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Abstract—As a basic task of the intelligent transportation system, night-time
vehicle detection is associated with many challenges. Existing methods usually
ignore significant challenges arising from the imbalanced class distribution between
vehicles, which always leads to poor detection for vehicles belonging to tail classes.
By analyzing existing solutions for long-tail object detection and considering the
complex and diverse characteristics of night-time traffic scenarios, we propose an
enhanced detection approach based on anomaly detection. In addition, to tackle
disturbance from complex lights, we re-construct the loss function for background
proposals, thus allowing the detector to pay more attention to hard-classified
proposals and to learn to distinguish vehicle lights from disturbed light resources.
Comprehensive experiments prove that compared with generic approaches,
our proposed method can effectively solve the problem of long-tail distribution in
night-time vehicle detection and improve the robustness in complex environments.

A ccording to related research, most fatal vehi-
cle accidents over recent decades have been
caused by rear-end collisions [1]. Hence, the

concept of the intelligent traffic system (ITS) has
emerged, with the aim of solving a series of road
traffic problems, through the use of advanced driver
assistance systems and autonomous driving systems
[2]. As the basic component of ITS, vehicle detection
is at the root of the whole system, and a reliable and
effective method of vehicle detection is an important
support and guarantee for subsequent automated traf-
fic processing and operations [3].

With the development of related theories in areas
of image processing and computer vision, techniques
for vehicle detection have become mature and are
now common in daily applications, such as the widely
used Faster R-CNN [4] and YOLO [5]. However, current
methods for vehicle detection are essentially designed
for daytime scenes, whereas most traffic accidents
occur at night [6]. Research reports also indicate that
compared with daytime conditions, it is more danger-
ous to drive at night and the possibility of traffic acci-
dents is increased in night-time scenarios [7]. Hence,
there is an urgent need for effective and accurate
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methods of night-time vehicle detection.

Although state-of-the-art deep learning-based ob-
ject detectors can be directly applied to night-time
traffic scenes, they do not perform well for vehicle
detection under low-light conditions, owing to two main
problems: (i) the overall brightness and contrast are
too low in these images; (ii) the distribution of vehicles
is always non-uniform. In regard to the former issue,
due to poor lighting conditions, the features of vehicles
such as shape, colour, texture, and the gradient within
the image are not salient and are always masked,
which is also the reason that the performance of these
detectors is worse in night-time scenes than in daytime
scenarios [8]. In recent years, many schemes have
been developed for the enhancement of low-light traffic
images, which may well solve the problems of low
brightness and contrast, but researchers seldom pay
attention to the latter challenge.

Fig. 1 shows the distribution of vehicles in the
widely used Berkeley Deep Drive (BDD) dataset [9].
Here, we have selected traffic images captured under
low-light conditions in two main types of scenes: city
street and highway. As we can observe, in both scenes,
certain vehicles such as cars and trucks account for
nearly 99% of all the objects, and these can be taken
as head classes. However, samples of other classes,
such as buses, bikes and motors, constitute a relatively
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FIGURE 1: Illustration of the distribution of vehicles in
two scenes: city streets and highways.

small proportion of the overall targets, and should
be taken as tail classes. The distributions of these
vehicles in night-time traffic scenarios present a long-
tail distribution, and the extremely imbalanced class
distribution between vehicles will always result in a
performance gap between the head and tail classes
[10]. More specifically, the tail classes can easily be
overwhelmed by the head classes during training, and
the detector may predict the samples in the tail classes
as head classes or background [11], which greatly
decreases the average detection precision. In addition,
due to disturbances from other lights (such as lamps
and lighted buildings), some background proposals
(i.e. candidate proposals that are generated from the
background) may be misclassified as vehicles. These
issues inevitably pose challenges for vehicle detection
under dim-light traffic conditions.

Eliminating the long-tail distribution in the task of
general object detection has been a hot topic for
researchers. Current research works can be mainly
divided into two categories: re-sampling strategies and
re-weighting methods. For the re-sampling strategies,
most works regard the problem of long-tail distribution
as an influence of the imbalance of sampling in the
training batch. Based on this assumption, re-sampling
strategies usually involve the design of special sam-
pling techniques [11]. However, this kind of approach
will inevitably result in distortion of the original distri-
bution, which impairs the representation learning and
causes problems such as over-fitting or under-fitting
[12]. Hence, in recent years, researchers have turned
to re-weighting methods, in which the loss function
is re-construct to deal with the problem of imbalance

between different classes, and which can effectively
weaken the influence of the long-tail distribution on
natural scene datasets such as LVIS [13].

Unlike general object detection tasks, there are
unique challenges that make the problem of long-tail
distribution harder to solve in night-time scenes. Exist-
ing methods for long-tail object detection are designed
for large-scale datasets with thousands of categories,
while for night-time vehicle detection, there are only
a few classes of vehicles. Although there is a fairly
serious imbalance between the different classes of
vehicles, the distribution of these classes is only similar
to the long-tail distribution, rather than perfectly fitting
this shape. In addition, due to the characteristics of
night-time scenes, there is always interference caused
by light sources, which may affect the detection of
vehicles and result in a high ratio of false positives.
This means that current re-weighting methods are not
so effective for night-time traffic scenes.

To overcome these challenges, we enhance the
detection model with an anomaly detection scheme to
address the issue of night-time vehicle detection. To
weaken the influence of extraneous lights in the image,
we re-construct the loss function for the background
proposals based on IoU (Intersection over Union). Our
key contributions can be summarised as follows:

1) We unveil the long-tail distribution problem in
night-time vehicle detection, which is typically
ignored by researchers and greatly limits the
overall performance of vehicle detection in low-
light traffic conditions.

2) By analyzing the unique challenges associ-
ated with night-time vehicle detection, we show
that existing state-of-the-art re-weighting meth-
ods designed for large-scale datasets cannot
be straightforwardly applied to low-light traffic
scenes. We solve the problem of long-tail dis-
tribution between vehicles, based on anomaly
detection. More specifically, in the training pro-
cess, we regard detected proposals belonging to
tail classes as abnormal cases for the detection
model.

3) Considering interference of lights such as lamps
or lights from buildings, we re-construct the loss
function of background proposals, through which
the detection model can learn to distinguish the
lights of vehicles from the extraneous lights in
environments containing multiple disturbances.
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Related work

Re-sampling methods
To tackle the problem of long-tail distribution, re-
sampling methods are widely used in the early stage.
Re-sampling methods usually over-sample additional
training data for the tail classes or under-sample data
for the head classes, in order to generate more bal-
anced samples [11]. Although re-sampling methods
can be applied to the problem of long-tail distribution,
they will inevitably cause problems as they change the
distribution of the original data space.

For example, typical oversampling methods such
as repeat factor sampling [13] re-sample the data in the
tail classes during the training process using different
sampling frequencies for different categories, while
there will always be a high potential risk of over-fitting.
Unlike over-sampling methods, under-sampling meth-
ods such as that in [14] aim to remove samples from
the head classes to make the overall training samples
uniform and balanced. However, under-sampling meth-
ods will always cause a loss of overall performance.

Re-weighting methods
Re-weighting methods rely on the basic idea of assign-
ing different weights to different samples belonging to
special categories. Re-weighting methods can effec-
tively bring about improvement in tail classes, but they
may introduce issues like optimization challenges [15]
and lead to suboptimal overall performance.

In addition to methods that re-weight samples at
the class level, several recent studies have tried to
adjust the weights of training data at the sample level.
Focal loss [16] was proposed to tackle the class im-
balance in an approach where the training samples
were divided into well-classified and hard-classified
categories. Equalization loss [11] (EQL) simply ignores
the gradients of samples in the tail classes to avoid the
proposals for the tail classes being over-suppressed
by those of the head classes. Similarly, adaptive class
suppression loss (ACSL) aims to estimate the sup-
pression gradients of each sample adaptively from a
statistic-free perspective [17], through which the prob-
lem of long-tail distribution could be well solved.

Re-weighting methods such as Focal loss, EQL and
ACSL can effectively enhance general tasks of object
detection with the long-tail distribution. However, most
of these approaches need to estimate the frequencies
of different classes, which may introduce inconsis-
tency when applied to new scenes. Furthermore, these
works focus only on the imbalance between foreground
samples and ignore the imbalance of the background

samples in night-time traffic scenes. In this paper, we
propose a more general framework based on anomaly
detection that does not rely on prior category knowl-
edge like frequency distribution or occupation ratio
for each category. Besides, We also reconstruct the
loss function for the background samples to weaken
the disturbance from extraneous lights for night-time
vehicle detection.

Methodology

Anomaly detection for tail classes
An overview of the proposed pipeline, which is based
on the widely used Faster R-CNN, is given in Fig. 2.
The generated proposals during the detection progress
can be divided into three categories: head classes
(such as cars or trucks), tail classes (such as motors or
bikes), and background classes. All of the foreground
proposals may contain head classes or tail classes;
we regard the proposals belonging to tail classes as
anomaly points, using a classification layer as the
anomaly detection module to detect them. In this way,
the detection model can learn to distinguish between
proposals of tail classes and head classes, and does
not need to compute the data distribution before train-
ing.

As discussed in the previous section, most re-
weighting methods for long-tail object detection rely
on the estimation of the frequencies for all categories.
However, for night-time traffic scenes, the distribution
of vehicles and pedestrians varies heavily at different
times and locations, such as the situations during rush
hour and late night time are totally different. Assigning
new weights to changing distributions could be time-
consuming and laborious, and may limit the applica-
tions of these schemes in real-world scenarios. Directly
detecting the proposals of tail classes as anomaly
points can avoid this problem, and yields a better
generalization ability for dynamic traffic scenes, since
it guides the detection model to learn a global classi-
fication for head and tail classes rather than several
categories.

The Lossforeground for all the foreground proposals
can be obtained from the specially designed functions
of the detection model, such as cross-entropy for
classification and SmoothL1 for localization regression.
We can directly use cross entropy to compute the
Lossanomaly for each foreground proposal xf as follows:

Lossanomaly (xf ) = −log(p̂i )

p̂i =

{
pi , if yi ∈ Tail Classes

1 − pi , otherwise
(1)
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FIGURE 2: Overview of the proposed pipeline based on Faster R-CNN for night-time vehicle detection.

where pi denotes the output of the anomaly detection
layer for the foreground proposal xf , which indicates
the probability of xf belonging to tail classes, and yi

represents the corresponding ground-truth label of xf .

Re-constructed loss function
For the detection of vehicles under night-time traffic
scenes, the headlights or taillights of vehicles are
the most salient features and form the core target of
traditional night-time vehicle detection. When carried
out in environments with complex lighting, such as
urban roads, there are many other lights in addition to
the headlights or taillights of vehicles, such as building
lights, street lamps, reflected lights from car bodies and
road reflectors, etc., which increases the probability of
false or missing detections. As shown in Fig. 3. (a-b),
areas with lights such as street lamps or reflections
appear very similar to vehicles in night-time traffic
scenarios, and may be misclassified as vehicles.

To decrease such false positive results, we need
to analyze the background proposals generated in the
training process. As shown in Fig. 3. (c), there are
two main kinds of background proposals that may be
misclassified at the training stage. Case 1 (such as
the yellow boxes) contains regions with interference
lights (especially paired lights like street lamps), which
are easily misclassified as vehicles. Case 2 (such
as green boxes) includes regions that capture only

certain parts of vehicles, due to the setting of the
IoU threshold (such as 0.3 or 0.5), they will still be
determined as negative proposals during the training
process. Case 1 arises due to the interference caused
by light sources, while Case 2 emerges from the IoU
threshold configuration. Distinct from Case 1, Case 2
manages to capture a segment of the vehicle, signify-
ing that false detection proposals originating from light
source interference require enhanced sensitivity in the
detector. As a result, the loss function should assign
greater penalties to misclassified proposals that closely
resemble Case 1, effectively addressing this issue.

To distinguish whether the generated proposal is
similar to Case 1 or Case 2, the IoU between the
predicted box with the target box can be used as a
criterion: a larger value of the IoU means the generated
proposal is closer to Case 2, while proposals with a
lower IoU should be similar to Case 1. Hence, for each
background or negative proposal xb generated in the
training process, by referencing the focal loss [16] and
the IoU-based loss [18], [19], we compute the cost as
follows:
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(a)

(b)

Case 1, IoU = 0

Case 2, 0 < IoU < Threshold

(c)

FIGURE 3: Illustration for the false detection cases. (a-
b). Examples of false detection due to disturbance from
interfering light sources. (c). Cases for the detected
background proposals that may be misclassified during
training.

Lossbackground (xb) = losscls(xb) + ωl lossloc(xb)

losscls(xb) = −
C∑

i=1

α(1 − CIoU )β log(q̂i )

q̂i =

{
qi , if yi = 1

1 − qi , otherwise

lossloc(xb) = CIoU

(2)

where qi is the output of the classification layer for xb,
and the total number of categories is C. CIoU denotes
the IoU of xb with the closest target box in the image,

yi represents the corresponding ground-truth label of
xb. α and β are used as adjustment parameters for the
weights of the background proposals. ωl is a parameter
for the localization loss lossloc .

In Eq. (2), we also compute the localization loss
lossloc for the background proposals, which are usually
ignored in a normal detection stream. A standard de-
tection model pays attention only to the localization of
foreground proposals, while here we want to make the
network assign higher costs to background proposals
like Case 1. In this way, the network will decrease the
ratio of background proposals like Case 2, and learn
to be more sensitive to the hard-to-classify proposals
like Case 1.

After computing all the losses for the foreground
proposals, background proposals, and anomaly detec-
tion, the sum of losses L can be computed as follows:

L = Lossforeground +

ωaLossanomaly + Lossbackground
(3)

where ωa is the weight for the anomaly detection of tail
classes.

Experiments

Dataset
For experiments, we adopted the widely used BDD
dataset [9] and Hong Kong night-time vehicle detection
(HK) dataset [6] for comparisons with related schemes.
For BDD dataset, we chose images captured under
night-time conditions, and divided them into two main
scenes: highways and city streets. Specifically, for city
street scenes, 10000 images are used for training
and 4945 images are used for testing. For highway
scenes, we selected 4000 images for training and
2019 images for testing. For HK dataset, 500 images
and 336 images are chosen for training and testing,
respectively.

For two sub-datasets in BDD dataset, we chose five
categories of annotated vehicles: cars, buses, trucks,
motors, and bikes. For HK dataset, cars, taxis, buses
and minibuses are annotated with labels. Empirically,
we set buses, motors, and bikes as the tail classes
for BDD dataset, and similarly, we set buses and
minibuses as the tail classes for HK dataset.

Implementation details
To evaluate the effectiveness of our proposed anomaly
detection scheme and the reconstructed loss function
for night-time vehicle detection, we used the classical
detectors Faster RCNN and YOLOv5 as the baseline
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models. In both the training and test streams, we
resized the input images to 600 × 600. At the training
stage, we applied the Adam method as the optimizer
with an initialized learning rate le−5 and weight decay
5le − 4. For the weights in the loss functions, ωa for
the anomaly detection was set to three, and ωl for the
location of background proposals was set to five. The
parameters for adjusting the weights of classification of
background proposals, α and β, were set to 1.75 and
1.2, respectively.

For the highway and city street scenes in BDD
dataset, we set training epochs to 50 and 25, respec-
tively. For HK dataset, we set training epochs as 200.
When testing, Non-Maximum Suppression with an IoU
threshold of 0.5 was adopted to remove overlapped
proposals. Other hyper-parameters such as the size
of anchors, the number of foreground proposals and
background proposals, etc. were set to the default
values.

Comparison with the baseline
The results of comparison with the baseline models
are given in Table. 1. (a). We used the mean av-
erage precision (mAP) with an IoU threshold of 0.5
to evaluate the detection results from each model on
each category. As shown in the table, compared with
the original detector, Faster R-CNN or YOLOv5 with
the proposed strategies achieved great improvements
on all of highway, city street and Hong Kong scenes.
Generally speaking, the detector’s performance on HK
dataset is better than on the two BDD sub-datasets,
which can be attributable to the imbalance is not so
severe and annotations are not so dense and elaborate
on HK dataset.

Moreover, by observing Table. 1. (a), although per-
formance on the head classes (such as cars) may be
slightly weaker than in the original model, the overall
performance is still much better compared with the
original results. The performance in the tail classes
(especially bikes and minibuses) has improved signifi-
cantly. For instance, on Faster RCNN with ResNet50,
our approach boosted the average precision of the tail
classes by about 37% (29.58 vs. 21.54) on the city
street scenes for bikes, 29% (22.97 vs. 17.67) on the
highway scenes for buses, 4% (97.42 vs. 93.07) on the
Hong Kong scenes for minibuses.

Comparison with other solutions for long-tail
detection
To demonstrate the effectiveness of our proposed ap-
proach, we compared it with existing state-of-the-art
algorithms for long-tail object detection, such as focal

loss [16], EQL [11], ACSL [17], and ECL [20], using the
same baseline model Faster R-CNN with ResNet50.
For these methods, vehicles belonging to head classes
or tail classes were defined with the same rule stated
in the previous section, hyperparameters for each ap-
proach were set as default values.

The experimental results from these methods are
listed in Table. 1. (b), and it can be seen that com-
pared with these methods, the detector based on our
proposed approach achieved obviously better results.
Although these methods can slightly improve the ve-
hicle detection performance for head classes such as
cars, their overall AP was about three points lower than
our methods. As stated in the previous section, most
existing methods for long-tail object detection can be
effectively applied to natural datasets, but do not per-
form so well in night-time traffic scenarios. Take the city
street scenes for example, our approach outperformed
ACSL by 3.58 points (34.78 vs. 31.20), EQL by 3.13
points (34.78 vs. 31.65), ECL by 3.55 points (34.78 vs.
31.23), and focal loss by 3.94 points (34.78 vs. 30.84),
which further proved the effectiveness and superiority
of our proposed methods.

We also presented a visual comparison of these
methods in Fig. 4. It can be observed that the detector
based on our proposed method can precisely detect
objects in all the categories. For instance, as shown
in Fig. 4. (a), the detector based on our approach can
detect the truck from the image even though its size is
very small, whereas the other detectors just ignored it.
In Fig. 4. (b), the minibus is ignored or misclassified as
a car or bus, while the detector based on our method
can precisely detect it. In addition, for the region with
complex lights, the original detector and those based
on ACSL or EQL generated false positive results, which
can be effectively avoided by our proposed method.

Ablation studies
To validate the contributions of our proposed anomaly
detection scheme for tail classes and the reconstructed
loss function for background proposals in night-time
vehicle detection, we carried out several ablation ex-
periments using the baseline model Faster R-CNN
with a backbone of ResNet50. For convenience, we
conducted experiments only on the city street scenes
of BDD dataset, which are larger and more complex
than other scenes.

The results of these ablation experiments are
shown in Table. 1. (c). Compared with the original
detector without the proposed strategies, the anomaly
detection and reconstructed loss Lossbackground ap-
proaches can both contribute to a varying degree to the
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Ground Truth

EQL ACSL Ours

Focal loss ECL

Ground Truth

EQL ACSL Ours

Focal loss ECL

(a) Visualization comparison on the city street scenes of BDD dataset

(b) Visualization comparison on the HK dataset

FIGURE 4: Visual comparison of the results from the baseline model using each method for night-time vehicle
detection.
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Method Backbone
City street Highway Hong Kong

Car Bus Truck Motor Bike Average Car Bus Truck Motor Bike Average Car Taxi Bus Minibus Average

Faster R-CNN R50 56.36 36.46 31.85 5.66 21.54 30.37 43.01 17.67 32.80 0.75 9.09 20.66 88.91 90.64 88.35 93.07 90.24

Faster R-CNN* R50 56.19 42.83 35.31 9.97 29.58 34.78 44.18 22.97 35.01 6.08 17.39 25.12 89.72 92.44 91.36 97.42 92.74

Faster R-CNN R100 55.10 35.61 35.10 7.14 20.64 30.71 44.09 23.37 35.03 0.85 4.17 21.50 89.14 91.40 88.84 93.43 90.70

Faster R-CNN* R101 56.63 39.79 38.24 8.66 27.21 34.11 43.08 24.41 34.55 3.56 24.78 26.07 90.99 92.50 91.65 98.05 93.30

YOLOv5 Darknet 60.11 11.10 33.33 5.41 20.90 26.17 42.18 4.16 25.50 0.27 0.29 14.48 93.61 88.33 85.98 53.16 80.27

YOLOv5* Darknet 60.32 28.21 36.34 6.75 21.91 30.70 45.25 11.85 30.96 2.92 7.17 19.63 94.41 91.76 91.12 97.28 93.64

(a) Comparison of results from the baseline models, Faster R-CNN* or YOLOv5* means the original detector with anomaly
detection and reconstructed loss function Lossbackground .

Stategy
City Street Highway Hong Kong

Car Bus Truck Motor Bike Average Car Bus Truck Motor Bike Average Car Taxi Bus Minibus Average

None 56.36 36.46 31.85 5.66 21.54 30.77 43.01 17.67 32.80 0.75 9.09 20.66 88.91 90.64 88.35 93.07 90.24

Ours 56.19 42.83 35.31 9.97 29.58 34.78 44.18 22.97 35.01 6.08 17.39 25.12 89.72 92.44 91.36 97.42 92.74

ACSL [17] 57.13 35.28 34.34 5.71 23.53 31.20 44.68 19.14 36.09 0.31 10.77 22.20 88.23 92.98 87.76 94.82 90.95

EQL [11] 56.93 33.63 35.38 7.35 24.94 31.65 43.47 18.18 35.55 1.04 9.52 21.53 88.87 91.71 86.48 94.89 90.49

ECL [20] 56.89 36.13 35.57 7.29 20.27 31.23 43.67 24.20 35.22 0.71 0.14 20.79 88.98 92.91 89.24 93.90 91.26

Focal loss [16] 56.43 36.43 33.08 6.39 21.89 30.84 43.98 23.81 35.00 0.96 6.04 21.96 88.40 92.35 86.95 93.34 90.26

(b) Comparison of results from the proposed methods with other strategies using the baseline model.

A B Car Truck Bus Motor Bike Average

56.36 31.85 36.46 5.66 21.54 30.77

✓ 56.32 35.67 40.76 10.39 27.02 34.03

✓ 56.96 35.41 37.61 8.04 25.68 32.74

✓ ✓ 56.19 35.31 42.83 9.97 29.58 34.78

(c) Results of ablation experiments for the proposed strategies on the city street scenes of BDD dataset, A represents
anomaly detection used for tail classes, B denotes the reconstructed loss function for background proposals.

TABLE 1: Quantitative comparison results on the BDD dataset and HK dataset.

improvement of night-time vehicle detection. Of these
two strategies, anomaly detection works more effec-
tively for the tail classes, while resulting in a slight loss
of the detection accuracy for the head classes such as
cars. Lossbackground can improve detection precision on
all the categories, from which it can be concluded that
the detector learns to be more sensitive to disturbance
from other types of lights and reduces the number
of false positive proposals through the re-constructed

loss for the background proposals. Furthermore, com-
pared with other state-of-the-art methods for long-tail
object detection, the detector with a single strategy
( i.e. anomaly detection or Lossbackground alone) still
achieved higher improvements, which confirms the
effectiveness of our proposed method for night-time
vehicle detection in low-light traffic scenarios.

After combining these two strategies, the detec-
tor’s best performances exhibit some variations across
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several categories. Nevertheless, the detector with
these two strategies achieves the highest overall per-
formance.

CONCLUSION
In this paper, we unveiled the long-tail distribution
problem in night-time vehicle detection. To tackle this,
we proposed to combine anomaly detection with pro-
posal classification in the stream of vehicle detection,
which could greatly improve the sensitivity of detection
models to vehicles belonging to tail classes. In view
of the disturbance from extraneous lights in low-light
traffic scenarios, we further re-constructed the loss
function for the background proposals. Validation on
the BDD dataset and HK dataset proved that our
proposed methods could greatly improve the baseline
model and outperform other state-of-the-art solutions
for long-tail object detection on low-light traffic scenes.
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