
Modes, Features, and
State-Based Modeling for Clarity and Flexibility

Anitha Murugesan, Sanjai Rayadurgam, and Mats P. E. Heimdahl

Department of Computer Science and Engineering
University of Minnesota

200 Union Street, Minneapolis, Minnesota 55455, USA
{anitha, rsanjai, heimdahl}@cs.umn.edu

Abstract—The behavior of a complex system is frequently
defined in terms of operational modes—mutually exclusive sets of
the system behaviors. Within the operational modes, collections
of features define the behavior of the system.

Lucent and understandable modeling of operational modes
and features using common state-based notations such as Stat-
echarts or Stateflow can be challenging. In this paper we share
some of our experiences from modeling modes and features in
the medical device domain. We discuss the challenges and present
a generic approach to structuring the modes and features of a
generic Patient-Controlled Analgesia infusion pump.

Index Terms—Mode, Stateflow, Modeling Patterns

I. INTRODUCTION

The dynamic behavior of a complex system is frequently
defined in terms of modes, which are taken to be mutually
exclusive sets of system behaviors [1]. The modes together
with the rules defining when and how the system transitions
between those modes are commonly referred to as the system’s
mode logic [2]. For many such systems, derivation and verifi-
cation of the mode logic is challenging due to the plurality
of modes and the complexity of the rules that govern the
transitions. Often the problem is further exacerbated due to
multiple orthogonal dimensions for partitioning the system be-
havior into modes, all of which may be necessary to adequately
and succinctly describe the mode logic. Several well-known
issues associated with mode logic have been explored; correct
handling of complex mode transitions, ensuring consistency
across orthogonal mode classifications, and eliminating mode
confusion for system operators are some of the problems that
have been studied in-depth [1], [3]. In addition, challenges
arise when considering the essential book-keeping activities
needed to manage various state variables, such as timers,
which are invariably intertwined with the mode logic. En-
gineering considerations such as adaptability to change and
reuse across multiple products in a product family further
amplify this challenge. The challenges involved in modeling
the modal behavior of systems have not, in our opinion, been
adequately addressed in the literature. Even the definitions of
frequently used terms—modes, features and states, to name a

This work has been partially supported by NSF grants CNS-0931931 and
CNS-1035715.

few—vary, are subjective, and often overlap, leading to some
understandable confusion [4], [5].

When modeling the mode logic of a cyber-physical system
in the medical device domain we had to squarely tackle
this mode-modeling problem. In this short report we discuss
several alternatives that were considered, the selected solution,
and the rationale for our choice. We believe the experiences
we gathered in the process are likely to be of benefit to
others engaged in similar modeling efforts. More broadly, we
hope our effort becomes a catalyst for the modeling research
community to catalog solutions for various modeling problems
and build a repertoire of modeling patterns.

II. OVERVIEW

The discrete behavior of complex control systems can be
modeled in terms of (extended) finite state machines, which
are formal, mathematical representations that support sophisti-
cated verification techniques. As part of a larger project to in-
vestigate techniques for assuring safety and efficacy of medical
cyber-physical systems, we modeled an infusion pump, called
the Generic Patient Controlled Analgesia (GPCA) infusion
system to better understand its behavior and to analyze its
properties. Essential to this model was the mode logic of the
infusion system. For our work we used the Simulink/Stateflow
modeling tools [6] that provide a visual formalism for de-
scribing states and transitions in a modular and hierarchical
fashion. The notations are also supported by a rich ecosystem
of various analysis, translation, and verification tools. Since
this modeling effort was carried out in the early stages of
exploration of the system specification, one of the goals was
to make it easy to effect changes to the model as our under-
standing of the system evolved. This, in particular, required
a careful design of the mode logic model so that additions,
modifications, and removal of behaviors could be done in a
quick and localized fashion without losing model integrity. In
the remainder of this report, we share our experiences and
approaches used for modeling the mode logic of the GPCA.

To help the reader understand the examples and terminology
used in the report, we begin by giving a brief overview of the
GPCA mode logic in Section III. In Section IV, we briefly state
some of the guiding principles behind our modeling approach.
In Section V, we describe in some detail, the problems

978-1-4673-6447-8/13 c© 2013 IEEE MiSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

13



encountered while attempting to model the mode logic of the
GPCA and then delineate our approach for addressing those
problems. We believe that this attempt is the first step towards
a bigger goal of providing a catalogue of modeling patterns
(Section VI).

III. GPCA DESCRIPTION

Infusion pumps are medical cyber physical systems used
for controlled delivery of liquid drugs into a patient’s body
according to a physician’s prescription, a set of instructions
that governs the plan of care for that individual. Modern
infusion pumps typically provide a variety of infusion options
for drug delivery. In basal infusion, the drug is delivered at
a constant (and usually low) rate for an extended period of
time. In a bolus infusion, the drug is delivered at a higher rate
for a short duration of time to address some immediate need
or to increase the drug delivery according to some therapy
regimen. There may be multiple bolus types. In clinician
bolus infusion, the drug is delivered at an elevated rate in
response to a clinician’s request. For example, the clinician
may prescribe an elevated rate of infusion for a period of time
at the beginning of infusion therapy. An intermittent bolus
infusion may be used to deliver additional drug at prescribed
time intervals during the infusion therapy. Further, in a patient-
controlled analgesia infusion system, a patient bolus infusion
may be activated to deliver additional drug in response to a
patient’s request for more medication, typically to alleviate
acute pain. More advanced pumps provide additional options
such as variable program which allows varying the amounts,
rates and times of delivery over the course of the infusion
therapy, and automatic ramping which allows tapering the flow
of drug at the beginning (and/or at the end) of the therapy.

With advances in technology these pumps have high-tech
features, that allow the physicians to program therapies by
choosing a combination of these options to support varying
drug flow over time and based on patient requests. Such
therapies involve switching and/or layering infusion types.
In addition to providing an extensive range of options, these
infusion pumps also have safety features designed to ensure
that the device does not pose any hazard to the patient.

In this paper, we consider the software of a GPCA pump in
which the programmable infusion types are basal, intermittent
and patient bolus. The following sections describe the chal-
lenges in modeling such a variety of infusion types with an
eye towards flexible and straightforward addition, modification
and removal – it seems quite likely that clinical innovations
will necessitate such changes to the mode-logic model of the
GPCA software.

IV. MODELING PHILOSOPHY

We believe in a model-based approach for constructing reac-
tive systems, in which the model plays a central role through-
out the life-cycle by serving as a concrete representation of the
conceptual links between the various artifacts produced during
development. At its essence, modeling is a design activity
and adhering to basic design principles while modeling has

several benefits. Models must be conceptually clean, easy to
understand and maintain, and be amenable to formal analysis.
Maintainability requires that the constructed model should
be easy to modify for extensions and contractions [7]. In
the present instance, our immediate goal of the modeling
exercise was to explore and enhance our understanding of the
requirements by identifying interesting interactions of various
system behaviors that may have to be clarified with experts in
the domain.

V. MODELING CONCERNS

In the sequel we use the terms modes and features. Features
are visible aspects of the system from a user’s perspective
that can be individually enabled [8]. A mode is an exclusive
collection of system behaviors that is exhibited [1] from the
system’s perspective. While the definition of these terms and
the distinction between them are of considerable interest and
subject to debate, we avoid such discussions here. For the
purposes of this paper, we refer to the available infusion
types of the GPCA as features. For example, basal, patient
bolus and intermittent infusions are features that are available
in the device and the physician can choose and program a
prescription that specifies the necessary parameters for these
features. The resulting system behavior is modal – at any given
instant there is a specific infusion type being delivered, such
as basal or patient bolus. The mode logic defines how the
enabled features interact to produce the system behavior for
each mode.

In representing the mode logic of the GPCA as finite state
machines, there are three main concerns that have to be
effectively addressed. A simplistic view of different system
modes as top-level states with transitions to represent mode
changes, though aligning with a user’s view of the system, lead
to inflexible designs that hinder changes to the mode logic.
Further, the book-keeping logic of internal state variables such
as timers and condition flags are inextricably linked to the
states and transitions that complicates the task of effecting
changes as our system understanding evolves. Finally, the
behaviors of the individual modes have both variety and
similarity which are neither captured nor exploited in a flat
finite state model of mode logic.

A. Modeling GPCA Mode Logic

During requirements analysis, the various delivery modes
were visualized from the user’s perspective as shown in
Figure 1a. In our initial attempt to model these modes, we
arranged the modes as sequential states with their respective
timers and flags contained within them. Although it appeared
superficially intuitive and corresponded well with our mental
models, complications emerged as we attempted to affect
changes to the mode logic. For example, Figure 1b visually
shows the complexity involved while adding new modes to the
existing mode logic. While a highly competent engineer may
meticulously handle changes while retaining model integrity,
it became evident that the design is not easily adaptable for
evolution and maintenance.

14



Fig. 1. Sequential Structure of Mode Logic

Fig. 2. Variety of System Behaviors

Another concern was flexibility in the design for accom-
modating changes in behavioral requirements. For example,
a version of a GPCA software requirement reads: When
an intermittent bolus is in progress and a patient bolus is
requested, then the intermittent bolus is suspended until the
patient bolus is delivered and resumed after the patient bolus.
This may be taken to mean that the total duration of time
from the beginning of the intermittent bolus to its end is the
sum of the intermittent and patient bolus delivery times as as
illustrated in Figure 2b. Such a behavior may be in conflict
with a different requirement that determines the total duration
of infusion therapy. Alternatively, it may also be reasonable
to expect that the total duration is simply the programmed

duration of the intermittent bolus as shown in Figure 2a, since
patient bolus is typically a high dosage non-periodic infusion
for a very short time period. If the ongoing infusion was
basal instead of intermittent bolus, this indeed seems to be
the expected behavior.

These alternatives have different consequences not only
from the domain perspective but also from a modeling per-
spective. The mode logic for a suspend-resume-bolus behavior
is different from the mode logic for a highest-rate-bolus
behavior. During requirements analysis we want to be able to
easily change the the mode logic to simulate the alternatives
and let the domain experts make the appropriate choice. As
designers, we foresee that such behavioral requirements are

15



Fig. 3. Parallel Structure of Mode Logic

likely to change and that there may be opportunities for
reusing ”generic” descriptions of modal behavior. Accomplish-
ing this with a sequential state machine for the mode-logic is
cumbersome because the associated book-keeping and timer
management tends to be dispersed across multiple states and
transitions.

An alternative approach is to design the system’s modal
behavior as a composition of multiple feature behaviors medi-
ated and resolved by an arbiter as shown in Figure 3a. In this
structure, each feature is a self contained state machine that
has its own logic for turning on and off. The individual timers
for each feature are managed within its state machine and the
overall system timer for therapy duration is commonly handled
independently of the individual state machines. The transitions
within each state machine are independent of the other parallel
machines. The arbiter is a separate parallel state machine
that decides the modal behavior based on the individual
feature behaviors. The logic of arbitration between the feature
behaviors to decide the system model behavior, that resides in
the arbiter, varies with the domain and application. In the case
of the GPCA, the arbiter handles the prioritization and feature
interactions to determine the overall system behavior, that is
manifested by the flow rate used for infusion and current mode
displayed to the user.

We believe that this pattern results in a design that is
modular, scalable and easier to understand. For example, in
the GPCA, all the logic for prioritization was grouped in
the arbiter and the individual timer and transition logic is
within the respective feature state machine itself. This makes
it straightforward to incorporate changes or extend the model
to include new features. As an example of the extensibility
afforded by this design, the infusion system with a new bolus
feature (CLINICIAN bolus), illustrated in Figure 3b, has been
included with minimal change that was made possible by the
inherent modularity. The observant reader would have noticed

a change in the PATIENT bolus feature between the Figures 3a
and 3b - the addition of LOCKOUT state - that illustrates the
flexibility in the design to accommodate the changes in system
behavioral requirements. Similarly, one can easily modify the
model to effect a suspend-resume behavior for the INTER-
MITTENT feature,as illustrated in Figure 2b, by adding a new
state along with transitions for suspend and resume within the
INTERMITTENT state machine and corresponding logic in
the arbiter for the prioritization. The parallel structuring allows
the design to be modular by aggregating the prioritization logic
in the arbiter and the feature specific behaviors within the
respective state machines, without affecting the others.

B. Complex Features
In the GPCA, some bolus modes have additional constraints

placed on their occurrence. For example, once a patient bolus
infusion is completed, the feature should be locked out from
further activation (temporarily disabled) for a preset amount of
time so that the system cannot continually provide high dosage
infusion. This is easily accommodated by having an additional
LOCKOUT state and appropriate transitions to and from that
state, within the PATIENT bolus state machine. This may also
viewed as a sub-state of the OFF state. Similarly, a feature may
have to be temporarily suspended and then resumed at a later
point; this can be seen as a refinement of the ON state into
sub-states. Instances of such variety in feature behaviors and
comparable approaches for modeling such behaviors can be
found in other safety-critical domains such as flight guidance
systems [9].

Analyzing such common behavioral patterns of features
lead us to expand the simple on-off feature state-machine to
a more advanced hierarchical machine pattern as shown in
Figure 4. Not all states in this pattern may be required for a
single feature and, indeed, each GPCA feature was modeled
with only a few of these states. However, we believe that
this general pattern captures the common structure of such

16



Fig. 4. Complex Features

feature state machines that typically arise when modeling
mode-logic. In our limited experience with the GPCA system,
we found that tailoring the common pattern to suit the needs
for modeling a specific feature was rather straightforward. It
helps analyzing the mode logic and effecting changes to it
without losing model integrity, as we added new features and
made changes to existing ones. Additionally, this common
pattern helps handling the book keeping of timers and other
state variables in a consistent fashion across modes.

The parallel structure of the mode logic allowed inclusion of
this complex feature state machine without affecting the way
the other features are modeled. This easy inclusion/exclusion
of features states was one of the design goals of the model.

C. Summary

In our endeavor to model the mode logic for GPCA soft-
ware, we identified interesting and challenging issues in terms
of design flexibility. We also identified some commonality in
the behavior within features. While the sequential structure
better matches the user’s conceptual view, it was clearly not
suitable from a design perspective. An alternative approach
using state transition tables for describing the mode logic
becomes unmanageable with increase in number of features
or parameters that influence the mode logic. We believe that
the modeling approach in this paper, with some generalization,
could be applied as a pattern for representing the mode-logic
of reactive systems in several domains.

VI. CONCLUSION

In this paper, we discussed our approach for modeling the
mode logic of a medical device and the rationale for our
design choices. The challenges that had to be addressed and
the modeling technique we employed seem to be common
to several domains such as avionics, automotive controls and

medical devices. We believe that identifying, documenting
and sharing such useful solutions is of value and we hope
this grows into a broader initiative towards a comprehensive
catalog of modeling patterns for cyber-physical systems.

ACKNOWLEDGMENTS

We would like to acknowledge Dr. Steven P. Miller of
Rockwell Collins’ Advanced Technology Center for starting us
thinking about modeling modes a decade ago and Dr. Michael
W. Whalen of the University of Minnesota for many discus-
sions related to the structure of state-based models.

REFERENCES

[1] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese,
“Analyzing software specifications for mode confusion potential,” in
Proceedings of a Workshop on Human Error and System Development,
1997, pp. 132–146.

[2] A. Joshi, S. P. Miller, and M. P. Heimdahl, “Mode confusion analysis of a
flight guidance system using formal methods,” in In Proceedings of 22nd
Digital Avionics Systems Conference(DASC’03), vol. 1. IEEE, 2003, pp.
2–D.

[3] S. P. Miller, J. N. Potts, and R. Collins, Detecting mode confusion
through formal modeling and analysis. National Aeronautics and Space
Administration, Langley Research Center, 1999.

[4] J. Bredereke and A. Lankenau, “A rigorous view of mode confusion,”
Computer Safety, Reliability and Security, pp. 1–13, 2002.

[5] E. Pulvermueller, A. Speck, J. Coplien, M. DHondt, and W. De Meuter,
“Feature interaction in composed systems,” Object-Oriented Technology,
pp. 1–16, 2002.

[6] Stateflow - environment for modeling state machines. [Online]. Available:
http://www.mathworks.com/products/stateflow/

[7] D. Parnas, “Designing software for ease of extension and contraction,”
IEEE Transactions on Software Engineering, no. 2, pp. 128–138, 1979.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son, “Feature-oriented domain analysis (foda) feasibility study,” DTIC
Document, Tech. Rep., 1990.

[9] S. P. Miller, A. Tribble, T. Carlson, and E. J. Danielson, Flight guidance
system requirements specification. National Aeronautics and Space
Administration, Langley Research Center, 2003.

17


