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Applying Metalevel Argumentation Frameworks
to Support Medical Decision Making
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Abstract—People are increasingly employing artificial intelligence as the basis for decision-support systems (DSSs) to assist them in
making well-informed decisions. Adoption of DSS is challenging when such systems lack support, or evidence, for justifying their
recommendations. DSSs are widely applied in the medical domain, due to the complexity of the domain and the sheer volume of data
that render manual processing difficult. This paper proposes a metalevel argumentation-based decision-support system that can
reason with heterogeneous data (e.g. body measurements, electronic health records, clinical guidelines), while incorporating the
preferences of the human beneficiaries of those decisions. The system constructs template-based explanations for the
recommendations that it makes. The proposed framework has been implemented in a system to support stroke patients and its
functionality has been tested in a pilot study. User feedback shows that the system can run effectively over an extended period.

Index Terms—Computational argumentation, decision-support systems, explainability, healthcare.
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1 INTRODUCTION

A RTIFICIAL intelligence (AI) has great potential to assist
people in making well-informed decisions. In decision-

support systems (DSSs), this assistance can take the form of
a set of recommendations; the final decision is then made
by a human. However, this final decision-making step is
not a trivial task, especially when the rationale underlying
those recommendations is not transparent. Our focus is on
decision making in healthcare, a domain where DSSs can
usefully fulfill two roles. Firstly, DSSs can provide valuable
time-saving support by highlighting key factors underlying
decisions for healthcare professionals. Secondly, patients are
often in need of routine information, for which DSSs can
provide details supplementing treatment plans proposed
by (human) clinicians. Hence, DSSs may help patients self-
manage their health conditions and so contribute to im-
proved health outcomes.

As a result of focus groups conducted with patients and
healthcare professionals [1], we identified three stakeholder
criteria for a DSS, which should: (1) represent informa-
tion coming from heterogeneous sources (e.g. a wellness
sensor gives blood pressure readings), (2) consider stake-
holder preferences in its decision-making (e.g. a patient
who prefers one treatment over another), and (3) provide
explanations for the decisions it makes (e.g. a patient wants
to know why a specific painkiller was recommended).

In Figure 1, we propose a DSS architecture (satisfying the
three criteria) that can be specialized for different domains.
The input data layer includes multiple information sources,
which can provide a stream of data (i.e. live data), as in the
case of wellness sensors; or more static data such as clinical
guidelines providing advice regarding a condition or a
symptom. The preferences can be integrated into the system
according to specific needs of the domain in question. For

• N. Kökciyan is with the University of Edinburgh. I. Sassoon is with Brunel
University London. E. Sklar and S. Parsons are with the University of
Lincoln. S. Modgil is with King’s College London.

Manuscript received XXX; revised XXX.

example, the stakeholders can share their preferences while
interacting with the system, or preferences can be embedded
in the system if they are known a priori.

In this general framework, we focus on computational
argumentation [2] as the reasoning mechanism. Argumen-
tation has been applied in AI and multi-agent systems
as a formal approach, where evidence is represented as
arguments for and against particular conclusions. We apply
metalevel argumentation frameworks (MAFs) [3] that em-
power systems to encode and reason with possibly con-
flicting rationales for preferences and attacks and with the
relationships among arguments that attacks and preferences
define. Thus, one can reason about information that is
relevant to decisions, which is not typically accommodated
in object-level approaches to argumentation. In other words,
standard (object-level) argumentation frameworks include
attacks and preferences, but they typically cannot be rea-
soned about; MAFs overcome this limitation.

All data provided by the input data layer is translated
into a chosen formal language and stored as specifications.
The Meta Engine processes the specifications to construct
a MAF in support of actions while using knowledge from
the Schemes repository. This repository provides domain-
specific information such as how to build arguments, at-
tacks or explanations. The Solver component evaluates the
‘winning’ or ‘justified’ arguments in the constructed MAF
to make recommendations, and explanations provided by
the Explanation Generator.

We introduce an instance of our proposed framework as
part of the CONSULT1 project. We describe this instance,
and the assessment of its usability and acceptability, in the
rest of the paper.

1. Collaborative Mobile Decision Support for Managing Multiple
Morbidities, http://consultproject.co.uk
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Fig. 1. A general framework for domain-specific decision-support systems. The data is provided by various information sources. The Schemes
are templates for structuring and representing arguments, attacks and explanations. A formal language is used to encode the knowledge in
terms of Specifications. The Meta Engine uses these specifications to construct a metalevel argumentation framework, and the Solver evaluates
this framework to compute recommendations. The Explanation Generator constructs textual explanations for the recommendations according to
explanation schemes.

2 BACKGROUND

An argumentation framework (AF) is a directed graph
consisting of arguments (the graph’s nodes) related by at-
tacks (the edges) denoting that one argument is a counter-
argument to another [4]. The resulting AF is evaluated
under a chosen semantics, thus identifying one or more
sets of acceptable (justified) arguments. In preference-based
AFs (PAFs) [5], a preference ordering over arguments can
then be used to identify when one argument successfully
attacks (i.e. ‘defeats’) another; an attack succeeds if the target
argument is not preferred to the attacking argument. Ex-
tended AFs (EAFs) [6] can incorporate arguments claiming
preferences over other arguments, and so enable reasoning
about possibly conflicting preferences. MAFs [3] formalize
the idea that one can argue about the status of, and relations
among, arguments in object-level AFs (such as justified,
rejected, defeat, preferred).

We use MAFs for the following reasons: (1) Object-level
AFs assume a given fixed preference ordering over argu-
ments. Moreover, evaluating the acceptability semantics for
EAFs is more involved than for standard AFs and hence
requires the development of new algorithms if they are to be
used directly in practical applications. (2) The attacks in an
object-level AF are defined in different ways. For example,
arguments for conflicting decision options attack each other,
but the fact that these decision options are mutually exclu-
sive may not be agreed upon by all stakeholders. In MAFs,
the rationales for attacks in object-level AFs are represented
as meta-arguments; hence, challenging the rationale for any
given attack becomes possible. (3) MAFs provide a general
unifying formalism in which one can encode a wide range of
object-level AFs and their developments (i.e. not just PAFs
and EAFs).

Our work is closely related to other work that uses
argumentation to support medical decision-making. Cyras
et al. [7] aim to build an argumentation-based DSS that
uses a Transition-based Medical Recommendation model

to represent conflicting clinical guidelines, and they map
other data such as medical records and preferences to a
formal language; the development of the proposed model is
in progress. Glasspool et al. [8] propose an argumentation-
based planning support system to help patients in exploring
different treatment options. The arguments for and against
various claims are predefined and they are used to inform
patients. ArguEIRA [9] is a clinical DSS aimed at detecting a
patient’s anomalous reaction to a medication. Some work fo-
cus on dialogue-based systems to assist humans in making
decisions. Tolchinsky et al. [10] propose an approach where
physicians argue over the viability of organs for transplan-
tation by using domain-specific argument schemes. Yan
et al. introduce an argumentation-based DSS for dementia
diagnosis where they use possibilistic logic to deal with
uncertainty and inconsistency in data [11]. Different from
the aforementioned work, we use MAFs to accommodate
reasoning about information relevant to decisions—which
is typically not part of the domain of the discourse. We for-
mally represent the internal structure of arguments, attacks
and explanations that are instantiated by static or dynamic
data. As a result, recommendations and explanations can be
constructed automatically and interrogated dynamically.

Another line of research focuses on updating the existing
AFs as a result of updates to the knowledge base. Some
approaches use belief revision techniques (e.g. [12]) while
some others study the impact of adding new arguments to
existing abstract AFs (e.g. [13]) or to structured argumen-
tation AFs [14]. In our work, we generate a MAF from
scratch by considering the current state that depends on
dynamic data. Updating existing MAFs is an important
future direction to explore for improving the performance
in real-world applications.

3 THE CONSULT SYSTEM

The CONSULT system is an instance of the proposed frame-
work in Figure 1. It is designed to help stroke patients in
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TABLE 1
A partial view of the knowledge base that includes information from two guidelines: the hypertension guideline NG136 and NHS website.

Arguments are generated according to scheme representations instantiated by static (e.g. guidelines) and dynamic data (e.g. sensor data).

1 Actions
2 # NG136 Hypertension guideline – ccb is an option for people aged over 55, or African/Caribbean of any age Step 1.
3 h1: action(ccb) :- patient(P), age(P, A), A>55, not not tolerates(P, ccb).
4 h2: action(ccb) :- patient(P), ethnic origin(P, african), not not tolerates(P, ccb).
5 h3: action(ccb) :- patient(P), ethnic origin(P, caribbean), not not tolerates(P, ccb).
6 # thiazide becomes an option when ccb is not tolerated.
7 h4: action(thiazide) :- patient(P), age(P, A), A>55, not tolerates(P, ccb).
8 h5: action(thiazide) :- patient(P), ethnic origin(P, african), not tolerates(P, ccb).
9 h6: action(thiazide) :- patient(P), ethnic origin(P, caribbean), not tolerates(P, ccb).

10 # NHS Recommendations NSAIDS – ibuprofen and naproxen are two painkillers.
11 n1: action(ibuprofen) :- patient(P), not not recommend(P, ibuprofen).
12 n2: action(naproxen) :- patient(P), not not recommend(P, naproxen).
13 Goal Mapping
14 # If the patient suffers from hypertension, the goal is reduce blood pressure (rbp).
15 g1: goal(rbp) :- suffers from(P, hypertension).
16 # If the patient suffers from backpain, the goal is reduce pain (rp).
17 g2: goal(rp) :- suffers from(P, backpain).
18 Action - Goal Mapping
19 # ccb and thiazide are two actions that promote the goal rbp.
20 f1: promotes(ccb, rbp).
21 f2: promotes(thiazide, rbp).
22 # ibuprofen and naproxen are two actions that promote the goal rp.
23 f3: promotes(ibuprofen, rp).
24 f4: promotes(naproxen, rp).
25 Argument constructed according to schemes
26 # If there is an action that promotes a goal, an ASPT argument is constructed.
27 s1: a(aspt([goal(G), action(A), promotes(A, G)], action(A))) :- goal(G), action(A), promotes(A, G).
28 # If systolic and diastolic measurements are in a certain range, an amber alert argument is constructed.
29 s2: a(amber([systolic(P, S),’<150’, ’>134’], flag(amber))) :- systolic(P, S), S<150, S>134.
30 s3: a(amber([diastolic(P, D),’<95’, ’>84’], flag(amber))) :- diastolic(P, D), D<95, D>84.

self-managing their condition and to adhere to agreed-upon
treatment plans, in collaboration with healthcare profession-
als; hence the framework is specialized to accommodate the
needs of this application. A healthcare professional in the
project team assessed the correctness of the recommenda-
tions as well as the explanations provided to the patients.

3.1 Data Inputs

Wellness sensors provide live data on health parameters and
vital signs of a patient. We use sensors to collect data on:
heart rate, heart rhythm and blood pressure. A patient’s
electronic health record (EHR) details their medical history.
Clinical guidelines are official documents published by med-
ical organisations. We use the UK hypertension treatment
guideline NG1362 published by NICE, and follow National
Health Service (NHS) recommendations publicly available
online (e.g. to recommend a painkiller).

The CONSULT system also considers preferences of
stakeholders. For example, a patient can declare her pref-
erences between different painkillers while interacting with
the system. Such information is useful in making person-
alised recommendations.

2. https://www.nice.org.uk/guidance/ng136

The way that raw data from wellness sensors is pro-
cessed in the CONSULT system is determined by clinical
guidelines. For example, NG136 suggests that: 1) ambu-
latory blood pressure monitoring (ABPM) blood pressure
measurements should be taken at least twice a day; and 2)
the ABPM daytime average over at least 14 measurements
should be used when considering raising any alerts. The
CONSULT system computes the ABPM daytime averages
in line with this clinical information. These values are then
passed to the reasoning engine for further processing (lines
29–30, Table 1). Similarly, we use tailored algorithms to map
the medical history of the patient and their preferences
into the formal language used by the reasoning engine.
Note that the formalisation of clinical guidelines is difficult,
and it should be done in conjunction with domain experts.
Representing the heterogeneous data coming from various
information sources in a structured way makes it possible
for DSSs to reason about data (while inferring more data)
and make recommendations.

3.2 Knowledge Representation

We use first-order logic (FOL) to represent data in terms
of facts and rules, stored in a knowledge base (KB). FOL
was expressive enough to represent the guideline NG136
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and NHS recommendations that describe treatments in our
specific use-cases.3

Table 1 shows a partial view of the KB. This language
consists of unary and binary predicates. Variables are de-
noted by capital letters, predicates are written in italics,
and constants are in lowercase fixed-width font. For
example, the unary predicate action(ccb) states that ccb is
an action; the binary predicate age(P, A) denotes that the age
of the patient P is A, where P and A will be instantiated
with actual values. Each rule is of the form head :- body,
which means that if the antecedent body holds, then the
consequent head holds. In our work, head consists of one
predicate whereas body is a conjunction of predicates. Each
fact and rule in the KB has a label in the form of xi.

3.2.1 Specifications
The EHR data provides information such as ethnic origin or
age of a patient. The hypertension guideline considers such
information to recommend treatments. For example, when a
person is older than 55 or is of African/Caribbean ethnicity,
ccb becomes a possible treatment, unless not tolerated. In
the example below, a patient and general practitioner (GP)
discuss treatment options.
Example 1. Jane is a 60-year-old female stroke survivor, and

she suffers from hypertension. Jane’s medical history
indicates she should not use ccb.

The reasoning engine uses Jane’s medical record to
represent the following facts: patient(jane), age(jane,
60), not tolerates(jane, ccb) and suffers from(jane,
hypertension). A treatment will be recommended
regarding rules h1–h6 (Table 1, lines 2-9). Since ccb is not
tolerated by Jane, the only available action is thiazide as
inferred by h4. This example shows how clinical guidelines,
such as NG136, can be represented formally in order to
recommend treatments to support patients and healthcare
professionals in decision-making. The NHS website is
another medical resource that provides advice specific to
certain conditions such as symptoms. For example, when
a patient suffers from backpain, ibuprofen or naproxen
can be considered unless they are not recommended due
to the patient’s medical history. We capture this in rules
n1–n2 (Table 1, lines 10-12).

Our approach applies goal-driven reasoning, treatments
are recommended to satisfy goals. For example, if the pa-
tient suffers from hypertension, a goal becomes reducing
blood pressure (rbp); or if the patient has backpain, a goal
becomes reducing pain (rp) (rules g1–g2). The predicate
promotes connects actions and goals as defined in the guide-
lines (facts f1–f4). For example, the use of ccb promotes the
goal rbp; or the use of ibuprofen promotes the goal rp.

3.2.2 Schemes
Argument, attack and explanation schemes are templates
representing common patterns of reasoning and relate a set
of premises to a conclusion, all of which are sentences that
can be represented in FOL. Each sentence includes variables,
instantiated by a KB. These domain-specific schemes are

3. Other applications may require languages that can represent tem-
poral information and uncertainty. These would need to be able to build
arguments using these more complex languages (e.g. [11], [15]).

TABLE 2
A subset of ASP rules to translate object-level AFs to MAFs [16]

r1: arg(justified(X)) :- a(X)
r2: arg(rejected(X)) :- a(X)
r3: arg(defeat(X, Y)) :- r(a(X), a(Y))
r4: att(defeat(X, Y), justified(Y)) :- arg(defeat(X, Y)), arg(justified(Y))
r5: att(rejected(X), defeat(X, Y)) :- arg(defeat(X, Y)), arg(rejected(X))
r6: att(justified(X), rejected(X)) :- arg(justified(X)), arg(rejected(X))

r7: att(prefer(X, Y), prefer(Y, X)) :- arg(prefer(X, Y)), arg(prefer(Y, X))
r8: arg(prefer(X, Y)) :- p(a(X), a(Y))
r9: att(prefer(X, Y), defeat(Y, X)) :- arg(prefer(X, Y)), arg(defeat(Y, X))

kept in the Schemes repository. We represent them as rules
while retaining the internal structure of the constructed
argument. Formally, each scheme rule consists of a rule body,
a conjunction of predicates (premises of the scheme), and a
rule head, of the form a(sname(P ,c)); where ‘a’ stands for
an argument, sname is the scheme name, P is the set of
predicates used in the rule body and c is the conclusion of
the scheme.

Table 1 shows three scheme rules: s1, s2 and s3. Ar-
gument Scheme for a Proposed Treatment (ASPT) [17]
is an argument scheme to construct an argument
in support of an action promoting a specific goal;
s1 represents ASPT formally. In Example 1, apply-
ing the rules g1, f2 and s1 will result in one
argument A1: a(aspt([goal(rbp), action(thiazide), pro-
motes(thiazide, rbp)], action(thiazide))).

In the following example, ASPT is instantiated to recom-
mend a painkiller this time.

Example 2. Jane is experiencing backpain. She needs a
painkiller. Jane uses the CONSULT system to get some
recommendations.

As Jane interacts with the CONSULT system, the reasoning
engine adds a new fact to its KB: suffers from(jane,
backpain). According to g2, a new goal of reducing
pain (rp) will be inferred. ibuprofen and naproxen
are two possible treatments to offer (n1–n2). Together
with the existing facts f3 and f4, s1 will instantiate two
ASPT arguments: A2: a(aspt([goal(rp), action(ibuprofen),
promotes(ibuprofen, rp)], action(ibuprofen))) and
A3: a(aspt([goal(rp), action(naproxen), promotes(naproxen,
rp)], action(naproxen))).

Another scheme, AMBER, constructs arguments to rep-
resent alerts if blood pressure readings are in the range
specified in the hypertension guideline NG136. In Table 1,
s2 and s3 represent AMBER arguments formally.

Example 3. Jane uses her blood pressure monitor to check
her blood pressure. The CONSULT system displays her
readings on a dashboard (Figure 2a). The weekly average
value is 142/86 mmHg, which is somewhat high.

The reasoning engine represents this information with
the following facts: systolic(jane, 142) and diastolic(jane,
86). According to s2, Jane’s average systolic read-
ing triggers an AMBER argument that is instantiated
as: A4: a(amber([systolic(jane, 142), ’<150’, ’>134’],
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(a) (b)

Fig. 2. Two views of CONSULT system; (a) The dashboard showing a blood pressure amber alert; and (b) An alert dialogue in the chatbot.

flag(amber))). s3 will lead to the construction of an AMBER
argument for Jane’s average diastolic reading similarly.

3.3 Meta Engine and Solver

Scheme rules provide a way to construct object-level ar-
guments automatically. Meta Engine translates object-level
arguments and attacks into a MAF by using our developed
encoding [16]. This encoding can be used in conjunction
with an answer set programming (ASP) approach to eval-
uate the justified arguments in a MAF. The code for our
implementation, and examples including the three in this
paper, are available online4.

In Table 2, we provide a subset of ASP rules that trans-
late object-level AFs into MAFs. At the object-level, a(X)
and r(a(X), a(Y)) represent the argument X and the attack
relation between the arguments X and Y, respectively. At
the metalevel, the meta-argument A and the meta-attack be-
tween the meta-arguments A and B are described by arg(A)
and att(A, B), respectively. Rules r1–r2 assign a justified or
rejected status to an object-level argument at the metalevel;
whereas r3 translates an object-level attack to a defeat meta-
argument. Rules r4–r6 generate the meta-attacks between
meta-arguments. MAFs can represent preferences or attacks
on attacks. For example, r7–r9 define the semantics of in-
cluding preferences in a MAF. In r8, p(a(X), a(Y)) represents
a preference stating that X is being preferred over Y, which
is explicitly represented as a meta-argument. In Example 2,
if Jane has a preference for ibuprofen over naproxen,
such a preference could be represented as p(A2,A3). Rule r7
ensures that a meta-attack exists between two conflicting
preference meta-arguments. When there is a preference
meta-argument that supports X, any attacks on X will be
attacked as stated in r9.

In order to demonstrate our approach at the metalevel,
we focus on Example 3. Our encoding will translate A4 into
two meta-arguments: M1: arg(justified(amber([systolic(jane,
142), ’<150’, ’>134’], flag(amber)))) and
M2: arg(rejected(amber([systolic(jane, 142), ’<150’, ’>134’],
flag(amber)))). r6 will generate a meta-attack from M1

4. https://git.ecdf.ed.ac.uk/nkokciya/metalevel-aspartix/

to M2, D1: att(justified(amber([systolic(jane, 142), ’<150’,
’>134’], flag(amber))), rejected(amber([systolic(jane, 142),
’<150’, ’>134’], flag(amber)))). The resulting MAF can then
be represented as: 〈{M1,M2}, {D1}〉.

We use DLV5 as the ASP-solver to compute extensions
under the grounded semantics (the acceptability semantics
that yields a single set of justified arguments). The reasoning
engine evaluates the constructed MAF and returns the set of
justified meta-arguments. In Example 3, there is one justified
meta-argument, M1, which is not attacked by any other
meta-argument.

3.4 Explanation Generator
The results are then processed by the Explanation Genera-
tor component, which has access to a set of explanation
schemes, to generate semi-structured explanations [18]. If
an explanation scheme exists for an argument, a textual
explanation is also generated. For example, an explanation
for an AMBER argument is constructed according to the
explanation scheme 〈AMBER, “The systolic measurement
of the patient {P} is {S}, this value is less than 150 and more
than 134 and therefore an Amber flag is raised.”〉. The variables
in the textual explanation (P and S) are replaced by actual
values as they appear in the justified AMBER argument. In
Example 3, the explanation “The systolic measurement of
the patient jane is 142, this value is less than 150 and more
than 134 and therefore an Amber flag is raised.” will be
constructed by the Explanation Generator.

3.5 Recommendations and Explanations
The CONSULT system was implemented as a mobile ap-
plication running on an Android tablet device, Figure 2
depicts two views of the system. Recommendations and
explanations are provided to the patients through a sim-
ple chatbot (Figure 2b), working in conjunction with the
dashboard (Figure 2a). The dashboard flags issues that the
patient may wish to attend to; for example, Figure 2a shows
the amber blood pressure alert discussed in Example 3. In
addition, the dashboard enables users to visualise their data

5. http://www.dlvsystem.com/dlv/
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in context, access advice and input information (e.g. mood
tracking). The chatbot enables users to interactively access
more targeted support as discussed in Example 2.

3.6 Pilot study
We conducted a formative pilot study to assess the usability
and acceptability of the CONSULT system with two differ-
ent versions: one version had the dashboard only, the other
also had the chatbot. Six healthy volunteers were recruited
for a seven day within-subjects mixed-methods study run
in-the-wild. Participants started with either a dashboard-
only version or one that had both dashboard and chatbot,
and then swapped halfway through.

As part of the pilot study, participants were asked to
collect measurements (blood pressure, heart rate and ECG)
from wellness sensors and to input data (such as mood)
on a regular basis. They were encouraged to interact with
the interfaces (dashboard and chatbot). The system would
display alerts when their blood pressure was raised and
initiate a chatbot dialogue (during the days when they had
access to the chatbot). The results of the pilot study show
that participants were able to use the CONSULT system for
a week, and to interact with the chatbot when a dialogue
was initiated automatically.

4 CONCLUSION

In this paper, we propose an argumentation-based DSS that:
(i) can reason with heterogeneous data such as static data
coming from clinical guidelines or dynamic data provided
by sensors; (ii) considers user preferences as part of the
reasoning process; and (iii) provides textual explanations to
explain automated decisions. The core reasoning is based on
MAFs that offer a uniform encoding of object-level AFs and
relevant meta information. We implemented an instance of
such a DSS, the CONSULT system, which was successfully
deployed. The pilot study demonstrated that real users
could use the system over an extended period. We have
received ethics approval for two further user studies, which
will assess the effectiveness of the system in clinical terms.
In the first study, stroke patients will use the CONSULT
system to self-manage their health conditions, as in our pilot
study. The second study will focus on the reasoning aspects
of the system when using knowledge from clinical guide-
lines (e.g. NG136); recommendations generated for sample
cases will be evaluated by a panel of general-practitioner
experts.
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