needs a preference criterion defined
on the set of arguments to reach an acceptance decision.
This analysis has a valuable additional result: the inference
mechanism can be used to reason about the preconditions and
effects of a planner agent’s actions.

DAEPs traditionally adopt a single perspective, which is
reflected by the preference criterion used to establish why
an argument is favored over others; therefore, these agents
should be equipped with an appropriate preference criterion
for the domain where they are deployed. Given the usual
dynamic nature of preferences, to design a real planner agent
with a single preference criterion when it has to face different

situations is quite limiting; besides, when the comparison is
indecisive, an agent could become ineffective. This situation
improves when this type of planner expands its capacities to
consider contextual preferences [4], for instance in terms of
defeasible rules with weights expressing a preference strength
that may vary from a particular context to another. A possible
way to address such a circumstance is to consider tools that
allow dynamically changing these preferences according to the
current context as the agent reasons to select which actions to
add to a plan. In our proposal, instead of considering only
a priority order at knowledge level under a single preference
context, the agent can evaluate the situation considering all
available reasoning contexts and decide which one to use
depending on the current state of the world. The use of a
conditional preference selection mechanism that considers the
context allows agents to adopt the context that better adapts
to the agent’s knowledge about the situation in which the
reasoning is performed.

Several works have proposed using argumentation to en-
hance planning systems. Defeasible planning was arguably
triggered by Pollock’ proposal [5] with its planner OSCAR
to reason defeasibly about plans as a whole, in the sense of
inferring defeasibly whether a plan is a solution of a planning
problem. On the other hand, early work such as Garcı́a
et al. [3] stressed the importance of considering epistemic
elements during the construction of plans. Along the same
line, more recently, Teze et al. [6] presented an application
to assist in policy-making tasks in the domain of agricultural
water use. Pajares-Ferrando and Onaindia [7], [8] introduced
argumentation-based tools in multi-agent planning, with ap-
plications in ambient intelligence. In [9] Pardo and Godo
proposed a dialogue-based approach to multi-agent collabo-
rative planning based on a temporal defeasible argumentation.

2

Finally, Oren et al. [10] presented a tool for explaining plans
that make use of formal argumentation and dialogue-theory.
Nevertheless, it is interesting to remark that these efforts
did not focus on the specification of preferences. The work
presented here describes a planning framework and a set of
guidelines to support knowledge and software engineers in the
analysis and design of argumentation-based planning systems
with the distinguishing capability of handling preferences,
aiming to fill this gap in the current intelligent systems
development literature.

II. ANALYSIS AND DESIGN OF PLANNING SYSTEMS WITH
DEFEASIBLE REASONING AND PREFERENCES

When analyzing and designing planning systems with these
characteristics, it is desirable to focus on five central aspects:
1) the analysis of the planning domain and the representation
of preferences; 2) the description of the planning problem and
the associated preferences; 3) the planning mechanism; 4) the
reasoning mechanism, and 5) the design of user interactions.
We now introduce our architecture (see Figure 1), along with a
series of methodological guidelines designed to address these
aspects.

Fig. 1: The Epistemic Planning Framework based on Argu-
mentation.

1) Planning Domain Analysis and Preference Representa-
tion

In solving a planning problem, planning systems should
be provided with an appropriate set of actions to perform.
The representation of these actions must consider all the
preconditions and effects that are relevant to solve the problem.
In many real-world applications, these systems often have
potentially contradictory and incomplete knowledge about the
environment. In this context, structured argumentation has
played a significant role in capturing and representing this
type of knowledge to be used in reasoning about actions.

Particularly, the KB is the structure where knowledge of the
domain is formally represented.

This stage’s result is a detailed and precise description of the
planning domain and the user’s preferences. The generation of
a KB can be carried out in four steps:

(i) Analyzing the domain and characterizing the set of
states of the environment where the system will act, to-
gether with the set of actions that indicate the transitions
between these states.

(ii) Specifying a preference relation among information
pieces.

(iii) Specifying an argument preference criterion to apply in
case the rules established in the previous steps generate
contradictory results.

(iv) Describing the KB in a formal logical language.
We create statements in natural language for the encoding of

different forms of knowledge expressing domain information
during the first step. It is necessary to appeal to domain experts
to generate rules, and in the second and third steps, elicit the
user’s preferences.

Preference criteria are established to compare information
and deciding between conflicting arguments. The argument
comparison criterion must reflect the domain’s salient charac-
teristics, since if this criterion fails to do that, the system could
often fail in its primary role of making a decision. Different
criteria are possible for computing a preference relation over
arguments. These preferences usually reflect the importance or
priority of the information that arguments contain. Typically,
we can encounter two types of preferences or priorities [11]:
• Implicit, that are extracted from the KB due to the

defeasible nature of the information it contains. For
example, in the case the KB consists of a set of defeasible
rules, arguments can be ordered by exploiting specificity
relations between their rules [12].

• Explicit, that are specified by stratifying the KB, for
instance by attaching weights to each piece of information
in the KB representing certainty or perceived priority.

Finally, in the fourth step, the KB should be specified in a
formal language to be interpreted by the reasoner. In contrast
to argumentation-based planning, traditional planning methods
cannot be applied directly in this final step since their de-
scriptions assume a fully observable, static, and deterministic
world where the available knowledge might be incomplete
or inconsistent, a situation which might lead to contradictory
conclusions.

2) Planning Problem Analysis
Classical planning aims at finding a sequence of actions that,

starting from an initial state, leads to a goal state. However,
it is often the case that certain approaches are concerned not
only with the final goal state after plan execution, but also they
attempt to address other important aspects, such as user’s pref-
erences [13], value-driven actions [6], and norms imposed on
the system establishing what the system is required to do under
certain conditions [14]. In particular, our proposal addresses
the novel question of the representation and application of
contextual preferences in each available plan action. Here, we
focus on defining a way of modifying preferences, through the

3

weights attached to defeasible rules, depending on contextual
information at the moment of evaluating the preconditions of
an action.

3) Analysis and Design of the Reasoner
The argumentative reasoner is the system’s main compo-

nent, which interprets available knowledge, obtains arguments,
and then compares those in conflict to decide on acceptance.
A reasoner contains three main components:

• Inference Mechanism, which analyzes domain knowledge
inferring new knowledge to be used during the construc-
tion of plans.

• Conflict Solver, which evaluates the relationships between
arguments, using a preference relation established over
the set of arguments through a preference criterion. The
knowledge engineer generally specifies this criterion,
which should be strongly related to the application do-
main.

• Semantic Analyzer, which aims at determining the ac-
ceptability of arguments by considering the interaction
between them. Given an argument, it considers its de-
featers, the defeats of its defeaters, and so on, in an
exhaustively recursive process. Essentially, there are two
forms for doing this: declaratively and procedurally. The
former establishes conditions that a set of acceptable
arguments must meet [15], while the latter provides a
specific algorithm [12].

4) Analysis and Design of the Planner
The planner controls and articulates interactions among the

components mentioned above, and it is in charge of obtaining
a sequence of actions to achieve the desired goals making use
of defeasible reasoning in this process. Most of the proposals
in the literature generally consider one of the following two
approaches: either the whole plan is viewed as an argument,
and then defeasible reasoning is performed over complete
plans, or it is used as a tool for determining which actions are
applicable in a given state; in both cases, defeasible reasoning
is performed to select actions.

Planning algorithms are mainly based on two approaches:
progression planning and regression planning. A progression
planner searches forward from a given initial state until a goal
state is reached. Naturally, if there is a considerable number
of actions, then the branching factor could be very large, and
the search problem becomes intractable. A regression planner
tries to improve this situation by beginning from the goal state
and generating the plan in inverse order.

5) Design of Outputs
Once all the modules for constructing plans are in place,

the next step is to design their presentation to users; this
consists in designing the system interface and any mechanism
to translate them in an appropriate way to be presented to the
user. In turn, this step can include effective ways to interpret
the process by which the planning decisions are made. Plan
explainability is crucial for helping users to understand plans.
Visual plan explanation [16] presents a simple graphical view
of a plan, with nodes representing actions, edges linking them,
and different filtering options available to the user. Other
approaches [17] involve a textual description of the plan in

natural language. Another related work [10] uses argumen-
tation for explanations, providing mechanisms to construct
arguments that can be useful to justify why a plan should
be executed, note aspects of a plan, and exploit the use of
causality for explanations.

III. CASE STUDY: P-DELP-BASED INSTANTIATION

Possibilistic Defeasible Logic Programming (P-DeLP) [18]
is a structured argumentation framework that extends the DeLP
framework [12] by allowing to attach priority or preference
weights to defeasible rules. This section will sketch a P-DeLP-
based particular instantiation of the proposed architecture, as
represented in Fig. 1. We only present a limited version of the
analysis carried out in each stage for reasons of space, focusing
on showing the intermediate results towards obtaining the final
planning system. We will also show how this instantiation can
be applied to a shopping planning service.

The application domain consists of a scenario where a
shopping agent must find IT product offers considering users’
preferences and domain information, e.g., products in stock.
The agent offers a product once the shopping website has been
chosen and the product selected. The agent task finalizes with
the selected products in a virtual shopping cart. Our approach
expands a planner’s capacity by considering contextual pref-
erences, i.e., preferences over defeasible knowledge expressed
in a particular context.

We consider now a KB representing the domain (defea-
sible) knowledge and preferences among different pieces of
defeasible knowledge formalized as a program in P-DeLP. We
will summarize the elements we require here from the works
in [18].

A weighted clause is a pair (R;ω), where R is a rule
L← L1 , . . . , Lk or a fact L (i.e., a rule with empty an-
tecedent), L,L1, . . . , Lk are literals, and the weight ω ∈ (0, 1]
expresses the priority or preference level of the rule, mathe-
matically interpreted as a lower bound for the necessity degree
of R. What weights allow is a ranking of rules in terms of
their priority level. Following the usual notation of Logic
Programming [19], we will regard the set of literals in the
body of a clause L1, . . . , Lk as a conjunction of these literals.
As in [12], P-DeLP rules can also be represented as schematic
rules with variables; schematic variables are denoted with an
initial uppercase letter. A clause (R;ω) is referred as certain
or strict when ω = 1, and uncertain or defeasible when ω < 1.
Two components describe a set P of weighted clauses–often
referred to as a P-DeLP-program or simply a program, the set
of all the clauses in P considered as strict, denoted Π, and
the set of all the defeasible clauses in P, denoted ∆. When
useful, we will write P = (Π,∆) to refer to the set of weighted
clauses, discriminating certain and uncertain clauses.

When reasoning with contradictory and dynamic informa-
tion, the P-DeLP-system builds arguments from a program P.
An argument A for a literal L is a minimal, non-contradictory
set of defeasible rules such that together with the program’s
strict knowledge allows the derivation of L with a given
weight ω (the smallest weight of the clauses involved in the
derivation), that will be regarded as the conclusion supported

4

by A. The ultimate answer to queries will be based on the
existence of warranted arguments, computed through dialec-
tical analysis. In P-DeLP, a literal L is warranted from a
given program if there exists an argument A supporting L
that cannot be defeated (see [18] for more details about the
warrant process).

Prioritized information is particularly useful to select appro-
priate knowledge and guide planning process according to the
user needs. Despite its importance, existing planning systems
do not provide additional reasoning capacities of dynamically
changing the preferences expressed by these priorities when a
plan is being constructed. Given this consideration, our pro-
posal provides planning agents with the capability of changing
how they decide their preferences through the use of context-
adaptable mechanisms.

In particular, we propose here a context-dependent approach
for the assignment of weights to defeasible rules. As already
mentioned, these assignments are meant to express a form
of preference or priority as defined e.g. in [20]. Here the
notion of context is understood in a general sense as conditions
favouring a particular preference criterion. Namely, given a
program, the set of defeasible rules prioritized according to a
particular criterion crit will be denoted as a priority context,
which can be specified as an assignment prOrdercrit of weights
to defeasible rules. In the following, we assume that a planner
will have a set of priority contexts specifically defined for the
planning problem represented knowledge.

In our proposal, the state of the world is represented by
the epistemic planning agent as a consistent set of weighted
literals. From the shopping scenario sketched before, we
consider the following state of the world:

Ψ =

(client(juan,ncbahia); 1)

(trust(maria, juan); 1)

(goodPrice(sony hph,ncbahia,maria); 1)

(∼prefProd(juan, sony hph); 1)

(spend(maria, 800); 1)

(price(600 , sony hph,ncbahia); 1)

(stock(ncbahia, sony hph); 1)

(newProduct(sony hph); 1)

The set Ψ contains information related to the

users and the websites visited by the users: the
literals client(juan,ncbahia) and trust(maria, juan)
express that juan is a client of the website ncbahia
and maria trusts juan , respectively. Moreover, the
literal ∼prefProd(juan, sony hph) conveys that sony
headphones is not a preferred product by juan , and
stock(ncbahia, sony hph) indicates the fact that ncbahia
has sony headphones in stock and their price is $600
(price(600 , sony hph,ncbahia)). Finally, the literal
goodPrice(sony hph,ncbahia,maria) represents the
fact that the price of headphones sony in ncbahia is at an
acceptable price for maria.

The following set of defeasible rules with some initial
weights can be used to model the agent’s knowledge:

∆ =

(r1)(site(S ,U)← client(C ,S), trust(U ,C); 0.1)

(r2)(product(P ,S ,U)← goodPrice(P ,S ,U); 0.4)

(r3)(∼product(P ,S ,U)← goodPrice(P ,S ,U),
trust(U,C),∼prefProd(C,P); 0.3)

(r4)(av(P ,S ,U)← selProd(P ,U), spend(U ,V),
price(C,P, S), V ≥ C; 0.1)

(r5)(∼av(P ,S ,U)← selProd(P ,U ,S),
spend(U, V), price(C,P, S), V < C; 0.2)

The first defeasible rule represents one tentative reason for

recommending a sale website: “if C is a client of S and the
client U trusts C , there is a reason to recommend S to U ”.
The second and third rules are used for establishing whether
the product P offered by S is suggestible for U . The third
rule states that: “if P has a good price, but it is not a preferred
product by a trusted client, then P is not suggestible”. Finally,
the fourth and fifth rules are used to indicate whether the
product P offered by S is available for the user U . The fourth
rule is read: “if P is a product particularly selected for U and
the cost of P is less than what U hopes to spend, then P is
available for U ”.

In [21], a mechanism where the use of guards offers a
particular way of associating conditions to the selection of a
preference criterion was introduced. A guard is a set of literals
γ, and a guard is satisfied in a state Ψ when for each literal
L ∈ γ, we have (L, ω) ∈ Ψ for some weight ω. Here, we
use guards to guide the choice of a priority order associated
with a given context that depends on the world’s current state
instead of selecting a criterion as was proposed in [21].

We rely on defeasible argumentation for reasoning over the
preconditions of actions. Every action is associated with a
conditional-contextual expression E. Then the planner will
use a particular preference order on defeasible rules obtained
after evaluating the expression E. In fact, in its simplest
form E can be just a priority context prOrderE , and in that
case the priority order corresponding to this priority context
is used to evaluate the preconditions. In general, E can be
of the form E = [γ : E1;E2], where γ is a guard and
where E1 and E2 can be in turn either priority contexts or
further conditional expressions. In such a case, E is evaluated
as follows: if γ is satisfied in the state of the world, then
E1 is evaluated, otherwise, E2 is evaluated. This evaluation
procedure is recursively applied until a priority context is
found. In the application example, we could consider two
expressions:

• E1 = [{newProduct(P)} : trust; price] where

prOrdertrust =

(r2; 0.6)

(r3; 0.9)

[. . .]

 prOrderprice =

(r2; 0.8)

(r3; 0.5)

[. . .]

• E2 = price

The first expression E1 is interpreted in the following way:
“if P is a new product on the market, then the trust-based
priority context is applied; otherwise, the price-based priority
context is applied”. The second expression E2 expresses that
the price priority context should be applied.

Note that conditional expressions are evaluated only on
the basis of the strict part of the knowledge base. In [21],

5

it is argued that restricting the guards to use only strict
derivations has been a design choice. The rationale for using
strict derivations for determining whether a guard is satisfied,
is that there is no need for an auxiliary criterion to decide
between conflicting information since the strict part is non-
contradictory. The study of other alternatives and, given its
complexities, falls out of the scope of this work.

Apart from its KB, and having defined the preference ex-
pressions, the agent will have a set of actions that it may use to
change its world. We define an action by a tuple 〈A,X,P,E 〉,
where A is the name of the action, X = {X 1,X 2, . . . ,X n}
is a set of literals representing consequences of executing A,
P = {P1,P2, . . . ,Pn} is a set of literals representing precon-
ditions for A, and E is a conditional-preference expression
under which to execute A. For instance, we can have the
following actions:

• offerProd(P,S,U): offer a product P to U that is sold from
website S . The product P must be available for U .

• chSite(S,U): choose a shopping website S for the user U .
The website S must be recommended according to the
user’s preferences U .

• chProd(P,U): choose a product P for the user U . The
product P must be suggested according to the user’s
preferences.

Checking whether an action 〈A,X,P,E 〉 can be executed
involves checking its applicability i.e., checking whether the
literals of the set P can be warranted by the updated program
(Ψ′,∆′), resulting from evaluating previous actions, and of
course the warrant of these literals will depend on the current
priority context selected. Since a priority selection mechanism
based on the current world state is used, a particular action
may be associated with different contextual priorities in sepa-
rate circumstances.

Given that the execution of an action results in a new state,
other actions could be applicable over this state. That situation
generates an applicable sequence of actions; when a goal state
is reached through this sequence, it is called a plan for that
goal.

Once the planning domain and preference expressions have
been defined, the next step involves specifying the planning
problem. We define a preference-based planning problem as
the tuple (Ψ,∆,A,C,M), where C is a set of priority contexts,
and M is a set of literals representing an agent’s goals. The
agent satisfies its goals when, through the execution of a
sequence of actions, it reaches a state Ψ′ where each literal
of M is warranted by the corresponding updated program
(Ψ′,∆′).

In what follows, Fig. 2 shows how the plan for
the goal sCart in(sony hph,maria) given by the
sequence of actions S = [chSite(ncbahia,maria),
chProd(sony hph,maria), offerProd(sony hph, ncbahia,
maria)] is generated by an extension of the algorithm APOP,
a Partial Order Planning algorithm based on Defeasible
Logic Programming (DeLP) introduced in [3], that considers
the conditional preference expressions proposed. The literal
sCart in(sony hph,maria) expresses that sony hph is a
product placed in maria’s virtual shopping cart. Consider a

planner agent with the following actions:

Action 〈A1,X1,P1,E2〉 where
A1 = chSite(S,U)

X1 = {selSite(S,U)}
P1 = {site(S,U)}
E2 = price

Action 〈A2,X2,P2,E2〉 where
A2 = chProd(P,U)

X2 = {selProd(P, S, U)}
P2 = {selSite(S,U),

stock(S, P),

product(P, S, U)}
E2 = price

Action 〈A3,X3,P3,E1〉 where
A3 = offerProd(P, S,M)

X3 = {sCart in(P,U)}
P3 = {av(P, S, U)}
E1 = [{newProduct(P)} : trust; price]

Next, our example scenario will serve for illustrative pur-
poses to show how APOP can be extended to handle the
conditional preference expressions presented before. As in the
algorithm presented in [3], the extended partial order planning
proposed here starts with an initial partial plan containing two
steps: a start step whose effects encode an initial state, and a
finish step whose preconditions encode the agent’s goals to be
achieved. The algorithm completes this initial plan with new
steps (actions or arguments) until all steps’s preconditions are
warranted. The conditional-preference expression used in the
initial step is assumed to be an empty expression. On the other
hand, the finish step includes the conditional expression used
to warrant the literals at the end of the epistemic plan.

In Figure 2, the labeled square nodes are used for action
step specifications. The literals that appear below an action
step represent the action step’s preconditions, and the literals
that appear above represent its effects. The literal that appears
on the right side of an action step represents a priority context
obtained from the conditional-preference expression associated
with the action. Argument steps are depicted by triangles
labeled with the argument name, and a literal representing the
argument’s conclusion in the top of the triangle. On the other
hand, the solid arrows represent causal links of the plan used to
link an action step effect with a precondition of another action
step, or with a literal in the base of an argument step. The
solid arrows that link the conclusion of an argument step and
a precondition of an action step represent the plan’s support
links. Note that ordering constraints are represented by dashed
arrows, and they allow establishing an order between steps.
Arguments will use a graphical representation without their
weights associated to simplify the notation in figures.

In Figure 2-(a), the finish action step has one unsatis-
fied precondition sCart in(sony hph,maria). Note that the
action offerProd is the only available action that can be
used to satisfy the precondition. Thus, offerProd is added
(Fig. 2-(b)) to the plan by the planning process and its
precondition becomes a subgoal to be achieved under the
priority context trust. Observe that none of the available

6

actions achieve av(sony hph,ncbahia,maria). Nevertheless,
from the rules ∆, it is possible to construct the undefeated
argument A1 that supports av(sony hph,ncbahia,maria).
Then, A1 is selected, and the set of literals appearing in
the body of rules conforming A1 become new subgoals
(Fig. 2-(c)). In particular, the literals spend(maria, 800)
and price(600, sony hph,ncbahia) are satisfied by the
start step, whereas selProd(sony hph,maria,ncbahia) is
the effect of the action chProd(sony hph,maria). Thus,
a new step chProd is added and now the precon-
ditions selSite(ncbahia,maria), stock(ncbahia, sony hph),
and product(sony hph,ncbahia,maria) must be satis-
fied under preferences defined in the context price.
The literal stock(ncbahia, sony hph) is satisfied by the
start step and from ∆ it is possible to construct
the argument A2, that is undefeated, supporting the
subgoal product(sony hph,ncbahia,maria). The literal
goodPrice(sony hph,ncbahia,maria) in the base of de-
feasible rule of A2 is achieved by the start step,
whereas selSite(ncbahia,maria) is the consequence of action
chSite(ncbahia,maria). Therefore, the corresponding step
chSite is added to the plan. Observe that steps chSite and
chProd are configured to use the same priority context. From
∆ it is posible to construct the undefeated argument A3

for the precondition site(ncbahia,maria). Finally, the literal
site(ncbahia,maria) in the body of rule conforming A3 is
satisfied by the start step, and the plan S = [A1,A2,A3] is
formulated, and the product headphones sony is placed in
maria’s virtual shopping cart.

To provide explanations for plans or the choice of a partic-
ular action, we propose explanations based on the approach
followed by [22], where natural language explanations are
obtained based on the structure of the arguments involved,
replacing the logical structure to its corresponding colloquial
interpretation. For instance, given the argument A3

A3 =

{
site(ncbahia,maria)← client(juan,ncbahia),

trust(maria, juan); 0.1)

}
supporting the precondition site(ncbahia,maria), such expla-
nation could be:

Explanation: “the website ncbahia is recommended to maria
because juan is client of ncbahia and maria trusts juan”.

Such explanations can then be offered to users upon request
[10]. For space reasons, and since the user interface does not
differ from typical ones in similar systems, we do not include
details of this stage here.

IV. CONCLUSIONS AND FUTURE WORK

The main contribution of this work has been to introduce
an architecture for defeasible argumentation-based epistemic
planning and the development of a methodological guideline
for the analysis and design of planners capable of: (i) con-
structing plans from an incomplete or inconsistent knowledge
base making combined use of argumentation and actions to
perform this task; (ii) providing the possibility of adapting
the preferences upon which preconditions of actions should be
evaluated; (iii) expressing context-dependent preferences, i.e.,

preferences over defeasible knowledge specified in a particular
context; and (iv) providing the first step in proceeding towards
an extension of the APOP algorithm to consider conditional
expressions. The state of the art of DAEPs focuses on using
defeasible reasoning over complete plans and for determining
which actions are applicable in a given state, without including
mechanisms to handle preferences in the process. Therefore,
our work is an initial approach to investigating software
development tailored to this type of systems. Future work
involves further evolving these aspects towards a formal and
robust software development methodology for creating high-
quality DAEPs with mechanisms to express preferences. There
are several research lines that we also plan to follow. When
conditional expressions are used, an action consequences
might interfere with the guards appearing in these expressions.
A promising issue is as future work to analyze different
type of interferences arising when conditional expressions
are used. Finally, one of our future goals is to broaden the
presented framework considering alternatives to model action
consequences, possibly using defeasible knowledge.

ACKNOWLEDGMENTS

The authors are indebted to the anonymous referees for
their helpful insights and to Guillermo R. Simari for in-
spiring discussions. Teze acknowledges partial support from
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas
(CONICET), Universidad Nacional del Sur (UNS), Institute
for Computer Science and Engineering (UNS-CONICET), and
Universidad Nacional de Entre Rı́os (UNER), Argentina. Godo
acknowledges the AppPhil project (funded by CaixaBank,
RecerCaixa 2017) and the Spanish projects RASO (TIN2015-
71799-C2-1-P) and ISINC (PID2019-111544GB-C21).

REFERENCES

[1] T. Bolander, “A gentle introduction to epistemic planning: The DEL
approach,” in Proceedings of the Ninth Workshop on Methods for Modal-
ities, M4M@ICLA 2017, Indian Institute of Technology, Kanpur, India,
8th to 10th January 2017, ser. EPTCS, S. Ghosh and R. Ramanujam,
Eds., vol. 243, 2017, pp. 1–22.

[2] I. Rahwan and G. R. Simari, Argumentation in Artificial Intelligence,
1st ed. Springer Publishing Company, Incorporated, 2009.

[3] D. R. Garcı́a, A. J. Garcı́a, and G. R. Simari, “Defeasible reasoning and
partial order planning,” in Foundations of Information and Knowledge
Systems, 5th International Symposium, FoIKS 2008, Pisa, Italy, February
11-15, 2008, Proceedings, 2008, pp. 311–328.

[4] L. Amgoud, S. Parsons, and L. Perrussel, “An argumentation framework
based on contextual preferences.” in Proceedings of the 3rd International
Conference on Formal and Applied Practical Reasoning, FAPR ’00,
2000, 2000, pp. 59–67.

[5] J. L. Pollock, “The logical foundations of goal-regression planning in
autonomous agents,” Artificial Intelligence, vol. 106, no. 2, pp. 267–334,
1998.

[6] J. C. L. Teze, A. Perelló-Moragues, L. Godo, and P. Noriega, “Practical
reasoning using values: an argumentative approach based on a hierarchy
of values,” Annals of Mathematics and Artificial Intelligence, vol. 87,
no. 3, pp. 293–319, aug 2019.

[7] S. Pajares Ferrando and E. Onaindia, “Defeasible argumentation for
multi-agent planning in ambient intelligence applications,” in Inter-
national Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3 Volumes), W. van der
Hoek, L. Padgham, V. Conitzer, and M. Winikoff, Eds. IFAAMAS,
2012, pp. 509–516.

[8] S. Pajares-Ferrando and E. Onaindia, “Defeasible-argumentation-based
multi-agent planning,” Inf. Sci., vol. 411, pp. 1–22, 2017.

7

Fig. 2: Different partial plans for the application example.

[9] P. Pardo and L. Godo, “A temporal argumentation approach to coop-
erative planning using dialogues,” J. Log. Comput., vol. 28, no. 3, pp.
551–580, 2018.

[10] N. Oren, K. van Deemter, and W. W. Vasconcelos, “Argument-based
plan explanation,” in Knowledge Engineering Tools and Techniques for
AI Planning, M. Vallati and D. E. Kitchin, Eds. Springer, 2020, pp.
173–188.

[11] S. Kaci, Working with Preferences: Less Is More, ser. Cognitive Tech-
nologies. Springer, 2011.

[12] A. J. Garcı́a and G. R. Simari, “Defeasible logic programming: An
argumentative approach,” Theory and Practice of Logic Programming
(TPLP), vol. 4, no. 1-2, pp. 95–138, 2004.

[13] J. A. Baier and S. A. McIlraith, “Planning with preferences,” AI
Magazine, vol. 29, no. 4, pp. 25–36, 2008.

[14] Z. Shams, M. D. Vos, N. Oren, and J. Padget, “Argumentation-based
reasoning about plans, maintenance goals, and norms,” ACM Transac-
tions on Autonomous and Adaptive Systems, vol. 14, no. 3, pp. 1–39,
mar 2020.

[15] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artif. Intell., vol. 77, no. 2, pp. 321–358, 1995.

[16] J. Pearl, “Graphical models for probabilistic and causal reasoning,” in
Computing Handbook, Third Edition: Computer Science and Software
Engineering, T. F. Gonzalez, J. Diaz-Herrera, and A. Tucker, Eds. CRC
Press, 2014, pp. 44: 1–24.

[17] A. E. Gerevini and A. Saetti, “An interactive tool for plan generation,
inspection, and visualization,” in Knowledge Engineering Tools and
Techniques for AI Planning. Springer, 2020, pp. 127–155.

[18] T. Alsinet, C. I. Chesñevar, L. Godo, and G. R. Simari, “A logic
programming framework for possibilistic argumentation: Formalization
and logical properties,” Fuzzy Sets and Systems, vol. 159, no. 10, pp.
1208–1228, 2008.

[19] V. Lifschitz, “Foundations of logic programs,” in Principles of Knowl-
edge Representation, G. Brewka, Ed. USA: Center for the Study of
Language and Information, 1997, pp. 69–128.

[20] T. Alsinet, R. Béjar, L. Godo, and F. Guitart, “RP-DeLP: a weighted
defeasible argumentation framework based on a recursive semantics,”
Journal of Logic and Computation, vol. 26, no. 4, pp. 1315–1360, feb
2014.

[21] J. C. Teze, S. Gottifredi, A. J. Garcı́a, and G. R. Simari, “An approach
to generalizing the handling of preferences in argumentation-based
decision-making systems,” Knowledge-Based Systems, p. 105112, 2019.

[22] C. E. Briguez, M. C. Budán, C. A. D. Deagustini, A. G. Maguitman,
M. Capobianco, and G. R. Simari, “Argument-based mixed recom-
menders and their application to movie suggestion,” Expert Systems with
Applications, vol. 41, no. 14, pp. 6467–6482, 2014.

Juan Carlos Teze is a professor at Universidad Nacional de Entre Rı́os, and
a researcher at the Institute of Computer Science and Engineering (UNS –
CONICET), Argentina. His main interests are in Artificial Intelligence, with a
particular focus on representation and reasoning with preferences. He obtained
his Ph.D. from Universidad Nacional del Sur (Bahı́a Blanca, Argentina), in
the area of Artificial Intelligence. E-mail: carlos.teze@uner.edu.ar.

Lluis Godo is a Research Professor at the Artificial Intelligence Research
Institute (IIIA) of the Spanish National Research Council (CSIC), Barcelona,
Spain. He obtained his PhD in Mathematics from the Technical University
of Catalunya (1990). His main research interests include logics for Artificial
Intelligence, in particular graded uncertainty reasoning formalisms, mathe-
matical fuzzy logic, and argumentation systems. He is an EurAI Fellow and
an IFSA Fellow. E-mail: godo@iiia.csic.es

	Introduction
	Analysis and Design of planning systems with defeasible reasoning and preferences
	Planning Domain Analysis and Preference Representation
	Planning Problem Analysis
	Analysis and Design of the Reasoner
	Analysis and Design of the Planner
	Design of Outputs

	Case study: P-DeLP-based instantiation
	Conclusions and Future Work
	References
	Biographies
	Juan Carlos Teze
	Lluis Godo

