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Abstract—Grounding is a challenging problem, requiring a
formal definition and different levels of abstraction. This article
explores grounding from both cognitive science and machine
learning perspectives. It identifies the subtleties of grounding,
its significance for collaborative agents, and similarities and
differences in grounding approaches in both communities. The
article examines the potential of neuro-symbolic approaches
tailored for grounding tasks, showcasing how they can more
comprehensively address grounding. Finally, we discuss areas for
further exploration and development in grounding.

INTRODUCTION

Robust communication transcends human-human communi-
cation settings to include human-machine, machine-machine,
and multi-agent human-machine teams. Grounding fosters a
common understanding among agents performing a task -
typically in the real world. With the growing number of
human-AI interactions, grounding is a fundamentally impor-
tant capability of AI systems, models, and agents [5], [8],
[11], [17]. Grounding allows AI systems to bridge semantic
gaps in the real world, team with other agents in such
environments, process inputs from the environment, and learn
from interactions. A successful synthetic teammate requires
several cognitive capacities, including situation assessment,
task behavior, language comprehension and generation [3], and
knowledge gap resolution processes. Grounding enables agents
with different capabilities to communicate.

Both cognitive scientists and computer scientists have fo-
cused on how to make internal mechanisms (or representa-
tions) of external entities intrinsic to the agent itself rather
than being defined by an external designer or interpreted by an
observer [17]. Recent efforts in Natural Language Processing
(NLP), Computer Vision (CV), and Human-Computer Inter-
action (HCI) improve the grounding of machine agents. How-
ever, it remains a multi-dimensional challenge, encompassing
diverse contexts, abstractions, and modalities of understanding
(see Figure 2). In the absence of a clear definition, we
are unable to determine genuine advances or task-specific
adjustments.

This article sheds light on different aspects of grounding
through the lens of cognitive science and artificial intelligence
(AI), discusses specific neuro-symbolic solutions for ground-
ing, and highlights future work).

“A successful synthetic teammate requires several
cognitive capacities including situation assess-
ment, task behavior, language comprehension and
generation [3], and knowledge gap resolution pro-
cesses. Grounding enables agents with different
capabilities to communicate.”

COGNITIVE SCIENCE LENS

Identification of the symbol grounding problem in cognitive
science dates to Harnad. Following the introduction of com-
putation with symbols credited to McCarthy, Searle’s Chinese
Room Problem revealed how amodal symbol manipulation
lacks grounding. Yet, symbol manipulation is often the foun-
dation of contemporary AI systems. Challenges to amodal
symbol manipulation include embodied grounding [12] and the
recent use of language and simulation to establish grounding
[13]. Given this long-standing research problem, Ziemke [17]
groups grounding efforts into two categories: 1) cognitivist or
2) enactivist.

Cognitivism grounds atomic primitives in sensorimotor in-
variants [17]. Concepts constructed from these inherit the
grounding of their constituents. Nevertheless, different agents
may reason with different abstractions, creating a divergence
that requires repair. A more recent perspective, enactivism val-
ues the role of action, embodiment, and environment. Robotic
agents can potentially obtain grounding by physically linking
to an environment through sensory input and motor output.
Agent functions can be either engineered or learned. With
meticulously engineered grounding, systems may demonstrate
the ‘correct’ behavior, but their internal mechanisms are not
inherent to the system. Alternatively, an agent function can be
acquired by adjusting connection weights instead of requiring
programming. However, the definition of a correct agent
function and how to evaluate various agent functions remains
a challenge.

Given our interest in real-world human-AI interaction
and multimodal systems, we emphasize enactivist grounding.
However, cognitivist grounding remains essential, as we sum-
marize from Barsalou [13]:

Mental imagery, cognitive grammar, mental spaces,
and compositional reasoning support explanations
for thought. Neuroimaging shows that higher cog-
nition is realized in the brain’s model systems. One
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theory is that grounding mechanisms serve as an
interface, peripheral to core cognitive operations.

Barsalou predicts that future cognitive research will inte-
grate classic symbolic architecture, statistical/dynamic sys-
tems, and grounding cognition. Formal and computational
accounts of grounding will shift from epiphenomenal to casual.
Grounding mechanisms may potentially replace the amodal
mechanisms in cognitive architectures. We believe that ad-
vancements in neuro-symbolic AI will be instrumental here.
Next, we describe the grounding problem from a machine
learning and AI perspective and highlight what is missing from
a cognitive science lens.

ARTIFICIAL INTELLIGENCE LENS

Grounding in AI has typically been referred to as connecting
concepts to other knowledge bases or world models. We
first discuss the different grounding efforts in the AI [11]
community. We then draw parallels with the cognitive science
community [13], [17] and identify some nuanced distinctions.

Chandu et al. [11], note the use of static versus dynamic
terminology used in the NLP / CV context, similar to the
cognitivist versus enactivist distinction in cognitive science
(see Figure 1). Static grounding – the most predominant form,
relies on accessible evidence supporting the common ground to
connect concepts within a given context to the real world [11].
For static grounding, common ground is typically through an
agent (e.g., machine) interacting with a static knowledge base
(KB) to frame a response and deliver it back to the other agent
(e.g., human). Both agents may share this common ground
by assuming its universality, i.e., no external references. The
success of grounding is measured based on the agent’s ability
to link the query to the available data. In contrast, dynamic
grounding establishes common ground iteratively, where both
agents can communicate to seek and provide clarifications,
typically in a potentially changing physical environment. This
allows corrections to misunderstandings.
Static grounding: According to Harnad, manipulating sym-
bolic representations without meaning cannot support reason-
ing. AI researchers responded with different representations
for different uses. Typically, these frameworks have the fol-
lowing key components: the designator, denoting the name
or symbol utilized to identify the category; the epistemo-
logical representation, employed to recognize instances of
the category; and the inferential representation, comprising
“encyclopedic” knowledge about the category and its mem-
bers. The epistemological representations are termed concept
descriptions. In computer vision, these representations are
considered object models [5]. This form of grounding is
typically established using deductive learning. It is consistent
with cognitivist grounding, with little to no active or online
supervision from the environment or an external agent. ML
efforts for static grounding include using entity slot filling,
adversarial references to grounding visual referring expres-
sions, visual semantic role labeling, and disambiguation of
concepts and entities [11]. Additionally, methods designed for
manipulating representations include fusion and concatenation,

representation alignment, and projection of representations
into a shared space. Finally, the ML community has designed
different learning objectives to address the grounding problem,
including multitasking and joint training, the design of new
loss functions, and adversarial learning methods.
Dynamic grounding: Dynamic efforts in ML are typically
designed for situations where an entity in an environment
is matched with an epistemological representation that acti-
vates a larger knowledge structure containing the composite
concept representation. Such systems learn to ground their
own experience dynamically in the environment, creating
more robust capabilities not dependent on pre-programmed
representations [5]. Grounding frameworks such as learning
from example and learning by conversation are consistent
with enactivist grounding in cognitive science. Efforts in the
ML community for dynamic grounding include grounding
embodied agents, natural interactions with human-in-the-loop
feedback, and, more recently, grounding LLM-based agents
(https://rb.gy/2pfq1g). Nevertheless, grounding in mainstream
machine learning exploits deductive learning [5].
Limitations: One notable omission in ML is grounding with
sensors or environmental data [1]. Furthermore, the study of
latent pragmatics is also missing from Chandu et al.’s work.
Pragmatic analysis, pioneered by Austin, Grice, and Searle and
extended by others such as Sperber, focuses on understanding
functional intentions and implications based on variations in
linguistic content across different contexts [15], [16], [18].

The lack of a consistent definition of grounding creates
considerable ambiguity regarding how to ground, what to
ground, and where to ground. To bridge this gap, Chandu et
al. [11] outline the following grounding stages: Stage 1 - Lo-
calization, Stage 2 - External Knowledge, Stage 3 - Common
Sense, and Stage 4 - Personalized Consensus. However, these
stages are insufficient. Consider a challenging example of
grounding a drone (with an AI-based decision-making model)
to ensure safety concerns. Localization requires that the drone
accurately determine its position relative to its surroundings.
Next, grounding with external knowledge introduces additional
information, such as weather and airspace regulations, that
inform subsequent action. However, which external knowledge
sources should be used and prioritized in the decision-making?
Stage 3 - Common sense could include avoiding obstacles in
its flight path and taking proactive measures to avoid risks or
mitigate potential harm. However, it is not easy to quantify
and measure this grounding stage. Stage 4 - Personalized
consensus can help ground decisions to the drone’s perception
of the environment and prior experiences. However, it is
unclear whether the drone must adhere to its prior experiences
when it conflicts with human instructions that reflect a broader
understanding of the situation. While a helpful initial attempt,
these stages are not sufficiently specific to standardize how
grounding occurs and at what abstraction levels. The lack
of definition allows for creative interpretation of the problem
and, therefore, new tasks, datasets, and methods. However, in
the future, the community will benefit from a standardized,
comprehensive definition.

https://rb.gy/2pfq1g


(a) The static and dynamic definitions in neurosymbolic AI loosely mirror the cognitivist and enactivist grounding in cognitive science,
respectively, although there are subtle differences. Cognitive scientists tend to focus more on the specific monitoring and repair processes
in case of different perspectives between interacting agents, whether due to differences in static knowledge or engagement opportunities
with an open world.

(b) For an AI or cognitive agent to interact effectively with its environment, it must understand the language used by external agents,
accurately assess the current situation and context, and identify and address gaps in its knowledge [4]. This process involves recognizing
when it lacks understanding or has difficulty with language comprehension and communicating these knowledge gaps to other agents
or external sources. By utilizing these processes, agents can update their knowledge of the task and environment, avoiding catastrophic
errors and allowing for the iterative and interactive aspects of dynamic grounding. Consider a machine agent, like a drone, working with a
human operator to survey a specific area. The agent can use its background (stored) knowledge to understand the monitored environment
and the mission’s purpose (static/cognitivist grounding). Suppose the agent comes across something it has not seen before and cannot
identify. In that case, it will interactively and iteratively ask the human operator for assistance in closing this gap (dynamic/enactivist
grounding).

Fig. 1: Types of Grounding



“The lack of a consistent definition of grounding
creates considerable ambiguity regarding how to
ground, what to ground, and where to ground.”

NEURO-SYMBOLIC GROUNDING

Neuro-symbolic methods can benefit grounding by inte-
grating traditional symbolic reasoning approaches with the
generalization capabilities of neural networks. Neuro-symbolic
systems integrate the statistical learning capabilities of neural
networks with the structured, symbolic representations used
in classical AI. Neuro-symbolic AI seeks to benefit from the
synergy of symbolic and neural methods. Traditional sym-
bolic reasoning methods use formal languages (e.g., Planning
Domain Definition Language (PDDL)) for reasoning over
knowledge stored in a structured format and represented by
‘symbols.’ These reasoning methods manipulate and infer from
structured symbolic representations, such as logic-based rules,
knowledge graphs, or ontologies. The symbolic representa-
tions provide a transparent and interpretable framework for
knowledge representations and logical reasoning. However,
these systems are brittle and often cannot be generalized. But
combined with neural methods, traditional methods leverage
advancements in deep learning to acquire knowledge repre-
sentations and enhanced generalization capabilities effectively
[10]. Neural networks consist of interconnected layers of
artificial neurons that use weighted connections, enabling them
to learn complex mappings between inputs and outputs. These
networks are instrumental in pattern recognition, classifica-
tion, regression, and sequence prediction. Therefore, neuro-
symbolic methods leverage the strengths of each paradigm.

As noted above, many of the grounding efforts in ML rely
on deductive learning and lack active or online supervision
from the environment or an external agent. Neuro-symbolic
methods for grounding can offer several advantages, including
compositional reasoning and situational awareness.

“Neuro-symbolic methods for grounding can offer
several advantages, including compositional rea-
soning and situational awareness.”

One particular asset of neuro-symbolic methods is the use
of functional modules. Natural language texts (i.e., instructions
or queries) are mapped to functional modules that carry
out atomic actions. These functional modules can be user-
defined or learned. This allows agent functions grounded
in symbolic representations to complete specific actions or
generate responses. Additionally, the compositional nature of
these functional programs allows for generalization to new
combinations of parsed instructions or queries. The functional
modules can be used for both dynamic and static grounding
as the modules can operate over knowledge bases (includ-
ing KGs). This aspect of neuro-symbolic methods can help
establish common ground, enabling agents to interpret and
execute instructions in a manner that aligns with symbolic
human reasoning. For example, Mao et al. [14] designed a new
neuro-symbolic concept learner that can learn embeddings for
symbolic visual inputs. Learning these mappings allows for

continual learning and adaptation of new environmental vari-
ables while preserving an agent’s task behavior. In this manner,
neuro-symbolic approaches can allow for the grounding of
new concepts in an environment and facilitate knowledge gap
detection, identification, and resolution processes leading to
adaptive and robust models.

CONCLUDING REMARKS

We have focused on explicit notions of grounding. We
conclude with remarks on implicit forms of grounding. Re-
cently, the use of digital twins has emerged to augment
the performance of machine learning systems in domains
ranging from autonomous transportation [6] to next-generation
wireless communication [7]. Digital twins can provide a high-
fidelity representation of physical entities by accurately model-
ing the structure, behavior, and characteristics of a real-world
system (world model) governed by physical laws. Such ideas
can expand the training dataset (out-of-distribution), allowing
models to be generalized. This implicit grounding in physical
laws can prevent non-factual generation, reduce hallucinations,
and anchor model responses to specific information, facil-
itating harmonization with the corresponding world model.
We note that using digital twins for grounding parallels the
contention of Pickering and Garrod [8] that interlocutors
implicitly comprehend each other by aligning their models
of the discussed situation at various levels of cognitive and
linguistic representation. Such implicit alignment processes
between agents (akin to digital twins) inspire computational
grounding processes.

Finally, we advocate for more knowledge-infused neuro-
symbolic learning and reasoning systems that naturally inte-
grate linguistic, common-sense, general (world model), and
domain-specific processes and knowledge to facilitate static
grounding. We expect fundamental progress on the syner-
gistic use of neural networks and structured semantics to
advance from content processing to content understanding and
reasoning with the infusion of symbolic knowledge (https:
//rb.gy/67wgx3). These methods require dynamic knowledge-
elicitation strategies integrating multimodal pragmatic context
and interactions with domain experts in the loop to achieve
dynamic grounding and alignment with user intent.
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