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Computing Abductive Explanations
Luciano Caroprese, Ester Zumpano, Bart Bogaerts

Abstract—We study the computation of constrained explanations in the framework of abductive logic programming. A general
characteristic of abductive reasoning is the existence of multiple abductive explanations. Therefore, identifying a subclass of “preferred
explanations” is a relevant problem. A typical approach is to “prefer” explanations that are, in some sense, simple. Several concepts of
simplicity were considered in the literature, most notably those based on minimality with respect to inclusion and cardinality. We adopt,
as a measure of the quality of an explanation, its degree of arbitrariness that can be briefly described as the number of arbitrary
assumptions that have been made to derive the explanation. The more arbitrary the explanation, the less appealing it is, with
explanations having no arbitrariness, called constrained, being the preferred ones. In this paper we present a technique that, for a
special class of theories, computes constrained explanations. It is based on a rewriting of the theory and the observation into a
disjunctive logic program with negation so that the constrained explanations correspond to a subset of its stable models. The proposed
technique lays the foundation for using ASP solvers to compute constrained explanations.

Index Terms—Artificial Intelligence,Computing Methodologies, Knowledge Representation Formalisms and Methods.

✦

INTRODUCTION

In the context of logic programming, abduction was first
studied by Eshghi and Kowalski [1], and then by Kakas and
Mancarella [2] under the brave reasoning variant of the stable-
model semantics. That work established abductive logic program-
ming as an important subarea of abduction. In abductive logic
programming, the background theory is represented by a logic
program, often with negation in the bodies and disjunction in the
heads, and any of the standard logic programming semantics could
be used to provide the meaning [3], [4]. A general characteristic of
abductive reasoning is the existence of multiple abductive expla-
nations. These explanations are typically not equally compelling.
Therefore, identifying a subclass, possibly narrow, of “preferred”
explanations is an important problem. A typical approach is to
identify as preferred those explanations that are, in some sense,
simple, rooted in objects present in the background theory and
an observation. Several concepts of simplicity were considered
in the literature, most notably those based on minimality with
respect to inclusion and cardinality. This paper continues the work
of Caroprese et al. [5], who studied the problem of “preferred”
explanations in the framework of abductive logic programming.
Caroprese et al. [5] proposed an orthogonal measure of the
simplicity (quality) of an explanation which they called the
degree of arbitrariness. The less arbitrary the explanation (the
lower its degree of arbitrariness), the more appealing it is, with
explanations having no arbitrariness, called constrained, being the
most preferred. A constrained explanation connects the structural
information present in the theory and the knowledge embedded
in the observation in a non-arbitrary (constrained) way, without
assuming the existence of new objects. Informally, it makes no
arbitrary assumptions. Let us consider the following scenario.

• L. Caroprese and E. Zumpano are with:
DIMES, University of Calabria, Via P. Bucci 42C, 87036 Rende, Italy.
E-mail: {l.caroprese,e.zumpano}@dimes.unical.it
B. Bogaerts is with:
AI Lab, Vrije Universiteit Brussel, Pleinlaan 9, 1050 Elsene, Belgium.
E-mail: bart.bogaerts@vub.be

Example 1. Let us assume that a security breach at a component of
an information system may only occur when a person with an
account makes an unapproved access. Regular staff personnel
have accounts on the system if they complete training and have
their security clearance current. Visitors may also be granted
an account but only with an approval by the head of the IT
department. This situation can be described by the following
program:

account(X)← staff (X), trained(X),current(X).

account(X)← visitor(X),approved(X).

breach(W )← unapprovedAccess(W,X),account(X).

Let us also assume that tom and mary are regular staff
members and dan is a visitor. Finally, let us assume that the
system has information that tom completed training. That is,
the program also contains the facts:

staff (tom). staff (mary). visitor(dan). trained(tom).

If we observe breach(warehouse) (the security of warehouse
was compromised), there are several possible explanations.
Below we list some of them:

Etom = {unapprovedAccess(warehouse, tom),current(tom)}
Emary = {unapprovedAccess(warehouse,mary), trained(mary),

current(mary)}
Eu = {unapprovedAccess(warehouse,u),staff (u), trained(u),

current(u)},

where u is a name in the domain,

Edan = {unapprovedAccess(warehouse,dan),approved(dan)}
Ev = {unapprovedAccess(warehouse,v),visitor(v),

approved(v)},

where v is a name in the domain,

Etom,dan = {unapprovedAccess(warehouse, tom),current(tom),

unapprovedAccess(warehouse,dan),

approved(dan)}. □
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Which of these explanations are more compelling or, to put
it differently, more plausible than the others? Most approaches
to the problem of selecting preferred explanations follow the
Occam’s principle of parsimony that entities should not be mul-
tiplied unnecessarily and that among possible explanations the
simplest one tends to be the right one. However, simplicity is
a notoriously complex concept and different formalizations of
it are possible. They range from the subset minimality, to those
that require minimum cardinality, minimum weight, or minimality
under prioritization of individual hypotheses [6].

In Example 1, the explanations Etom, Emary, Eu, u ̸∈
{tom,mary}, Edan, and Ev, v ̸= dan, are subset minimal and so,
preferred under the subset minimality criterion. On the other
hand, the explanation Etom,dan is not subset minimal. If we use
a more restrictive criterion of minimum cardinality, the preferred
explanations are Etom and Edan.

Let us assume that there are reasons to view each of the latter
two as wrong (tom and dan can conclusively demonstrate they
were not involved). Under the subset minimality criterion, we now
prefer explanations Emary, Eu, u ̸∈ {tom,mary}, and Ev, v ̸= dan,
while under the minimum cardinality criterion we prefer Emary
and Ev, v ̸= dan. Let us look more carefully at the explanations
Eu, u ̸∈ {tom,mary}, and Ev, v ̸= dan. They select an arbitrary
individual in the domain with no particular reason to choose one
over another. On the other hand, the explanations Etom, Edan and
Emary connect the structural information present in the program
and the knowledge provided by the observation in a non-arbitrary
(constrained) way. About Etom,dan, we observe that it implicitly
provides two ways to derive the observation. Then in principle
one of the two constants tom and dan could be replaced with a
different arbitrary constant.

Caroprese et al. [5], [7] formalized these observations into the
concept of the degree of arbitrariness. That degree is 1 for the
explanations Eu, u ̸∈ {tom,mary}, Ev, v ̸= dan and Etom,dan and it
is 0 for the explanations Etom, Edan, Emary; they are constrained.
The principle of minimum arbitrariness can be used with all types
of explanations and is “orthogonal” to other criteria one might
consider when selecting preferred explanations such as the subset
or cardinality minimality.

Abductive reasoning is the basis of many decisions that people
make every day. Many of these decisions are critical because they
affect their own life or that of other individuals. Think for example
of the diagnosis process carried out by a doctor who must derive
the causes of the pathology from the symptoms (observation) and
his own medical knowledge (theory). It should be noted that in
this case it is essential that the doctor returns a diagnosis as
close as possible to the anamnesis carried out, without inventing
hypothetical scenarios. A defendant’s trial, is still another example
of abductive reasoning. Jurors must consider the details of the
offense (textit observation), the evidence collected, and their textit
theory (textit knowledge) of the industry in which the accused is
involved. Also in this case it is essential that the sentence is not
based on arbitrary interpretations of the jurors.

This paper presents a technique to compute constrained ex-
planations of an observation, following the theoretical framework
developed by Caroprese et al. [5] for a subclass of abductive
theories. It is based on a rewriting of the theory and the observation
into a disjunctive logic program with negation. Stable models of
this program correspond to constrained explanations.

ABDUCTIVE EXPLANATIONS

This section recalls the definitions or arbitrary and constrained
explanations [5]. We consider a fixed vocabulary σ consisting of
relation, constant, and variable symbols. We write R, C , and V
for the sets of these symbols, respectively. We assume that C is a
countable set. For a set S ⊆R of predicate symbols, we define
S C to be the set of all ground atoms (facts) whose predicate
symbols are in S (i.e. expressions p(c1, . . . ,ck), where p ∈ S
and all ci ∈ C ). In particular, RC is the Herbrand base of σ and
it is denoted as H .

A (disjunctive logic) rule is an expression:

h1(X1)∨ . . .∨hn(Xn)←P(X ,Y ),N (Z)

where:
• Xi, for all i ∈ [1..n], X , Y and Z are tuples of variables;
• each variable in Xi also occurs in X , for all i ∈ [1..n];
• each variable in Z also occurs in X or Y ;
• hi(Xi) is an atom, for all i ∈ [1..n];
• P(X ,Y ) is a conjunction of atoms and N (Z) is a conjunc-

tion of negative literals.
The disjunction h1(X1) ∨ . . . ∨ hn(Xn) and the conjunction

P(X ,Y ),N (Z) are respectively the head and the body of the
rule. If n = 0, the head is denoted as ⊥ and the rule is called denial
constraint. A normal rule is a rule whose head consists of a single
atom (n = 1). A Horn rule is a normal rule whose body is positive.
The set R of predicate symbols in σ is commonly partitioned into
two sets RI and RE of intensional and extensional predicate
symbols, respectively. Programs are finite sets of rules, with
the head predicate symbols from RI , and facts over predicate
symbols from RE . A program P is normal (resp. Horn) if each
rule r ∈P is normal (resp. Horn). When describing programs,
we use two shorthands:

1) h(X)←
∨

i∈[1..n](Pi(X ,Yi),Ni(Zi))
represents the set of rules:
{h(X)←Pi(X ,Yi),Ni(Z) | i ∈ [1..n]};

2) h1(X1), . . . ,hn(Xn)←P(X ,Y ),N (Z),
where Xi ⊆ X , for all i ∈ [1..n], stands for the set of rules:
{hi(Xi)←P(X ,Y ),N (Z) | i ∈ [1..n]}.

With a little abuse of notation we also call rule each of these
shorthands.
By S we denote a semantics of logic programs (for instance, the
stable-model semantics). We assume that S is given in terms of
subsets of H . For a logic program P , we denote by semS(P)
the collection of subsets of H that are models of P according to
the semantics S. The general framework of Caroprese et al. [5] can
be applied with any of the standard semantics of logic programs.
In this paper we commit to the most common choice for S by
selecting the stable-model semantics [8].
Definition 1 (ABDUCTIVE THEORY). An abductive theory T

over a vocabulary σ , with the set of predicate symbols R
partitioned into the sets RI and RE of intensional and
extensional predicate symbols, is a triple ⟨P,A ,I ⟩, where:

– P is a normal program;
– A ⊆RE is a finite set of predicate symbols called abducible

predicates;
– I is a finite set of denial constraints.

Informally, the program P and the integrity constraints I model
the problem domain. P defines intensional predicates in terms of
extensional predicates. Some of the extensional predicates (those
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in A ) are abducible. Information about extensional predicates is
given in terms of facts (contained in P). Facts based on abducible
predicates are abducibles. The integrity constraints in I impose
domain constraints on predicates in the language.

An observation is a set of facts based on non-abducible
predicates. An observation may “agree” with the program P and
the integrity constraints I . But if it does not, we assume that
this “disagreement” is caused by the incorrect information about
the properties modeled by the abducible predicates. Abductive
reasoning consists of inferring updates to the set of abducibles
in the program (removal of some and inclusion of some new
ones) so that the updated program, the integrity constraints and
the observation “agree”. Each update that yields an agreement
constitutes a possible explanation of the observation.

Different concepts of “agreement” and consequently different
definition of abductive explanations have been proposed in the
literature [4], [9]. In this paper, we assume that an agreement
exists if at least one model of the program satisfies the integrity
constraints [5] and the observation holds in every model of the
program satisfying the integrity constraints.
Definition 2 (ABDUCTIVE EXPLANATION). Let T = ⟨P,A ,I ⟩

be an abductive theory and O an observation. A pair ∆ =
(E,F), where E and F are disjoint finite sets of abducibles
and F ⊆P , is an abductive explanation of O, if O agrees
with P∆ = (P ∪E)\F and I , that is:

1) there is M ∈ semS(P
∆) s.t. M |= I , and

2) for every M ∈ semS(P
∆) s.t. M |= I ,

M |= O. □

Given an explanation ∆ = (E,F), we define E(∆) = E and F(∆) =
F . In general, abductive explanations form a rich space, with some
of them being more plausible than others. In this paper, we are
primarily interested in constrained explanations. Formally, the
notions of arbitrariness and constrainedness are based on the idea
of “replaceability” of constants. Here we recall the key definitions
[5].
Definition 3.
• OCCURRENCE.

Let p(x) be a fact, where p has arity n and k ∈ [1..n]. We
denote by p(x)[k] the constant in position k in p(x). If E
is a set of facts, an occurrence of a constant c in E is an
expression of the form p(x)k, where p(x) is a fact in E, and
p(x)[k] = c.

• REPLACEMENT FUNCTION.
Let E be a set of facts and c a constant occurring in E. A
replacement function for E and c w.r.t. a non-empty set C of
some (not necessarily all) occurrences of c in E, is a function
fE,C : C → 2H such that for each x ∈ C , fE,C(x) is the set E ′

obtained by replacing with x each constant c in E referred by
an occurrence in C.

• INDEPENDENCE OF REPLACEMENT FUNCTIONS.
Let c1 and c2 be constants, and C1 and C2 sets of occurrences
(possibly not all) of c1 and c2. Replacement functions fE,C1

and fE,C2 for a set E ⊆H are independent if c1 ̸= c2 or if
C1∩C2 = /0.

• DEGREE OF ARBITRARINESS.
Let T = ⟨P,A ,I ⟩ be an abductive theory, O an ob-
servation, ∆ = (E,F) an explanation for O w.r.t. T , and
ξ an arbitrary constant in C not occurring in T , E nor
O. The degree of arbitrariness of ∆, denoted as δ (∆), is
the maximum number of pairwise independent replacement

functions fE,C (not necessarily all for the same constant) such
that ∆′ = ( fE,C(ξ ),F) is an explanation for O w.r.t. T . □

Since the domain C is infinite, it we always can find a constant
ξ not occurring in T , E nor O. Moreover, the specific choice of
the replacement constant ξ does not affect the maximum number
of pairwise independent replacement functions. Thus, the degree
of arbitrariness is well defined.

The following example illustrates the concepts we have intro-
duced above.

Example 2. Let T = ⟨P,A , /0⟩, where the program P contains
the rule t ← p(X), not q(X) and the facts p(1), p(2),q(1),
q(2),q(3). Let us suppose that p and q are abducible
predicates and that O = {t}. The following pairs of sets of
abducibles are explanations for O w.r.t. T :

∆1 = ( /0,{q(1)}).
∆2 = ( /0,{q(2)}).
∆3 = ({p(3)},{q(3)}).
∆x = ({p(x)}, /0), where x /∈ {1,2,3}.

Let’s consider the explanation ∆3. The only occurrence of the
constant 3 in p(3) is denoted as p(3)1. The only possible
replacement function for E(∆3) = {p(3)} is f{p(3)},{p(3)1}.
Therefore, f{p(3)},{p(3)1}(ξ ) = {p(ξ )}.
We can verify that δ (∆1) = δ (∆2) = 0 and δ (∆3) = δ (∆x) = 1.
In fact, E(∆1) and E(∆2) are empty, while the only constant in
E(∆3) and E(∆x) (3 and x respectively) can be replaced with
a fresh constant ξ and the result is a new explanation.
Interestingly, ∆3 shows that a replacement may change a
minimal explanation into a non-minimal one. □

In Example 2, the explanation ∆3 is not satisfactory. Once we
decide to remove q(3), there is no reason why we have to add
p(3). Adding any atom p(ξ ), with ξ /∈ {1,2}, works equally well.
Thus, the choice of the constant 3 in p(3) is arbitrary and not
grounded in the information available in the theory. Similarly, ∆x,
where x /∈ {1,2,3}, is not satisfactory either. Here too, the choice
of x is not grounded in the abductive theory and the observation.
The explanations ∆1 and ∆2 do not show this arbitrariness.

Definition 4 (CONSTRAINED/ARBITRARY EXPLANATIONS ). Let
T be an abductive theory ⟨P,A ,I ⟩, O an observation, and
∆ an explanation for O w.r.t. T . We say that ∆ is constrained
if δ (∆) = 0. Otherwise, ∆ is arbitrary. □

The degree of arbitrariness of an explanation (E,F) only
depends on the “add” part E; the “delete” component, F , has no
effect on arbitrariness. Intuitively, the reason is that we can delete
only those atoms that are in P . Thus, if we replace a constant in
an atom p in F with a fresh constant ξ , the effect simply is that p
is no longer deleted.

Additionally, note that constrained explanations use only con-
stants occurring in the abductive theory or in observation [5]. It
is important as it allows us to restrict the scope of search for
constrained explanations.

COMPUTING ABDUCTIVE EXPLANATIONS

In this section we present a rewriting technique allowing to
compute constrained explanations for a subclass of abductive
theories.
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Definition 5 (DEPENDENCY GRAPHS). The dependency graph of
a Horn program P is a directed graph GP = (R,E ) where
R (nodes) is the set of predicate symbols occurring in P and
E (edges) is the set of pairs (p,q) s.t. there is at least a rule in
P whose head predicate is p and in whose body q occurs. □

Definition 6 (DEPENDENT PREDICATES). Given a Horn program
P , the predicate p depends on the predicate q if (p,q) is an
edge of the transitive closure of GP .
The predicates p and q are dependent if p depends on q or q
depends on p. □

The rewriting technique presented is this section has been de-
signed for abductive theories T = ⟨P,A , /0⟩, where P is a non-
recursive Horn program not containing any rule in whose body
two dependent predicates occur.

We report two complexity results, presented in [5], for abduc-
tive theories T = ⟨P,A , /0⟩, where P is a non-recursive Horn
program.

Theorem 1 (Caroprese et al. [5]). Let P be a non-recursive Horn
program and A a set of abducible predicates. The following
problems are in P:
• Given an observation O and a pair of sets of abducibles
(E,F), decide whether (E,F) is a constrained explanation
for O w.r.t. ⟨P,A , /0⟩.

• Given an observation O, decide whether a constrained expla-
nation for O w.r.t. ⟨P,A , /0⟩ exists.

Without loss of generality, we assume that each intensional
predicate is defined by means of exactly one rule of the form:

h(X)←
∨

i∈[1..n]
Pi(X ,Yi) (1)

To show how the technique works, we will use the following
examples.

Example 3. Let T = ⟨P,A , /0⟩, where A = {q,r, t} and P
consists of the rules:

R = {p(X)← q(X ,Y ),s(X ,Y,Z);

s(X ,Y,Z)← r(X ,Y,Z), t(X ,Z)}

and the facts:

B = {q(a,b),q(a,c),r(a,b,c)}.

Suppose O= {p(a)}. One can check that each of the following
pairs of sets of abducibles is an explanation:

∆x1,x2 = ({q(a,x1),r(a,x1,x2), t(a,x2)}, /0),
where x1 ̸= c, x1 ̸= b and x2 ̸= c

∆x3 = ({r(a,b,x3), t(a,x3)}, /0),
where x3 ̸= c

∆x4 = ({r(a,c,x4), t(a,x4)}, /0)
∆ = ({t(a,c)}, /0).

One can check that δ (∆x1,x2) = 2. Indeed changing all occur-
rences of x1 or all occurrences of x2 to a new constant ξ results
in an explanation. In addition, the corresponding replacement
functions for each constant and all its occurrences are ob-
viously independent. Similarly, one can see that δ (∆x3) = 1
(resp. δ (∆x4) = 1), because all occurrences of x3 (resp. x4) are
free for a simultaneous change, and δ (∆) = 0, because neither
a nor c can be changed to a fresh constant. □

Example 4. Let T = ⟨P,A , /0⟩, where A = {r} and P consists
of the rules p(a)← r(X ,b) and q(a)← r(a,Y ) and contains
no facts. Let us suppose O = {p(a),q(a)}. One can check
that each of the following pairs of sets of abducibles is an
explanation:

∆x1,x2 = ({r(a,x1),r(x2,b)}, /0), where x1 ̸= b and x2 ̸= a
∆ = ({r(a,b)}, /0).

One can check that δ (∆x1,x2) = 2 and δ (∆) = 0. □

Rewriting into a Disjunctive Logic Program with Nega-
tion
This section presents a method for computing constrained expla-
nations of observations given an abductive theory of the form
discussed above. It consists of a transformation of the abductive
theory and the observation into a disjunctive logic program with
negation. The stable models of the program correspond to the
constrained explanations.

The rewriting implements a backward process that starts
from the observation and, from true heads of logic rules in the
theory (consequences), derives the atoms in their bodies (causes).
Arbitrary constants introduced during the process are replaced
(unified), when it is possible, with actual (non-arbitrary) constants
occurring in the theory. If in a stable model each arbitrary constant
is unified with an actual constant, that stable model corresponds
to a constrained explanation.

The derivation of a fact not already present in the theory
implies that it must be inserted. If there exists a stable model not
containing any insertion, then the theory as it is, already explains
the observation. Indeed, the rewriting will derive all possible
constrained ways to explain the observation by means of the
abductive theory, including those that do not require any changes
in the theory (empty explanations). The proposed rewriting can
be submitted and tested on disjunctive ASP solvers such as DLV
(https://www.dlvsystem.it/dlvsite/).

Let T = ⟨R ∪B,A , /0⟩ be an abductive theory such that R is
a non-recursive Horn program not containing any rule in whose
body two dependent predicates occur, B is a finite set of facts, and
O is an observation. We describe the rewriting Rew of T and O
in a set of definitions. The rewriting uses new predicate symbols.
In particular, for every predicate symbol p in the language, we
have a fresh predicate symbol p∗ of the same arity as p. If p
is a base (resp. derived) predicate, we say that p∗ is a starred
base (resp. derived) predicate. Similarly, if p(X) is a base (resp.
derived) atom, we say that p∗(X) is a starred base (resp. derived)
atom. Moreover, given an atom a (resp. set of atoms A), we will
denote the corresponding starred atom (resp. set of starred atoms)
as a∗ (resp. A∗).

We assume that each constant is stored in the unary relation
constant and we write Const(T ) for the set of its facts w.r.t. to
constants in T .
Definition 7 (REWRITING OF THE OBSERVATION). Given the

observation O = {o1, . . . ,on}, Rew(O) = {o∗1, . . . ,o∗n} where,
for i ∈ [1..n], o∗i is obtained from oi by replacing its predicate
symbol p with p∗. □

Definition 8 (REWRITING OF THE DATABASE). Given the da-
tabase B = {b1, . . . ,bn}, Rew(B) = {b∗1, . . . ,b∗n} where, for
i ∈ [1..n], b∗i is obtained from bi by replacing its predicate
symbol p with p∗. □
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Definition 9 (REWRITING OF A RULE). Given a rule r of the form
(1), Rew(r) is the set containing the following rules:

1) h∗1(X)∨·· ·∨h∗n(X)← h∗(X)
2) P∗

i (X , yi,1(h,X), . . . , yi,mi(h,X))← h∗i (X), ∀i ∈ [1..n]
3) arbitrary(yi,1(h,X)), . . . , arbitrary(yi,mi(h,X))← h∗i (X),
∀i ∈ [1..n]

where the conjunction P∗
i (X , yi,1(h,X), . . . , yi,mi(h, X)) is

obtained from Pi(X ,Y i) by replacing each predicate symbol
p with p∗ and each variable Yi,k with the functional term
yi,k(h,X). □

The operator Rew(·) is extended to sets of rules in the standard
way. Previous rewriting is the core of our technique as it imple-
ments the inversion of the rules. Arbitrary constants introduced in
the process are represented by functional terms yi,k(h,X) and are
stored in the relation arbitrary. These constants will be “unified”
by means of rules we introduce below with actual constants in the
theory.
Definition 10 (UNIFICATION). Let Unification(T ) be the set of

next rules, setting the candidate values and an assignment for
each arbitrary constant:

4) term(X)← constant(X)
5) term(X)← arbitrary(X)
6) candidate(X ,X)← term(X)
7) candidate(Xi,Yi)← r∗(X1, . . . ,Xi, . . . ,Xnr ),

r∗(Y1, . . . ,Yi, . . . ,Ynr ),
arbitrary(Xi),constant(Yi),∧

j∈[1..nr ]\{i} compatible(X j,Yj)
for each predicate r(X1, . . . ,Xnr ) and for each i ∈ [1..nr].

8) compatible(X ,X)← term(X)
9) compatible(X ,Y )← compatible(Y,X)

10) compatible(X ,Y )← assign(X ,Z),assign(Y,Z)
11) compatible(X ,Y )← arbitrary(X),constant(Y ),

not incompatible(X ,Y )
12) incompatible(X ,Y )← arbitrary(X),constant(Y ),

assign(X ,Z),Y ̸= Z
13) discard(X ,Y )∨discard(X,Z)← candidate(X ,Y ),

candidate(X ,Z),Y ̸= Z.
14) assign(X ,Y )← candidate(X ,Y ),not discard(X ,Y )
15) r∗(Y1, . . . ,Yn)← r∗(X1, . . . ,Xn),assign(X1,Y1), . . . ,

assign(Xn,Yn)
for each extensional predicate symbol r

□

Additional rules have to be added in order to guarantee the
correct computation of constrained explanations.
Definition 11 (CONSTRAINEDNESS). We define the rules

Constrained(T ) to compute whether a solution is constrained
or not:

16) evaluated(X)← assign(X ,Y ),not arbitrary(Y )
17) unevaluated(X)← term(X),not evaluated(X)
18) arbitraryExplanation← unevaluated(X)
19) constrainedExplanation← not arbitraryExplanation □

Rule 16 derives the terms evaluated assigning to them arbi-
trary constants. The next rule derives the unevaluated arbitrary
constants. Next two rules derives whether the explanation is
arbitrary or not. In particular, an explanation is arbitrary if there
is a non evaluated arbitrary constant. In this case the atom
arbitraryExplanation is derived. Otherwise, it is constrained and
the atom constrainedExplanation is derived.

Definition 12 (UPDATE). We define the rules Update(T ), model-
ing the abducibles that will be inserted (when they have to be
present and they are not in the theory):

20) r+(Y1, . . . ,Yn)← r∗(X1, . . . ,Xn),
assign(X1,Y1), . . . ,assign(Xn,Yn),
not r(Y1, . . . ,Yn)

21) ⊥← r+(X1, . . . ,Xn) if r ̸∈A

for each extensional predicate r.

The constraint in latest item prevents insertions of facts with non
abducible predicates.
Definition 13. Given an abductive theory T = ⟨R ∪ B,A , /0⟩,

where R is a non-recursive Horn program not contain-
ing any rule in whose body two dependent predicates oc-
cur and B is a finite set of facts, and an observation O,
Rew(T ,O) = Rew(O)∪Rew(R)∪Rew(B)∪B∪Const(T )∪
Unification(T )∪Constrained(T )∪Update(T ). □

Given a stable model M of Rew(T ,O), we define F(M) =
{r(x1, . . . ,xn) | r+(x1, . . . ,xn) ∈M}.

We only consider explanations with no deletions as deletions
are not needed for the type of theories we consider.
Theorem 2. Let T = ⟨R∪B,A , /0⟩ be an abductive theory, where

R is a non-recursive Horn program not containing any rule in
whose body two dependent predicates occur and B is a finite
set of facts, and O an observation. Then:

1) If ∆ = (E, /0) is a constrained explanation for O w.r.t. T , then
there is a stable model M of Rew(T ,O) containing the fact
constrainedExplanation s.t. F(M) = E.

2) If M is a stable model of Rew(T ,O) containing the fact
constrainedExplanation, E = F(M) and E is minimal, i.e.
there is no E ′ ⊂ E s.t. R ∪B∪E ′ |= O, then ∆ = (E, /0) is a
constrained explanation for O w.r.t. T . □

Proof (sketch)1.
1) From E it is possible to define a set M and show that M is a
stable model of Q = Rew(T ,O). First it can be proved that M is
a model of the reduct QM and then that M is minimal. Minimality
can be proved by contradiction. Assuming that M is not a minimal
model of QM , there must be W ⊂ M s.t. W |= QM . From W a
new model M′ for Res(T ,O) can be obtained. Let E ′ = F(M′). It
can be proved that ∆′ = (E ′, /0) is an explanation for O w.r.t. T
and that E ′ can be obtained by replacing some constants in E with
new constants not occurring in T and O. Therefore (E, /0) is not
constrained. This is a contradiction.
2) First, it is possible to prove that, given E = F(M), ∆ = (E, /0)
is an explanation, that is R ∪B∪E |= O. Then, it is possible to
prove by contradiction that ∆ is constrained. Assuming that ∆ is
not constrained, it can be proved that M is not a stable model of
R ∪B∪E |= O. This is a contradiction. □

Theorem 2 is the main result of our work. It demonstrates
the correctness of the rewriting and suggests the algorithm to
compute the constrained explanations.

Algorithm
1) Compute the set M of stable models of Rew(T ,O)).
2) Compute the set E = {F(M) | M ∈M and constrained

Explanation ∈M}.

1The full proof is reported in the appendix of an extended version of the
paper at https://github.com/caroprese/abduction.
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3) Let I the class of minimal sets in E . The constrained
explanations of O w.r.t. T are {(E, /0) | E ∈I }. □

This approach allows to compute the constrained explanations in
two steps. The first step computes the set E containing F(M)
for each stable model M of Rew(T ,O) that includes the atom
constrainedExplanation. The second step selects the minimal sets
in E . They correspond exactly to the constrained explanations we
are looking for.
This approach is much more efficient than a guess and check
procedure because greatly reduces the search space.

Example 5. Let T = ⟨R ∪B,A , /0⟩, where A = {p}, R = {o←
m(X),n(Y ); n(X) ← p(X),s(X); m(X) ← p(X),s(X)} and
B = {p(a), p(b)}. Let us assume O = {o}. The set Rew(R)
contains the following rules:
• o∗1← o∗

• m∗(y1,1(o))← o∗1
• n∗(y1,2(o))← o∗1
• arbitrary(y1,1(o))← o∗1
• arbitrary(y1,2(o))← o∗1
• n1(X)∗← n∗(X)
• p(X)∗← n∗1(X)
• s(X)∗← n∗1(X)
• m1(X)∗← m∗(X)
• p(X)∗← m∗1(X)
• s(X)∗← m∗1(X)

We do not report Rew(O), Rew(B), Const(T ), Uni f ication(T ),
Constrained(T ) and U pdate(T ) as they are trivial. One
can check that E = {{s(a)},{s(b)},{s(a),s(b)}} and then
I = {{s(a)},{s(b)}} that corresponds to the constrained
explanations ∆1 = ({s(a)}, /0) and ∆2 = ({s(b)}, /0). □

The rewritings of the abductive theories and the observations
presented in Example 3, Example 4 and Example 5 can be found at
https://github.com/caroprese/abduction. This repository contains
the DLV system, two source files, the related batch files allowing
to run the experiments on Windows systems and the results of
the experiments (the stable models of the rewritings and the
corresponding abductive explanations).

DISCUSSION AND CONCLUDING REMARKS

Abduction was introduced to artificial intelligence in early 1970s
by Harry Pople Jr. [10]. Over the years several criteria have
been proposed to identify the preferred (best) explanations, all
rooted in the Occam’s razor (parsimony) principle. The abduction
reasoning formalism we study in the paper uses logic programs
to represent background knowledge in abductive theories. It is
referred to as abductive logic programming [1], [3]. Abductive
explanations which allow the removal of hypotheses are first in-
troduced by Inoue and Sakama [11]. The importance of abductive
logic programming to knowledge representation was argued by
Denecker and Schreye [12]. It was applied in diagnosis [13],
planning [14] and natural language understanding [15]. Denecker
and Kakas [4] provide a comprehensive survey of the area. Eiter et
al. [6] studied the complexity of reasoning tasks in the abductive
logic programming setting. In [16] and [17] an algorithm for
computing abductive explanations for propositional Horn theories
is presented. The concept of simplicity adopted in this paper is
based on minimality with respect to set inclusion. In [18] an

extension of abduction where explanations are jointly computed
by sets of interacting agents is investigated. Also in this paper
only the propositional case is analyzed and the use of answer set
engines such as DLV. to calculate the explanation is left as a topic
for further research.

None of the earlier works on abduction considered the con-
cepts of constrainedness or arbitrariness. These concepts were
originally proposed for the setting of view updates in deductive
databases [19], [20]. View updating consists of modifying base
relations to impose properties on view relations, that is, relations
defined on the database by queries. The degree of arbitrariness
and constrainedness were adapted to the setting of abductive logic
programming by Caroprese et al. [5].

In this paper we showed how the problem of computing
constrained explanations for abductive theories of a specific form
can be cast as an application of ASP via a direct rewriting of
a theory into a disjunctive logic program. This is an important
first step towards computing constrained explanations for arbitrary
abductive theories. The work opens several avenues for future
research. First, it is important to extend the proposal to the other
classes of abductive theories identified by Caroprese et al. [5]
and then, to the general case. Second, the effectiveness of the
rewriting proposed in this paper, as well as rewritings that might
exist for other classes of abductive theories, has to be verified
experimentally on realistic benchmarks where reasoning tasks
involve abduction.
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