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Abstract— To estimate the link travel time, the classical 
analytical procedure uses vehicles counts at upstream and 
downstream locations. This procedure is vulnerable in urban 
networks mainly due to significant flow to and from mid-link 
sinks and sources. One of the important developments recently 
done on this topic has yielded to the CUPRITE methodology. 
This method is derived from the classical analytical procedure. 
It integrates probe vehicle data to correct deterministically the 
upstream cumulative plot to match the information of probe 
vehicles travel times, whilst the downstream cumulative plot is 
kept unchanged. The algorithm proposed and validated in this 
research estimates urban links travel times based on an 
unscented Kalman filter (UKF). This algorithm integrates 
stochastically the vehicle count data from underground loop 
detectors at the end of every link and the travel time from probe 
vehicles. The proposed methodology, which can be used for 
travel time estimation in real-time, is compared to the classical 
analytical procedure and to the CUPRITE method in case of 
mid-link perturbation. Along to its lower sensitivity than 
CUPRITE, the UKF algorithm makes it possible detection and 
exclusion of outliers from both data sources. 

I. INTRODUCTION 

Travel time information is an important parameter that 
can be used to identify and assess operational problems as 
well as to measure the effectiveness of transportation 
systems. Travel time in excess (delay) causes indirect costs to 
drivers in terms of lost time, discomfort and frustration, and 
direct costs in terms of fuel consumption. Travel time 
information is easy to be perceived by users and has the 
potential to reduce congestion on both temporal and spatial 
scales. By reducing congestion, it also reduces vehicle 
emissions and energy consumption, and finally the effect of 
transportation on the global warming phenomenon. As a 
result, it maximizes the efficiency and capacity of the road 
network. 

Different techniques are used to estimate travel time on 
roads. These techniques depend on the type of system (i.e. 
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fixed or mobile sensors) used to collect traffic data. Fixed 
sensors, such as inductive loop detectors, are the oldest and 
most widely used for traffic data sources. They provide 
temporal traffic state information, though only point based 
data. Under certain assumptions, researchers have proposed 
methodologies that can be characterized by deterministic [1-
4] or stochastic approaches [5-6]. 

Mobile sensors, such as probe vehicles, are vehicles 
equipped with vehicle-tracking equipment (e.g. Global 
Positioning System). They provide trajectory data (time 
stamp and position coordinates) and hence probe vehicle 
travel time. They represent random sample from the 
population of the vehicles in the network. Therefore the 
accuracy of travel time estimation with probe vehicles is 
related to the number of the latter. Researchers focused on 
determining the minimum number of probe vehicles required 
for statistically significant travel time estimation [7]. 

The properties of these two data sources are 
complementary. Hence, they can be harnessed by developing 
a solution that merges multi-sensor data for the problem of 
estimating travel time in urban areas. 

In this context, El Faouzi [8] provides an overview of the 
application of data fusion techniques in road traffic 
engineering. El Faouzi and Lefevre [9] have developed a 
method based on the evidence theory that provides a relevant 
theoretical basis when dealing with incomplete and 
inaccurate information. Choi and Chung [10] have applied a 
Bayesian pooling method to fuse data from detectors (space-
mean speed using Dailey’s equation [5]) and probe vehicles 
(using fuzzy regression). However, these methods have not 
dealt with traffic signals, which affect link travel time of 
probe vehicles, neither with the flow to and from mid-link 
sink and source. The CUPRITE methodology [11] addressed 
these problems by redefining and correcting the upstream 
cumulative number of vehicles. These numbers (or 
cumulative plots) are deterministically corrected using data 
from the probe vehicles. CUPRITE corrects the upstream 
cumulative plot at the minute-ceiled instant of occurrence of 
the probe vehicle, as well as prior and post this instant. In a 
real-time context, prior correction would not have been 
useful. In fact, any correction on travel times before the 
occurrence of a probe vehicle is questionable with regard to 
the “a posteriori” use of this information. Moreover, this 
methodology is sensitive to the noise on travel time probe 
vehicles. 

The majority of the above researches is limited to 
freeways and cannot be applied in urban networks, where the 
travel time estimation is more challenging mainly due to 
significant proportions of flow from and to mid-link sources 
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and sinks. Moreover, most of these methods cannot be 
applied to real-time travel time estimation. The present study 
bridges this gap by using a UKF-based statistical filtering 
approach. 

II.  UNSCENTED KALMAN FILTER 

The most common way of applying the Kalman filter 
(KF) to a nonlinear system is in the form of the extended 
Kalman filter (EKF). In the EKF, the probability distribution 
function is propagated through a linear approximation of the 
system around the operating point at each instant of time. In 
doing so, the EKF needs the Jacobian matrices. However, 
these matrices can be sometimes difficult and complicated to 
obtain. Further, the linear approximation of the system at a 
given time instant may introduce errors in the state, which 
may lead the state to diverge over time. In other words, the 
linear approximation may not be appropriate for some 
systems. In order to overcome the drawbacks of the EKF, 
other nonlinear state estimators have been developed such as 
the unscented Kalman filter (UKF). The UKF uses a 
deterministic sampling technique known as the unscented 
transform to pick a minimal set of sample points (called 
sigma points) around the mean. These sigma points are then 
propagated through the non-linear functions, from which the 
mean and covariance of the estimate are then recovered. In 
addition, this technique removes the requirement to explicitly 
calculate Jacobian matrices, which for complex functions can 
be a difficult task in itself. More details can be found in [12]. 

III.  UKF TRAVEL TIME ESTIMATION MODELING 

Link travel time for a vehicle is the time needed to travel 
from the upstream point to the downstream point in the link. 
This research focuses on estimating the average travel time 
for all the vehicles that depart downstream (also called 
“experienced” travel time). 

Fig. 1 illustrates the studied urban link for travel time 
estimation with mid-link sink/source. The mid-link infra-
structures, such as a side streets, parking lots, private 
properties etc., acting as sink or source or both, is simply 
represented here by a mid-link. 

 
Figure 1.  Studied link. 

The state vector, evolution, observation and algorithm of 
the proposed UKF filtering are based on a state space model 
that we propose to detail below. 

A. State vector 

Suppose that we have a loop detector at the end of each 

link. We would like to estimate both the travel time and the 
number of vehicles that enter/exit the studied link from/to the 
mid-link source/sink, with a sampling time TS of 1 minute. 
Therefore, for a given studied link (Fig. 1), the state vector 
contains:  

• TT: the travel time. 
• Nd: the cumulative count of vehicles at the 

downstream of link k. 
• qu: the flow at the upstream of link k. 
• Nu: the cumulative count of vehicles at the upstream 

of link k. 
• p: the number of vehicles that enter/exit the link 

from/to the mid-link source/sink. 
• The history of the cumulative count of vehicles at 

the upstream of link k, i.e. previous Nu, which is 
also the cumulative count of vehicles at the 
downstream of the link k-1. This history tabulates a 
fixed number h of past counts, this number being an 
“a priori” parameter of our modeling. 

Therefore the state vector resumes as follows: 
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B. Evolution model 

We suppose that state at time t derives from state at time 
t-TS as follows: 

• The classical analytical procedure states that the 
cumulative number of vehicles at link entrance shall 
be equal to the cumulative number of vehicle at link 
exit after an average travel time TT at time t. Thus the 
travel time at time t is equal to difference between 
time t and the corresponding time t1 when 
Nu(t1)=Nd(t). 

• The cumulative number at the downstream at time t is 
equal to the cumulative number at the upstream at 
time t-TT, incremented by p the number of mid-link 
sink/source vehicles. 

• The cumulative number at the upstream at time t is the 
cumulative number at the upstream at time t-TS, 
incremented by the flow at the upstream multiplied by 
TS. 

• The flow at the upstream at time t is stable, as well as 
the mid-link cumulative vehicles number. 
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Therefore the evolution model is as follows: 
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The key point in this evolution model is that it depends on 
the state vector itself (second equation) therefore it is 
impossible to explicit the Jacobian matrix needed in the EKF, 
which justifies the use of an UKF. 

Observation model 

The considered observations are both the travel time from 
probe vehicles and the number of vehicles from loop 
detectors. The data from the probe vehicles contain vehicle 
ID, GPS position coordinates, time, and eventually speed, 
moving direction, etc. To estimate individual travel times, a 
map-matching process needs to be made. This is an important 
step in the process; its accuracy will directly affect the final 
results. Map-matching algorithms may adopt either a 
geometric or a topologic or both approach [13]. 

The observation equation depends on the available 
measurement. 

Case 1: a travel time issued from a probe vehicle is 
modeled as: 
 1 1t t tz H x v= +  (2) 
where: H1 is [1 0 0 0 … 0] and v1t is the observation noise 
assumed to be zero mean Gaussian white noise with 
covariance R1t. 

Case 2: reading the counter associated to a loop detector 
yields: 
 2 2t t tz H x v= +  (3) 
where: H2 is resp. [0 1 0 0 … 0] and [0 0 1 0 … 0] for 
downstream and upstream counters and v2t is the observation 
noise assumed to be zero mean Gaussian white noise with 
covariance matrix R2t. 

These covariances are obviously different whether one 
considers counters or probe vehicles travel time. As for the 
last, it should characterize possible errors in the process of 
map-matching GPS positions. GPS errors, and the 
consecutive map-matching errors, will be fixed depending on 
the location of the link: in a dense city center, the order of 
magnitude of those errors is some tens of meters, whereas in 
an open area, it is only a few meters. In a very first 
approximation, we will fix travel time observation errors to a 
maximum of 10 seconds down to few seconds. 

D. Algorithm 

The filter estimates travel time with 1 minute sample 
time. Data from detectors are aggregated each minute 

whereas data from probe vehicles are available between two 
consecutive minutes t and t+1. In order to use information at 
its exact time, an intermediate step is made between t and 
t+1. Fig. 2 summarizes the UKF algorithm. 

 
Figure 2.  UKF algorithm. 

IV.  UKF TESTING 

This section presents the results of the classical analytical 
procedure, the CUPRITE model and our UKF-based model. 
Each algorithm is implemented and tested on simulated data. 
The simulation is made with AIMSUN on a 600 meters long 
one-lane link (see Fig. 1). The free flow speed is 36 km/h, the 
maximum density is 140 veh/km, and the critical density is 
observed at 1/5 of this maximum, therefore the flow is 
limited to 1008 veh/h. This calculation is based on the 
fundamental diagram applied in the center of Nantes by 
Nantes-Metropole traffic management center. 

For an hour of simulation the demand flow i.e. the flow 
that enters the link is as follows: for the first 15 min the 
average flow is 500 veh/h, for the second 15 min the average 
flow is 900 veh/h, for the third 15 min the average flow will 
increase to 1400 veh/h, which is greater than the maximum 
flow (1008 veh/h), and for the final 15 min the average flow 
will decrease to 500 veh/h. Sinks and sources are defined as 
the percentage of vehicles that are lost into the sink and 
gained from the source (perturbation). In this analysis 1% 
and 5% of mid-link sinks and sources were considered. 
Moreover, probe vehicles are a random sample from the total 
population of vehicles. 1%, 5%, and 10% were considered as 
probe vehicles. For each probe vehicle, we simply use its 
corresponding travel time. Finally, the average travel time for 
each TS interval (denoted further: reference TT) is the sum of 
the travel time of all the vehicles that exit the link between t 
and t+TS divided by the total numbers of vehicles that enter 
the link. 

A. Sensitivity of CUPRITE 

The classical analytical procedure gives an unbiased 
estimation of the travel time when the vehicles in the studied 
link are conserved. In such case, the CUPRITE correction 
should remain zero. But in the eventuality when the deviation 
between the reference TT and the TT of the considered probe 



 

 

 

4 

vehicle is significant, this correction will bias the travel time 
estimation later on. With the UKF, this deviation has mainly 
an effect at the probe vehicle instant of correction. After this 
correction, the UKF evolution and detectors correction will 
overcome the previous resulting effect, whereas CUPRITE 
remains biased as long as no new probe vehicle passes. Fig. 3 
illustrates the sensitivity of CUPRITE with a biased probe 
vehicle travel time. 
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Figure 3.  Demonstration of the sensitivity of CUPRITE with 1 vehicle. 

B. Model performance testing 

The following statistics are used to qualify each of the 
classical analytical procedure, the CUPRITE and UKF 
methodologies: 

 i i ierror actual estimated= −  (4) 

 1

n
i i

i i

actual estimated

actual
MAPE

n

=

 −
 
 =

∑
 (5) 

 ( )(%) 1 100accuracy MAPE= − ×  (6) 
where: 

• Actuali, estimatedi, and errori and are respectively the 
actual average travel time, the estimated travel time, 
and the relative error for the ith estimation interval. 

• MAPE stands for the mean absolute percentage error. 

• Accuracy indicates the mean exactitude in %. 

• n is the total number of estimation interval. 

V. RESULTS AND ANALYSIS 

Table I summarize the average accuracy in percentage 
with 1% and 5% mid-link sinks/sources, for 10 simulations, 
for the classical analytical procedure, CUPRITE and UKF 
with 1%, 5%, and 10% of probe vehicles. It is obvious that 
both UKF and CUPRITE correct the bias in the classical 
analytical procedure. As expected, their accuracies increase 
with probe vehicle percentage. 

Fig. 4 and 7 represent respectively the classical analytical 
procedure error in minute for 1% and 5% mid-link sink and 
source. We notice the cumulative effect of the perturbation 

especially on the last 10 minutes. Fig. 5 and 8 represent 
respectively the CUPRITE error in minute for 1% and 5% 
mid-link sink and source. They show that in some simulation, 
the error reaches ±2 min. Here, we observe again the 
sensitivity of CUPRITE model. Fig. 6 and 9 represent 
respectively the UKF error for 1% and 5% mid-link sink and 
source. In UKF and CUPRITE, the standard deviation of the 
estimated travel time decreases as the percentage of probe 
vehicles increases. To conclude, UKF estimation is less noisy 
then CUPRITE. 

TABLE I.  AVERAGE ACCURACY (100-MAPE%) IN % OF CLASSICAL 
ANALYTICAL PROCEDURE, UKF, AND CUPRITE WITH MID-LINK SINK AND 

SOURCE 

  Average accuracy 
  Mid-link sink  Mid-link source 

 % of probe 
vehicles 

1% 5% 1% 5% 

CAP  85 45 86 48 
1 90 80 91 84 
5 93 90 93 91 UKF 
10 94 93 94 94 
1 87 77 89 85 
5 90 88 92 90 CUPRITE 
10 92 90 92 93 

VI.  CUMULATIVE NUMBER OF MID-LINK SINK /SOURCE 

With the UKF filter, we can also estimate the cumulative 
number of mid-link sink/source without direct measurement 
of the perturbation. Fig. 10 and 12 illustrate the estimation of 
the latter with 1%, 5%, and 10% probe vehicles for 
respectively 1% and 5% mid-link sink/source. 

VII.  OUTLIER DETECTION AND EXCLUSION 

Fig. 11 illustrates the effect of a probe vehicle outlier (3 min 
vs. 2 min) on the travel time estimation, whereas Fig. 13 
illustrates the effect of a detector outlier, where the counted 
downstream value has been fixed for 3 minutes. By means of 
a chi-square test of the normalized innovation squared (also 
called the Mahalanobis distance), the UKF model has 
rejected the outlier, whereas CUPRITE could not, leading to 
an aberrant travel time estimation. 

VIII.  CONCLUSION 

The UKF filter developed here provides encouraging 
results for urban link travel time estimation with mid-link 
sinks and sources. The evolution model of this algorithm is 
based on the classical analytical procedure. The observations 
are vehicle counts from loop detectors located at the end of 
every link and travel time from probe vehicles after they have 
been associated to the appropriate link by map-matching. 

The main contribution of this article is that the UKF 
stochastic approach overcomes the sensitivity of the 
CUPRITE deterministic approach to probe vehicle sampling. 
Actually, CUPRITE supposes that data are exact whereas the 
UKF filter offers the possibility to introduce an error model 
for the travel time obtained by map-matching as well as for 
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loop detectors. Thus, the estimation is smoothed and statistic 
tests, made possible by the UKF formalism, enable detection 
and exclusion of outliers, like mis-matched GPS or loop 
deficiency. Furthermore, UKF can be applied in a real-time 
context. In this article many simulation were run with 
variable flow, variable percentage of the vehicles that are 
randomly selected and considered as probe, and variable 
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Figure 4.  Classical analytical procedure estimation error with 1% mid-link 

sink/source. 
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Figure 5.  CUPRITE estimation error with 1% mid-link sink and source. 
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Figure 6.  UKF estimation error with 1% mid-link sink and source. 

percentage of mid-link sink/source. The feasibility of outlier 
detection and exclusion has been demonstrated, but this 
should be deepened and the next step is to determine the 
observation error from real data. Furthermore, the application 
of this model to an urban network is under development: it is 
an extension of the proposed model with no information on 
the turning movement proportion at crossroads. 
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Figure 7.  Classical analytical procedure estimation error with 5% mid-link 

sink/source. 
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Figure 8.  CUPRITE estimation error with 5% mid-link sink and source. 
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Figure 9.  UKF estimation error with 5% mid-link sink and source. 
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Figure 10.  Cumulative number of mid-link sink/source with 1% 

perturbation. 
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Figure 11.  Travel time estimation by classical analytical procedure (CAP), 

CUPRITE, and UKF with one outlier probe vehicle travel time. 
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Figure 12.  Cumulative number of mid-link sink/source with 5% 
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Figure 13.  Travel time estimation by classical analytical procedure(CAP), 

CUPRITE, and UKF with detector outlier. 
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