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Unveiling the homophilic/heterophilic behaviors that characterize the wiring
patterns of complex networks is an important task in social network analysis, often
approached studying the assortative mixing of node attributes. Recent works have
underlined that a global measure to quantify node homophily necessarily provides a
partial, often deceiving, picture of the reality. Moving from such literature, in this
work, we propose a novel measure, namely Conformity, designed to overcome such
limitation by providing a node-centric quantification of assortative mixing patterns.
Different from the measures proposed so far, Conformity is designed to be path-
aware, thus allowing for a more detailed evaluation of the impact that nodes at
different degrees of separations have on the homophilic embeddedness of a target.
Experimental analysis on synthetic and real data allowed us to observe that
Conformity can unveil valuable insights from node-attributed graphs.

During the last decades, network science has
become one of the fastest growing multidis-
ciplinary research fields. Every year, count-

less researchers, from heterogeneous backgrounds,
leverage network theory to analyze complex data
describing alternative facets of real-world phenomena.
From sociology to biology, more and more domains
study entities composed of several components—
each having its internal complexity and peculiar func-
tionalities—all of them strictly tied in functional rela-
tionships. Such complex organizations can naturally
be modeled as networks, and as such, analyzed. While
reasoning on networks built on top of contextual data,
topology is only one of the aspects to take into account:
nodes and edges often carry additional semantic infor-
mation that are of uttermost importance to properly
understand the phenomena expressed by the underlying
topological structure. Often, such augmented struc-
tures are referred to as feature-rich networks.1 That
general term acts as an umbrella for several, more

specific, class of network extensions including tem-
poral as well as probabilistic and attributed (or
labeled) networks. In this work, we are particularly
interested in labeled or node-attributed networks,
where reliable external information is added to the
nodes as categorical or numerical attributes. Node-
attributed graphs are a quite expressive model of
social network environments since several salient
dimensions (age, gender, nationality, etc.) can be
meaningfully studied by leveraging such a framework.

Indeed, one of the salient aspects that makes
network science a widespread research methodol-
ogy is its ability to unveil emergent behaviors of
complex systems. Network topology is, perhaps,
the clearest example of how the overall complexity
of a whole system is more than the sum of the
coupled interactions among its components. Sev-
eral modeling works have shown how some univer-
sal network properties are the results of emergent
behaviors: classic examples are the long-tail degree
distribution2 and the mesoscale modular organiza-
tion3 that describe complex systems as sparsely
connected dense components. Another relevant
emerging behavior is homophily. It has been observed
that individuals are more likely to group in social
circles if they share common features and stay apart
when some specificity diverges. Social network analy-
sis has deeply investigated such a phenomenon,
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trying to measure its impact and propose a mecha-
nistic explanation to its existence. A proxy often used
to estimate for homophilic behaviors fall under the
name of Newman’s assortativity.4 Such a measure
aims to classify a whole network in a range that goes
among two extremes: disassortative mixing, where
nodes are likely to be connected if they are anticorre-
lated w.r.t. a given property, and assortative mixing,
where, conversely, nodes are likely to be connected if
they share a given property. Assortativity has been
widely studied and applied to characterize several
phenomena such as degree correlation and node-
attribute correlations. One of the major drawbacks of
such a measure, and similar ones, lies in its definition
scale: a complex behavior is summarized in a single,
average, score. Recently, a few works5 tried to over-
come such limitation by proposing a multiscale
extension of Newman’s assortativity, thus allowing to
analyze multimodal behaviors that the original score
makes impossible to observe (e.g., identifying differ-
ent, even conflicting, homophilic/heterophilic behav-
iors within the same complex system).

In this work, we move from such a line of research,
proposing an alternative proxy for measuring multi-
scale node homophilic couplings: Conformity, a node-
centric path-aware measure, able to unveil heteroge-
neous mixing patterns in node-attributed networks,
designed to cope with categorical (single and multi)
attributes. Inspired by a higher order assortativity defi-
nition, namely the clumpiness score,6 Conformity
takes into consideration the evidence that nodes with
similar characteristics are not divided by long chains.
Experimental results carried out on real-world node-
attributed networks underline that Conformity allows
to study homophilic patterns from a novel point of
view and make valuable inference on the social con-
texts it is applied to.

The work is organized as follows. The section
titled “Related” introduces the relevant literature
to frame the proposed contribution. The section
titled “Conformity” formally introduces Conformity. The
section titled “Experimental Analysis” discusses experi-
mental results obtained applyingConformity to synthetic
as well as real-world data. Finally, the section
titled “Discussion and FutureWork” concludes the article.

RELATED
Literature defines social homophily as the tendency
of people to interact with similar others in respect
of dimensions such as age, gender, education, as
well as values, attitudes, and political beliefs,
sourced by geographical distances, households,

workplaces, and universal human cognitive pro-
cesses.7 Hidden social dynamics can be unveiled
studying homophily as well as heterophily among
people: in the presence of segregation, interracial
friendships are less probable when social class is
correlated with race;8 in the early school grades,
boys tend to form larger and more heterogeneous
cliques compared to the smaller and more homoge-
neous cliques of girls;9 intergroup mixing is also a
key factor in academic success when interdisciplin-
ary research is involved.10 Such a brief set of exam-
ples let us know how both homophily, and its
counterpart, act as fundamental principles in the
choice of people’s social circles.

In the language of network science, they act as a
discriminant factor for node neighborhood selection.
Network homophily can refer either to explicit topol-
ogy (e.g., nodes with a similar degree preferably con-
nect) or to the interactions between nodes sharing
similar labels. Newman’s assortativity coefficient4 is
the most known and used measure for quantifying
homophily in complex networks. Based on modularity,
the coefficient is calculated as the sum of the differen-
ces between the observed and the expected fraction
of edges between nodes sharing similar values of an
attribute. Some recent extensions or alternative
approaches, like ProNe11 or the VA-Index,12 are also
able to cope with pairs of attributes or vector of fea-
tures, shedding light, more than Newman’s coefficient,
on the phenomenon of similarity between two or more
attributes based on network structure.

Such global and aggregated measures flatten and
simplify a heterogeneous context in one only score,
and avoid the presence of outliers or different mixing
interactions characterizing different zones of net-
works and perhaps also single nodes. In such scenar-
ios, local or node-centric approaches (able to assign
a score to each graph node) should help for quantify-
ing a more reliable and exploitable network descrip-
tion. Since the only direct neighborhood (or ego-
network) of nodes cannot be taken into consider-
ation due to its limited expressive power (inherited
in the scale-free-like degree distribution of complex
networks), the issue is to define connectivity boun-
dednesses able to circumscribe those nodes whose
importance is fundamental in the assortative atti-
tude measurement of a target one. While some lines
of research focused on degree assortativity13

(extended to cope with higher order notions of node
neighborhood such as a two-walks degree correla-
tion14 or transsortativity15), the node-attributed
counterpart of the problem has not received much
of attention.
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Only a few studies address such a task in this lat-
ter scenario. Recent works aimed to study the exis-
tence of possible relations among network structure
and label distribution among nodes (e.g., how struc-
ture and minority size generate perception biases16)
as well as shed light on the individual differences in
mixing (e.g., in the analysis of monophily, a concept
aiming to identify those individuals with extreme
preferences for different labels17). Accordingly, infer-
ring and quantifying individual differences as well as
different local mixing comes as a hard task in com-
plex networks studies. A model able to characterize
the within-group mean and variation of mixing pat-
terns was recently proposed in the framework of
Bayesian inference18: when variation is consistently
present, the group mean only is not able to fully
describe individual node preferences. In some work,
locality is exploited through a definition of assorta-
tivity based on the correlation between two conse-
cutive nodes visited by a random walker. For
instance, this rationale is used in the paper by
Guti�errez-G�omez and Delvenne,19 and applied in the
graph classification task; a multihop assortativity is
defined, here, as the probability that a randomly
selected node and a randomly selected t-hop neigh-
bor belong to the same category, where t indicates
the time of the visit of the random walker. Closer to
the current work, a node-centric and Newman’s-nor-
malized measure, namely Peel’s assortativity,5 was
recently proposed in the context of local-aware
homophily, modeling similarities between nodes as
an autocorrelation of a time-series defined as a
sequence of node labels visited by a random walker
with a restart.

CONFORMITY
We aim to design a local proxy to measure the degree
of homophilic embeddedness of network nodes w.r.t.
the attributes they carry. Such a task has been
recently approached by Peel et al.5 to overcome the
limitation of classical approaches that usually propose
a single aggregate score to characterize the overall
assortativity of network nodes. A multiscale strategy
to estimate the presence of homophilic patterns
within a complex system enables the discovery of
emergent behaviors that classical indexes often are
not capable of unveiling. The score proposed in the
paper by Peel et al.5 moves from the classical New-
man’s assortativity4 that, in turn, poses its ground on
a reinterpretation of the modularity score—a measure
often used to quantify the quality of network cluster-
ing partitions.

Modularity, Q, computes the difference between
the observed and the expected fraction of edges
between nodes sharing similar attribute values: in the
assortativity coefficient, rglobal, such quantity is nor-
malized in the range �1 � rglobal � 1. Thus, rglobal ¼ 1
implies that all edges only connect nodes labeled with
the same value; rglobal ¼ 0 that all edges are randomly
connected, and hypothetically, rglobal ¼ �1 that all
edges only connect nodes with a different value. For-

mally, rglobal ¼ Q
Qmax

¼
P

g
egg�

P
g
a2g

1�
P

g
a2g

where egg is the

proportion of edges connecting nodes of the same
type g, and ag ¼ P

i2g ki=2m is the sum of degrees (ki)
of nodes with type g.

Indeed, the approach in5 yields valuable results;
however, it misses a fundamental high-order property
of networks: the length of paths connecting nodes. To
address such an issue, we define a novel measure,
namely Conformity (the code is available at https://
github.com/GiulioRossetti/conformity).

Given an undirected attributed network G ¼
ðV; E;AÞ, where V ¼ fv1; v2; . . . ; vng is the set of nodes,
E ¼ fðvi; vjÞjvi; vj 2 Vg the set of edges among them,
and A ¼ fl1; l2; . . . ; lng the set of node attributes, Con-
formity computes the similarity between the attrib-
utes of the node u 2 V with the ones of the other
nodes of the network, weighing it with the distance
among them. Here, we will focus only on networks
with nodes carrying categorical attributes.

To facilitate the introduction of Conformity , we
need to define a few support functions.

Considering a node u 2 V, we define the set Nu;d as
the set of u neighboring nodes at a distance d

Nu;d ¼ fvjdistðu; vÞ ¼ dg: (1)

Moreover, let us call Iðu; vÞ the indicator function that
compares the attribute values of two nodes u; v 2 V

Iu;v ¼ 1 if lu ¼ lv
�1 otherwise

�
(2)

and fu;lu the function that, if among the neighboring
nodes of u there is at least one node sharing the same
attribute value lu, computes the ratio of u’s neighbors
sharing it

fu;lu ¼ jfvjv 2 GðuÞ ^ lu ¼ lvgj
jGðuÞj ; (3)

where GðuÞ is the first-order neighborhood of node u,
i.e., the set of nodes adjacent to it. Moreover, to
assure a consistent interpretation of Conformity, we
force fu;lu to assume values in ð0; 1� by setting its value
to 1 when its numerator nullifies.
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Finally, we define the Conformity score for a node
u 2 V and a given real number a in ½0;þ1Þ as

cðu; aÞ ¼
P

d2D

P
v2Nu;d

Iu;vfv;lv

jNu;djdaP
d2D d�a

; (4)

where D is maxðfdistði; jÞji; j 2 VgÞ, and the parameter
a controls the level of interaction between nodes,
which exponentially decreases while the distances
among nodes increase; thus, imposing a ¼ 1, we force
a linear decrease w.r.t. the distance, whereas a > 1
imposes a sublinear decrease, which reduces the level
of interaction between relatively distant nodes.

Conformity can be algorithmically interpreted as
follows.

1. For each node pair u; v 2 V, with v 2 Nu;d with
1 � d � maxðfdistði; jÞji; j 2 VgÞ the nodes attri-
bute concordance – given by Iðu; vÞ – is weighted
by fv;lv , namely the degree of homophily of the
node v toward its first order neighborhood.

2. The average of such score aggregated over all
the nodes in Nu;d is then damped by a factor da,
to account for the distance that separates the
nodes considered by the source u. Note that
we used an inverse power-law distance
decay—that recalls well-known physical meas-
ures such as the Coulombic and gravitational
ones—since such an approach has already
proven its consistency in the definition of the
clumpiness measure,6 a widely used degree
dispersion index.

3. Finally, the computed score is normalized to
ensure that Conformity lies in the range ½�1; 1�.

Intuitively, the value of cðu;aÞ is maximized when a
node u is surrounded by neighbors having the same
attribute value, minimized in the opposite scenario.
Figure 1(a) shows a network whose nodes (colored by
their attribute value) always minimize their Conformity
value independently from the chosen decay exponent.
Such a limit case example perfectly captures the
essence of anticonformity: edges always connect
nodes with a different attribute value, resulting in the
absence of homophilic islands.

Conversely, Figure 1(b) shows a simple scenario
where the length of the paths among nodes sharing
different labels plays a crucial role in the Conformity
values. We can easily observe how Conformity (coded
with the relative node size) tends to decrease moving
from the inner layer to the outer ones, e.g., moving

from the more homophilic embedded nodes to the
more heterophilic ones.

As discussed, Conformity is a node-related mea-
sure: we can define the overall degree of Conformity
of a network as

CðaÞ ¼ 1
jVj

X
u2V

cðu;aÞ: (5)

Indeed, such an average score is only able to capture a
general trend, not to provide a clear picture of the
emergent homophilic behaviors at a local level.

To better understand the information that the
proposed measure can unveil, let us consider the
classic example offered by Karate Club dataset,20

representing the small social network of a club after
a conflict arose between the administrator, “John
A.,” and an instructor, “Mr. Hi.” The graph is classi-
cally used as a toy example for characterizing com-
munity discovery algorithms since it is neatly
divided into two factions and very suitable for
explaining a clustering methodology. Moreover,
since each node is labeled with the club it belongs
(“John A.” or “Mr. Hi”), this external information is
commonly exploited as a ground truth to test the
goodness of the algorithm outputs, even if it has
been shown not to be a proper approach.21 In
Figure 1(c), different colors encode the two categori-
cal node attribute values characterizing the network
while, as in the previous example, the node sizes are
proportional to the node Conformity score (a ¼ 2:5).
As we expected, the highest Conformity values are
assigned to those nodes that prevalently connect to
same attributed peers, whereas, on the other hand,
the lowest ones characterize bridge-nodes. Particu-
lar attention must be paid to node 8, which registers
the lowest Conformity score (’�0.18). Indeed, the
data paper that discusses the origin of the Karate
Club network dataset20 help us in providing a neat
justification for such Conformity value: node 8 iden-
tifies a weak supporter of “Mr. Hi,” who joined with
the “John A.”’s faction, after the split, for personal
advantage, so he represents a bridge between the
two opposite sides of the Karate Club dispute
indeed.

EXPERIMENTAL ANALYSIS
Studying the homophilic patterns of actors embedded
in a network is a way to unveil emergent behaviors
that are otherwise hard to identify. In this section, we
propose a characterization of both synthetic and real-
world networks using the proposed Conformity score.
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Synthetic Data
Inspired by the Peel’s quintet,5 in Figure 2 we replicate
the building of a set of five small synthetic graphs with
the same number of nodes and edges (40 nodes – 20
red, 20 green – and 160 edges), but involving a rewiring
of edges leading to the emergence of different local
mixing patterns that Newman’s assortativity coeffi-
cient r is not able to detect (i.e., r ¼ 0). Indeed, New-
man’s score is a valid indicator only for the leftmost
graph of the figure, the only one where all edges are
randomly rewired across all nodes. This is showed by
the unimodal distribution in the Conformity plot for
(a). In contrast, other plots reflect and capture the het-
erogeneous patterns obtained by planting homophilic
relations among nodes: in such scenarios, the unimo-
dal distribution breaks down into bimodal ones, e.g.,

the twin peaks observed for the rightmost graph
describe the most extreme case where exactly half
the nodes is perfectly homogeneous; in contrast, the
other half is entirely heterogeneous.

An aspect worth noticing is the effect played by
the a parameter on the c values. As discussed, the a

exponent allows tuning Conformity sensitivity w.r.t.
the distance among node pairs. For a ¼ 0, all nodes
are perceived at the same distance from the source
node, thus contributing equally to its final score; for
a > 0, the contribution of nodes is weighted w.r.t.
their distance, and progressively dumped while
increasing such value. The effect of increasing a, as
shown by the kernel density estimate (KDE) distribu-
tions in Figure 2, is to concentrate the actual contribu-
tion to low-distance neighborhoods, thus favoring a

FIGURE 1. Toy examples. (a)–(c) Node colors map categorical attribute values, whereas node sizes encode the respective Con-

formity scores (the smaller the size, the lower the score). (a) Scenario in which all nodes minimize the Conformity score: all nodes

have the same size, cðu;aÞ ¼ �1, since no connection exists among pairs sharing the same color. (b) Effect of distance on the

cðu;aÞ value: the central node’s score approaches 1 while moving toward the graph periphery (composed by nodes having differ-

ent color) nodes’ cðu;aÞ decreases—reaching negative values for the extreme periphery. (c) Karate Club. Node colors encode

the two factions of the Karate Club dispute, whereas node sizes are proportional to Conformity scores for a ¼ 2:5.

FIGURE 2. Peel’s quintet toy example. KDE’s distributions of several local mixing patterns according to Conformity, for different

values of a: the higher the value, the less the contribution of distant nodes to the target final score—as shown by the progres-

sive amplification of the distributions toward close-to-bound values.
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polarization of the scores to the extreme values of the
domain. Indeed, there is no one-fits-all value for such
parameter: it needs to be fitted to the analytical needs
and the underlying network topology.

Real Data
Copenhagen Network Study: We first consider a small
real-world network, namely the interaction data from
Copenhagen Network Study.22 It is composed of differ-
ent layers connecting a sample of 700 among male and
female university students for four weeks: we consider,
here, the Short Message Service (SMS) layer and the
proximity estimated via Bluetooth signal strength. Since
information about node gender is available, we mainly
aim to relate a characterization of the network based on
Conformity to some of the analysis already shown in the
original data paper, e.g., more frequent male–male inter-
action than male–female and female–female ones.22

Since the underlying network reflects these frequencies,
we describe homophily by gender leveraging Conformity,
trying to give more insights than the only number of
exchanged messages. Figure 3 shows that several male
nodes are perfectly homophilic w.r.t. gender, but also
that there exist a few highly heterophilic ones among
them. The same (i.e., the samemixing pattern) is not true
observing female nodeConformity distribution, even tak-
ing into account the fact that the two populations are
unbalanced. Considering the proximity layer, we show
the graph analysis of two days, namely Monday and Sat-
urday. Figure 3(b) and (c) underlines how differentmixing
patterns arise considering different days of theweek.

Facebook100: Facebook10023 is a collection of 100
Facebook friendships networks among 100 U.S. col-
leges, built during the early history of the social net-
work. Nodes are labeled with several categorical
attributes, profiling people by gender, college year,
dormitory, etc. In the following, we will focus on the
first 50 networks ordered by size, considering two sin-
gle-attributes analyses—namely gender and college
year—and a multiattribute overview. Be aware that

the gender attribute yields three values, referring to
male, female and missing information; quoting the
original data paper, we use a “missing” label for situa-
tions in which individuals did not volunteer a particu-
lar characteristic,23 namely that the individual itself
does not specify his gender.

Gender: Figure 4 shows the gender assortativity of
the 50 selected networks. In general, we cannot state
a male/female tendency to homophily/heterophily as
a common behavior across all networks; even if it
seems that females’ average behavior is more assorta-
tive than males, this should be examined on a case-
by-case basis. Nevertheless, for the work, it is more
interesting to focus on the scoring of three specific
networks, whose male and female homophilic behav-
iors are different w.r.t. the other colleges.

They are Simmons, Smith, and Wellesley, whose
distributions are also highlighted in Figure 5, in view of
a comparison with Peel’s assortativity5 (This other
measure has also a parameter a 2 ½0; 1�, which is inte-
grated over all its possible values in the article where
it is defined and presented5: we replicated the same
approach for the comparison in the current study).
First of all, referring to the analysis presented in the
original data paper by Traud et al.,23 they are three pre-
dominantly female colleges whose Newman’s assorta-
tivity coefficient tends to 0. Leveraging Conformity, we
can observe (see Figure 4) how i) the few male nodes
connect disassortatively by gender (i.e., form ties only
with females), inducing the emergence of two extreme
and distinct mixing, and meanwhile ii) we observe
some differences with Peel’s assortativity, where the
same overall strong assortative behavior of the net-
works is not maintained (see Figure 5). Apparently, the
extreme disassortative behavior of few nodes should
not so strongly affect the entire network mixing. Since
a real comparison between the two measures is not
possible i) due to the absence of ground truth, but
mostly because ii) they capture different aspects of
mixing, our interpretation is that the local assortativity

FIGURE 3. Copenhagen Network Study analysis. (a) Conformity analysis (a ¼ 2:5) in the SMS layer analysis. (b), (c) Conformity

analysis (a ¼ 2:5) in the proximity graphs of Monday and Saturday.
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variant we face suffers from the same limits about
network constraints impacting on the reaching of the
whole measure range, as already studied in the paper
by Cinelli et al.24

Also, the presence of missing values has a nontriv-
ial effect on the resulting Conformity distribution. The
ability to discriminate noisy information from sensible
one is important while analyzing a complex system.
Since nodes with missing information are homo-
geneously distributed within the network tissue, Con-
formity can correctly classify them as noise, as shown

in the labeled versus missing box-plot of Figure 4. This
observation simply implies that these nodes cannot
induce to homophilic behaviors since missing informa-
tion is not a real social dimension implying assortative
attitudes.

Year: Figure 6 shows the year assortativity of the
50 selected networks. As already shown in the paper
by Peel et al.,5 first year students highly contribute to
the homophilic behavior of the attribute, even when
the network attitude does not tend to be globally
assortative (see Haverford in Figure 6). According to

FIGURE 4. Gender analysis (a ¼ 2:5). The box-plot above compares male (blue diamonds) and female (red diamonds) distribu-

tions of the analyzed colleges, whereas the box-plot below compares male-and-female (purple diamonds) and missing values

(green diamonds) distributions. Three binned networks show heterogeneity of distributions along the colleges.

FIGURE 5. Comparison between Conformity (a ¼ 2:5) and Peel’s assortativity in the three female colleges.
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the original data paper by Traud et al.,23 the year attri-
bute is the most assortative in terms of Newman’s
coefficient. Also, in this case, a node-centric measure
tends to discover different mixing pattern and allows
to differentiate the values that show high homogene-
ity from the ones that prefer a heterogeneous neigh-
borhood; the three binned networks in Figure 6 also
suggest that homophilic behavior tends to decrease
with the increase of enrolment years in a coherent
way with the ordinal nature of the attribute.

Multiattribute: In a multiattribute scenario, we
want to measure homophily among complex node pro-
file composed by multiple independent fields. Figure 7
focuses on dorm-gender and dorm-year assortativity
of two selected networks. Smith college, as Wellesley,
shows a consistent difference between male and
female distributions when the only gender attribute is
considered, whereas no substantial differences are

highlighted when the only dormitory attribute is ana-
lyzed. However, male nodes tend to be more assorta-
tive than female ones when the two attributes are
measured together, allowing us to provide a more reli-
able description of the social media friendships mirror-
ing college interactions. Like all other colleges, first-
year students are highly assortative w.r.t. the other
years, whereas the same pattern does not emerge
considering the dormitory attribute. However, such a
pattern emerges anew when dormitory and years are
analyzed in a multiattribute scenario.

DISCUSSION AND FUTUREWORK
This work introduced Conformity, a novel strategy to
measure the homophilic mixing of network nodes w.r.t.
their categorical attributes. The proposedmeasure aims
to address some limitations of the well-known

FIGURE 6. Year analysis (a ¼ 2:5). The box-plot compares the first year (red diamonds) and other years (green diamonds) distributions

of the selected colleges. Three networks are selected, where also a distinction betweenfirst- and second-year students is highlighted.

FIGURE 7. Multiattribute (a ¼ 2:5). Dorm-gender and dorm-year analysis of Smith and Bucknell colleges: respectively, male-

female and first year versus other years differences are highlighted in the distributions.
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assortativity coefficient, in its classic definition given by
Newman’s work.4 The main reason behind Conformity is
the need to take into account (the often neglected)
impact of node distance on the homophilic/heterophilic
behaviors that, in social contexts, favor the creation of
social ties. As shown, the proposed measure can unveil
interesting nodes’ behaviors and can, in practice, be
fruitfully adapted to support several tasks (e.g., the iden-
tification/measuring of echo-chambers or polarized
islands among users living in a social media ecosystem).

In particular, the multiattribute analysis it enables
can support fine-grained analysis of complex homo-
philic patterns to uncover, for instance, homogeneous
nuclei among individuals w.r.t. their age and political
views, thus supporting tasks such as attributed com-
munity discovery.25 Moreover, Conformity ability to
characterize different extreme behavior of even hand-
fuls of nodes (as seen both in homophily by gender
analysis of colleges as Smith and Wellesley and in
noise isolation when in the presence of missing val-
ues) is a promising feature that can support a wide set
of network-related task as, for instance, graph-based
anomaly detection.

As futureworks, since in the current studywe focused
only on networks encoding categorical attributes, we
plan to extendConformity to handle scalar attributes. We
also plan to propose an approximate version of Confor-
mity to lower its computational complexity and to study
its effectiveness as support for network analysis tasks in
heterogeneous applicative scenarios.
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