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Abstract—Reversible computation is a computing paradigm where execution can progress
backwards as well as in the usual, forward direction. It has found applications in many areas of
computer science, such as circuit design, programming languages, simulation, modelling of
chemical reactions, debugging and robotics. In this article, we give an overview of reversible
computation focusing on its use in robotics. We present an example of programming industrial
robots for assembly operations where we combine classical AI planning with reversibility and
embodied AI to increase robustness and versatility of industrial robots.

INTRODUCTION

Reversibility can be defined as the ability of
a program or a system to execute in reverse in
order to undo the effects of its (forward) compu-
tation. Reversibility has interested scientists for
many years. Landauer has discovered over 60
years ago that erasing information in computers
requires energy and that loss of information,
such as erasing a value stored in a variable,
during computation is manifested by release of
heat [1]. The scientists thought at the time that
if we could build logic circuits and, ultimately,
hardware that reduces or even avoids completely

the need to remove information, then computers
would be more energy efficient. Subsequently,
Fredkin and Toffoli developed reversible univer-
sal logic gates as an alternative to the traditional
CMOS technology gates [2]. This meant that,
at least in theory, it was possible to design and
manufacture reversible computers. There has been
a significant amount of research on reversible
computers since the discovery of reversible logic
gates, culminating in many projects to develop
reversible circuits and hardware, but these have
not changed the way modern hardware is built
yet. Apart from this original motivation for phys-
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ical reversibility, there are many other reasons for,
and benefits of, logical reversibility [3]. The latter
form of reversibility concerns enhancing systems
and software (that run on a physically irreversible
hardware) with the ability to undo (or simulate
undoing of) computation. There are reversible
programming languages such as Janus [4] and
there are techniques for reversing traditional im-
perative programming languages such as C [5].
We have also discovered the basics of how to
reverse computation of concurrent programs and
systems [6], [7], [8], [9].

The purpose of this article is to introduce the
topic of reversible computation by presenting a
robotics case study where logical reversibility has
made a difference. The case study, and more gen-
erally, reversible computation research in Europe
were partially supported by COST Action IC1405
on Reversible Computation - Extending Horizons
of Computing [10]. We shall touch gently on the
theories we have developed and explain how they
assisted us in solving practical problems of the
case study. We will also indicate how we have
adjusted our formal techniques to strengthen a
traditional AI planning approach to produce a full
working solution.

Our case study is about programming indus-
trial robots performing assembly operations (i.e.,
building a physical product) in a way that, based
on a fixed assembly sequence generated by an AI-
based planner, achieves automatic error recovery
and even automatic disassembly. Error recovery is
achieved by temporarily reversing the direction
of execution, effectively undoing recent steps,
and then trying again. This approach works well
in the physical world of robots because slight
imprecisions can cause the robot to get stuck,
but partially disassembling the object and trying
again can often solve the problem. Taken to an
extreme, the entire assembly sequence can be
reversed, effectively providing an automatic way
to disassemble an object.

We thus demonstrate how a traditional AI-
based planning approach is enriched by an un-
derlying reversible execution model that relies
on the embodiment of the robot system to pro-
vide a robust, probabilistic way of executing the
plan. The approach is based on the principles of
the Janus reversible programming language [4],
where every step of the computation must in itself
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Fig. 2. The experimental platform and two assembly test cases.

mechanisms derived from reversible assembly programs. The underlying model also provides an
XML-based representation, which allows interaction with other languages and high-level planners.

Our model employs program inversion9 as the default mechanism for reversibility. Unlike
existing approaches to program inversion, users are, however, allowed to override the default
reverse implementations and provide explicit reverse behaviours. This allows for indirectly reversible
operations, which are performed differently forward and backwards. As an example, pushing an object
away is different from pulling the object, as the latter requires a grasp on the object: simply inverting
instructions is not always sufficient for reversing operations. Our model of reversibility is created to
fit domain-specific abstractions of assembly tasks. Assembly is assumed to have an overall sequential
flow of operations, which may be a collection of complex reversible operations and instructions. The
model lets users create reversible programs for assembly and provides a reversible interface to the
physical hardware.

Connection to previous work: In a previous work, we describe a high-level reversible DSL syntax
and language for robot assembly.10 We also lay out the groundwork for a model of how to do reversible
assembly.11 This paper presents a structured analysis of reversible assembly. This is used to refine and
simplify the model and expose additional benefits, such as the ability to both call functions forward
and backwards.9 Additional related work and experiments validating the use of reversible execution
is also presented.

Paper organization: The rest of this paper is organised as follows: Section 2 discusses related work.
Section 3 defines the concept of reversibility in assembly tasks. Section 4 discusses programming
and software modelling of reversible assembly. Sections 5–7 describe various aspects of our
implementation of the reversible robot framework, respectively the software components marked
execution model, reversible robot programming language, and error detection in Fig. 1. Section 8
documents our experiments, and Section 9 presents our conclusions and outlines future work.

2. Related Work and Background
Our efforts in designing a reversible programming language for robotic assembly are rooted in
problems associated with small-batch assembly and automation (Section 2.1). To achieve the
desired robustness and reliability in the automation setups, we use a reversible model for efficient
error handling (Section 2.2). Reversible assembly tasks are programmed through a domain-specific
language related to those already commonly used for programming robots (Section 2.3). For the
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Figure 1. Experimental setup: industrial robot (left)
and the two product parts being automatically assem-
bled and disassembled (right)

be reversible, thus ensuring that the program as
a whole is reversible. In Janus this means that
certain irreversible operations, such as multipli-
cation by zero, are not allowed. Similarly, for the
robots, reversible execution can not be applied to
intrinsically irreversible steps such as cutting or
welding.

REVERSIBILITY IN ROBOTICS
Robots act upon the physical world, and de-

pending on the type of robot, may be capable
of performing actions that can be considered
reversible. Consider the specific case of an in-
dustrial robot, i.e., a general-purpose robot arm
as depicted in Fig. 1 (left), normally consisting
of six or more joints connected in series and
programmed using a special-purpose robot pro-
gramming language. Moving an object from one
location to another, or screwing two pieces of
metal together using a bolt, could be considered
reversible actions. Conversely, breaking an object
in two or welding two pieces of metal together
would not be considered reversible. If a robot is
performing a sequence of operations that can be
considered reversible, such as the steps required
to assemble a kitchen appliance or a photocopier,
then could the entire sequence of operations be
perhaps considered a reversible program?

This thought experiment motivated the study
and development of reversible domain-specific
robot programming languages. (Domain-specific
languages are special purpose languages designed
to solve specific problems such as robot program-
ming [11]). The key insight is that if the robot is
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Figure 2. The ATRON modular robot: a single mod-
ule (left), car/snake configurations (middle), and the
snake changing shape (right).

constrained to only perform operations that are
physically reversible, then an entire sequence of
operations (i.e., a robot program) can be consid-
ered physically reversible. Reversible robot pro-
gramming languages have been studied for indus-
trial robots and for modular self-reconfigurable
robots. Industrial robots are the topic of this arti-
cle. Self-reconfigurable robots are robots that can
physically rebuild themselves to take on different
shapes [12]. As a concrete example, the ATRON
modular robot [13] is shown in Figure 2: each
module is an individual robot, and a snake robot
composed of multiple modules can rebuild itself
into a car robot. A modular robot shaped as a
car can for example rebuild itself into a snake to
traverse an obstacle, and then afterwards return
to the car shape to continue normal operations.
This process, referred to as self-reconfiguration,
can be considered reversible if each of the steps
performed by the individual modules is reversible
and can be repeated in reverse order [14].

Industrial Robots, AI, and Reversibility
Programming industrial robots is challenging

due to the difficulty of precisely specifying gen-
eral yet robust operations. As the complexity of
these operations increases, so does the likelihood
of errors. The classical AI-based approach is
to derive a plan for the sequence of operations
required to complete a given task [15], [16].
Such plans however break down in case of errors,
resulting in the need to replan the sequence of
operations. Replanning can be costly, in particular
in complex operations where errors could occur
quite often [17].

We propose to generate plans as reversible
operation sequences, such that if random failure

causes a step to fail, the system can automatically
backtrack and retry without replanning. Reverse
execution here allows the robot to back out of
an erroneous situation, after which the operation
can be automatically retried. In a perfectly pre-
dictable system retrying would usually result in
the same errors, but the embodiment of the robot
here works to our advantage: retrying the same
physical operation multiple times can produce
different results. In effect the AI-generated plan
is made robust towards specific kinds of errors,
and can be executed robustly without any need
for costly dynamic replanning. The combination
of automatic retries based on reversibility and
probabilistic operations can be considered a form
of embodied AI, where reversibly retrying the
same operation multiple times results in increased
robustness.

As we will see, the combination of AI-based
planning and reversibility is amongst others use-
ful for automatic error recovery for small-sized
batch production of assembly operations, where
precisely specifying error-free operations would
be time-consuming and expensive, and dynamic
replanning would add a significant overhead to
the operation. Moreover, reversibility can in this
case be used to automatically derive a disassem-
bly sequence from a given assembly sequence,
or vice versa. These capabilities can be achieved
using a reversible domain-specific language for
specifying assembly sequences.

Robotic assembly and disassembly is done
in terms of sequences of operations, such as
placement of objects, insertions, screwing oper-
ations and so forth. All are challenged by un-
certainties from sensors, robot kinematics, and
part tolerances. Not all operations are reversible,
some are not even repeatable! Many physical
phenomena and actions can nevertheless be con-
sidered reversible, depending on the abstraction
level at which they are observed. For example,
an industrial robot that pushes an object to a new
position could easily move this object back to
its original position, but cannot simply do this
by reversing its pushing movements, as pulling
requires gripping the object first. Moreover, some
operations, such as cutting and welding, are
in practice nonreversible. A study of 13 real-
world industrial cases showed roughly 76% of
the operations to be reversible [18], but many
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of the operations require the robot to perform
a different physical action to reverse a given
action. Taking inspiration from this study, we
divide reversible operations into two categories:
directly reversible operations which simply can
be reversed by performing the forwards action
in reverse; and indirectly reversible operations
which can be reversed, but require a different
sequence of instructions, which must be manually
specified by the programmer.

In the design of our robot programming lan-
guage we take inspiration from the Janus re-
versible programming language, where programs
are said to be time-invertible [4]. Each computa-
tional step in Janus has a specific inverse, and a
given program that when executed forwards com-
putes a function, will compute the inverse of this
function when executed backwards. Subtracting
a constant is for example the inverse of adding
a constant. In our robot programming language,
each physically reversible operation similarly has
an inverse. In the case of directly reversible
operations, the inverse is automatically derived
by the system. In the case of indirectly reversible
operations, the programmer must manually spec-
ify the sequence of operations that constitutes the
reverse of a given operation. Executing such a
manually specified inverse can temporarily bring
the system into a state not normally encountered
during forward execution. Moreover, switching
execution direction in the middle of such a manu-
ally specified inverse might again take the system
into a new state. This contrasts a main property of
reversibility in programming languages like Janus
and of causal-consistent reversibility [6], [7], a
notion used in concurrent systems, which says
that any reachable state is forwards reachable. In
causal-consistent reversibility, any step of com-
putation of a concurrent system can be undone
provided that all its effects, if any, are undone first
[9]. Such a property also fails in other contexts,
e.g., in some biological systems [19]. Since an
operation and its (indirect) reverse are paired, the
program has unique starting and ending states,
and execution will only terminate in one of these
two states. Infinite loops of error correction can
manifest, and are handled using a monitoring
heuristic that detects if the assembly operation
might be stuck.

The programming model we have developed

// SCREWING OPERATION

sequence(“insert screw operation”).

action(insert screw).
reverseWith(”remove screw”).nonreversible().

call(“insert screw suboperation”).

move(qScrewInside).
move(qScrewOutside);

Figure 3. Sample reversible assembly program: a
sequence is defined to consist of an “insert screw”
action, a call to another sequence, and two move
actions. The “insert screw” action is not itself re-
versible, and is marked as indirectly reversible using
the “remove screw” action.

is based on this abstract semantics-based model
extended with various features required for re-
versible control of industrial robots in real-world
scenarios [18]. The actual implementation is in
the form of an internal DSL in C++, meaning that
a sequence of C++ method calls is used to build
a model of the reversible assembly sequence,
as shown in Fig. 3. A robot assembly task is
programmed as a sequential flow of operations. It
is sequential since in practice assembly tasks tend
to be a simple sequence of operations (except for
error handling, but we aim to automatically han-
dle errors using reverse execution). Reversibility
is nevertheless still relevant due to the presence
of random behaviour of the physical operations:
reversing and re-executing an operation may pro-
duce a different result. Each operation (denoted
by the keyword “sequence”) represents a high-
level assembly case logic and is a sequence of
primitive instructions. Each instruction is either
directly reversible (default), indirectly reversible
(indicated by the keyword “reverseWith”), or non-
reversible (indicated by “nonreversible”).

Our approach was evaluated experimentally
using two industrial assembly use-cases [18],
Fig. 1 shows the physical robot platform (left)
and the two assembled use-cases (right). Both
use-cases were used to test the principle of re-
versible assembly and the use of reverse execu-
tion for error correction. For reversible assembly
the program was executed forwards to assemble
each use-case. Afterwards the finished object was
manually placed back into the system, and the
program was executed backwards to disassemble
the object. This was done multiple times for each
use-case with no errors.

4 IT Professional



The use of reverse execution as an effective
error correction tool was experimentally demon-
strated by assembling a large number of objects,
as follows. The workcell was set to assemble 100
objects of each type consecutively and without
pause. During these 200 assemblies a total of 22
errors occurred, of which 18, corresponding to
82%, were automatically resolved and corrected
using reverse execution. Errors that were auto-
matically corrected include failed peg-in-hole op-
erations (fixed by backtracking and trying again),
dropping a tube (fixed by reversing until a new
tube was picked from the feeder), failed to grasp a
screw, and screwing failing due to misalignment.
Errors that could not be automatically corrected
include air-tubing from the gripper getting stuck
on the platform, causing the gripper to misalign,
and a screw being inserted at a skewed angle
causing a bracket to misalign, which could not be
corrected as the system had no means of detecting
the bracket misalignment.

CONCLUSION
Reversing of computation is conceptually and

technically a challenging task even if we only
consider logical reversibility. We have illustrated
significant potential benefits of reversibility to
improve AI-planning in the robotics case study.
We have presented briefly some of the recently
developed theoretical underpinnings for the case
study, concentrating mainly on explaining how
reversibility helps. Exploring this application area
helped us to exemplify the richness of different
forms of reversibility.

While the case study we have discussed
is based on sequential reversibility, the notion
of causal-consistent reversibility [6], [7] is key
to scalable reversible programming of modular
robotic systems such as the ATRON robot shown
in Figure 2. This is because the modules perform
operations in parallel and hence reversing the sys-
tem must respect dependencies between the ac-
tions of individual modules. Provided the ATRON
robot does not perform any irreversible steps, we
have this strong property: any reachable (by an ar-
bitrary combination of reverse and forward steps)
state is forwards reachable. Applying causal con-
sistency to achieve scalable and robust reversible
programming for swarming robot systems like the
ATRON and Unmanned Aerial Vehicles (UAVs,

drones) is considered future work. In the specific
case of UAVs, a programming model based on
reversibility would hypothetically allow a drone
swarm as a whole to “reverse” distributed control
decisions, thus easing requirements on reaching
consensus (before beginning new operations) and
increasing the robustness of the system.

There are also other forms of reversibility
suitable for different applications. Probably the
best known is backtracking, where steps of com-
putation are undone in the inverse order of exe-
cution. Apart from many traditional applications
of backtracking such as, for example, in search
algorithms or logic programming, it has been
used to undo concurrent C-like programs for
debugging [20], [10].
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