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Unscented Kalman filter for urban link travel time estimation with
mid-link sinks and sources

R.-M. Hage, D. BétailleMember, IEEEF. Peyret, D. Meizel

Abstract— To estimate the link travel time, the classical
analytical procedure uses vehicles counts at upsam and
downstream locations. This procedure is vulnerableni urban
networks mainly due to significant flow to and from mid-link
sinks and sources. One of the important developmentrecently
done on this topic has yielded to the CUPRITE methodiogy.
This method is derived from the classical analyticaprocedure.
It integrates probe vehicle data to correct determiistically the
upstream cumulative plot to match the information ¢ probe
vehicles travel times, whilst the downstream cumutéve plot is
kept unchanged. The algorithm proposed and validatedn this
research estimates urban links travel times based no an
unscented Kalman filter (UKF). This algorithm integrates
stochastically the vehicle count data from undergrond loop
detectors at the end of every link and the travelitne from probe
vehicles. The proposed methodology, which can be dsédor
travel time estimation in real-time, is compared tothe classical
analytical procedure and to the CUPRITE method in cas of
mid-link perturbation. Along to its lower sensitivity than
CUPRITE, the UKF algorithm makes it possible detectio and
exclusion of outliers from both data sources.

I. INTRODUCTION

Travel time information is an important parameteatt
can be used to identify and assess operationalgimsbas
well as to measure the effectiveness of transpontat
systems. Travel time in excess (delay) causesdodaosts to
drivers in terms of lost time, discomfort and frasibn, and
direct costs in terms of fuel consumption. Travehet
information is easy to be perceived by users argl tha
potential to reduce congestion on both temporal spatial
scales. By reducing congestion, it also reducesickeh
emissions and energy consumption, and finally ffecteof
transportation on the global warming phenomenon. aAs
result, it maximizes the efficiency and capacitytioé road
network.

Different techniques are used to estimate traveé ton
roads. These techniques depend on the type ofnsyste.
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fixed or mobile sensors) used to collect traffidadaixed
sensors, such as inductive loop detectors, arelthest and
most widely used for traffic data sources. Theyvjute
temporal traffic state information, though only miobased
data. Under certain assumptions, researchers hay®ged
methodologies that can be characterized by detéstiairil-
4] or stochastic approaches [5-6].

Mobile sensors, such as probe vehicles, are vehicle
equipped with vehicle-tracking equipment (e.g. Glob
Positioning System). They provide trajectory datend
stamp and position coordinates) and hence probéclgeh
travel time. They represent random sample from the
population of the vehicles in the network. Therefdhe
accuracy of travel time estimation with probe védscis
related to the number of the latter. Researchesgstd on
determining the minimum number of probe vehicleguned
for statistically significant travel time estimati§7].

The properties of these two data sources are
complementary. Hence, they can be harnessed byopéavg
a solution that merges multi-sensor data for thablem of
estimating travel time in urban areas.

In this context, El Faouzi [8] provides an overviefithe
application of data fusion techniques in road tcaff
engineering. El Faouzi and Lefevre [9] have devetbm
method based on the evidence theory that provideaant
theoretical basis when dealing with incomplete and
inaccurate information. Choi and Chung [10] havplieg a
Bayesian pooling method to fuse data from deted&pace-
mean speed using Dailey’s equation [5]) and proffgcles
(using fuzzy regression). However, these method® et
dealt with traffic signals, which affect link trdvéme of
probe vehicles, neither with the flow to and frond+#ink
sink and source. The CUPRITE methodology [11] askid
these problems by redefining and correcting thetrapm
cumulative number of vehicles. These numbers (or
cumulative plots) are deterministically correctesing data
from the probe vehicles. CUPRITE corrects the w@astr
cumulative plot at the minute-ceiled instant of wrcence of
the probe vehicle, as well as prior and post thégaint. In a
real-time context, prior correction would not habeen
useful. In fact, any correction on travel times dvef the
occurrence of a probe vehicle is questionable vatfard to
the “a posteriori” use of this information. Moreoyehis

(e-maimethodology is sensitive to the noise on traveletiprobe

vehicles.

The majority of the above researches is limited to

Eemalgreeways and cannot be applied in urban networkerevthe

travel time estimation is more challenging mainlyedto
significant proportions of flow from and to mid-lidources



and sinks. Moreover, most of these methods canmot lnk. We would like to estimate both the travel éirand the
applied to real-time travel time estimation. Thegant study number of vehicles that enter/exit the studied fiokn/to the

bridges this gap by using a UKF-based statistidtdrihg
approach.

mid-link source/sink, with a sampling time; 6f 1 minute.
Therefore, for a given studied link (Fig. 1), thate vector

contains:

Il. UNSCENTEDKALMAN FILTER

The most common way of applying the Kalman filter
(KF) to a nonlinear system is in the form of thdeexied
Kalman filter (EKF). In the EKF, the probability thigution
function is propagated through a linear approxioratf the
system around the operating point at each instatine. In
doing so, the EKF needs the Jacobian matrices. iwe
these matrices can be sometimes difficult and cioateld to
obtain. Further, the linear approximation of theteyn at a
given time instant may introduce errors in theestathich
may lead the state to diverge over time. In otherds, the
linear approximation may not be appropriate for som
systems. In order to overcome the drawbacks ofBKE,
other nonlinear state estimators have been devélspeh as
the unscented Kalman filter (UKF). The UKF uses a
deterministic sampling technique known as the umsck
transform to pick a minimal set of sample pointalléd
sigma points) around the mean. These sigma poiatthan
propagated through the non-linear functions, frohictv the
mean and covariance of the estimate are then resvin
addition, this technique removes the requiremeixicitly
calculate Jacobian matrices, which for complex fiems can
be a difficult task in itself. More details canfoeind in [12].

Ill. UKF TRAVEL TIME ESTIMATION MODELING

Link travel time for a vehicle is the time neededravel
from the upstream point to the downstream poirthalink.
This research focuses on estimating the averagel ttine
for all the vehicles that depart downstream (alsdled
“experienced” travel time).

Fig. 1 illustrates the studied urban link for traviene
estimation with mid-link sink/source. The mid-linkfra-
structures, such as a side streets, parking lotsatp
properties etc., acting as sink or source or bisttsimply
represented here by a mid-link.

=, Downstream (d/s) ?
USR]
M o 10

Midlink sink/source

Upstream (u/s)

Loop detector
Figure 1. Studied link.

The state vector, evolution, observation and atigoriof
the proposed UKF filtering are based on a stateespzodel
that we propose to detail below.

A. State vector

Suppose that we have a loop detector at the ershai

e TT: the travel time.

e Nd: the cumulative count of vehicles at the
downstream of link k.

e qu: the flow at the upstream of link k.

¢ Nu: the cumulative count of vehicles at the upsirea
of link k.

e p: the number of vehicles that enter/exit the link
from/to the mid-link source/sink.

e The history of the cumulative count of vehicles at
the upstream of link k, i.e. previous Nu, which is
also the cumulative count of vehicles at the
downstream of the link k-1. This history tabulates
fixed number h of past counts, this number being an
“a priori” parameter of our modeling.

Therefore the state vector resumes as follows:

TT(1)

X(t) =
p(t)
N, (t-Tg)

[N, (t=hxT)

B. Evolution model

We suppose that state at time t derives from stateme

t-Tsas follows:

e The classical analytical procedure states that the
cumulative number of vehicles at link entrance Ishal
be equal to the cumulative number of vehicle dt lin
exit after an average travel time TT at time t. the
travel time at time t is equal to difference betwee
time t and the corresponding time; twhen
Ny(t1)=Ng(t).

. The cumulative number at the downstream at tinse t i
equal to the cumulative number at the upstream at
time t-TT, incremented by p the number of mid-link
sink/source vehicles.

e The cumulative number at the upstream at timehas
cumulative number at the upstream at timegt-T
incremented by the flow at the upstream multiplgd
Ts

*  The flow at the upstream at time t is stable, al age
the mid-link cumulative vehicles number.



Therefore the evolution model is as follows: whereas data from probe vehicles are available d@iviwo
consecutive minutes t and t+1. In order to usermétion at

TT(t) =t- NJ_l( N, (t)) its exact time, an intermediate step is made betweand
t+1. Fig. 2 summarizes the UKF algorithm.
Ng (t)= N, (t=TT)+ ((d
Nu (t) = Nu (t_ TS) + q|( Dx Tf (1) GOs ‘ Y Eli::::su:;:]:cﬁon
qu (t) = qJ (t— TS) o J‘r b2 UKF estimation
] ' Detectors correction
p(t) = p(t-T9 i

The key point in this evolution model is that itpgads on
the state vector itself (second equation) therefitrds ‘ Detectors cortection
impossible to explicit the Jacobian matrix needethe EKF, 60s | 5 T UKF estimation
which justifies the use of an UKF. :

T t+ T UKF estunation
!

I Probe vehicle correction
+ 1 T UKT estimation

Detectors correction

Observation model

\
~ 2 T UKF estimation
Detectors correction

The considered observations are both the trave fiom
probe vehicles and the number of vehicles from loop

detectors. The data from the probe vehicles contahicle Figure 2. UKF algorithm.

ID, QPS_pos?tion coordinate_s, timg, and eventl_Jabyeed, IV. UKF TESTING

moving direction, etc. To estimate individual trhtimes, a ) . . )
map-matching process needs to be made. This is@oriant This section presents the results of the classicalytical

step in the process; its accuracy will directlyeaffthe final Procedure, the CUPRITE model and our UKF-based iode
results. Map-matching algorithms may adopt either B&ach algorithm is implemented and tested on siredlaata.
) ) ~one-lane link (see Fig. 1). The free flow speedaskm/h, the
The observation equation depends on the availablgaximum density is 140 veh/km, and the critical signis

measurement. observed at 1/5 of this maximum, therefore the flsw

Case 1: a travel time issued from a probe vehisle limited to 1008 veh/h. This calculation is based te

modeled as: fundamental diagram applied in the center of Nariigs
Z = Hx+\y ) Nantes-Metropole traffic management center.

where: His [1 0 0 0 ... 0] andy, is the observation noise For an hour of simulation the demand flow i.e. tlosv
assumed to be zero mean Gaussian white noise witlat enters the link is as follows: for the firsh iin the
covarianceRy;. average flow is 500 veh/h, for the second 15 minaberage
flow is 900 veh/h, for the third 15 min the averdigsv will
increase to 1400 veh/h, which is greater than thgimum
_ flow (1008 veh/h), and for the final 15 min the eage flow
z=H X+ (3) will decrease to 500 veh/h. Sinks and sources efieatl as
where: H is resp. [0 1 00 ... O] and [0 0 1 O ... O] forthe percentage of vehicles that are lost into tin& and
downstream and upstream counters @t the observation gained from the source (perturbation). In this wsial 1%
noise assumed to be zero mean Gaussian white nitise and 5% of mid-link sinks and sources were consitlere
covariance matriRy:. Moreover, probe vehicles are a random sample ftandtal
These covariances are obviously different whethee o POPUlation of vehicles. 1%, 5%, and 10% were ccersid as
considers counters or probe vehicles travel timefdk the Probe vehicles. For each probe vehicle, we simsly its
last, it should characterize possible errors inpihecess of Ccorresponding travel time. Finally, the averageefaime for
map-matching GPS positions. GPS errors, and if&ach Einterval (denoted further: reference TT) is thensaf

consecutive map-matching errors, will be fixed detieg on the travel time of all the vehicles that exit tik|between t
the location of the link: in a denée city centére brder of and t+7s divided by the total numbers of vehicles that ente

the link.

Case 2: reading the counter associated to a lotgrtde
yields:

magnitude of those errors is some tens of metdisraas in
an open area, it is only a few meters. In a vergt fi o
approximation, we will fix travel time observatiemrors to a A Sensitivity of CUPRITE

maximum of 10 seconds down to few seconds. The classical analytical procedure gives an unbiase
_ estimation of the travel time when the vehicleshia studied
D. Algorithm link are conserved. In such case, the CUPRITE ctiome

The filter estimates travel time with 1 minute séenp should remain zero. But in the eventuality whendéeiation
time. Data from detectors are aggregated each aindetween the reference TT and the TT of the consttiprobe



vehicle is significant, this correction will biaset travel time
estimation later on. With the UKF, this deviatioashmainly
an effect at the probe vehicle instant of correctiésfter this
correction, the UKF evolution and detectors corocgcwill
overcome the previous resulting effect, whereas RIUE
remains biased as long as no new probe vehiclepasg. 3
illustrates the sensitivity of CUPRITE with a bidsprobe
vehicle travel time.

] Reference
— Classical analytical procudure
5t CUPRITE
— UKF
-~~~ PV
4t
3 L

Travel Time in min

Time in min
Figure 3. Demonstration of the sensitivity of CUPRITE wittvéhicle.
B. Model performance testing

The following statistics are used to qualify eadhtre

especially on the last 10 minutes. Fig. 5 and &esmt
respectively the CUPRITE error in minute for 1% &b
mid-link sink and source. They show that in sonmeutation,

the error reaches +2 min. Here, we observe agaén th
sensitivity of CUPRITE model. Fig. 6 and 9 reprdsen
respectively the UKF error for 1% and 5% mid-linkksand
source. In UKF and CUPRITE, the standard deviatibthe
estimated travel time decreases as the percenfapsloe
vehicles increases. To conclude, UKF estimatidess noisy
then CUPRITE.

TABLE I. AVERAGE ACCURACY (lOOMAPE%) IN % OF CLASSICAL
ANALYTICAL PROCEDURE, UKF, AND CUPRITE WITH MID-LINK SINK AND
SOURCE
Average accuracy
Mid-link sink Mid-link source
% of probe| 1% 5% 1% 5%
vehicles
CAP 85 45 86 48
1 90 80 91 84
UKF 5 93 90 93 91
10 94 93 94 94
1 87 77 89 85
CUPRITE |5 90 88 92 90
10 92 90 92 93

VI. CUMULATIVE NUMBER OF MID-LINK SINK/SOURCE
With the UKF filter, we can also estimate the cumtive

classical analytical procedure, the CUPRITE and UKpumber of mid-link sink/source without direct measuent

methodologies:

error, = actual — estimatec (4)
i@actual - estimatqckj

MAPE=" | ool | (5)

accuracy(%)= (1- rl\]/IAPE)x 10C (6)

where:

of the perturbation. Fig. 10 and 12 illustrate ¢éstimation of
the latter with 1%, 5%, and 10% probe vehicles for
respectively 1% and 5% mid-link sink/source.

VII. OUTLIER DETECTION AND EXCLUSION

Fig. 11 illustrates the effect of a probe vehiclglier (3 min
vs. 2 min) on the travel time estimation, where&s B3
illustrates the effect of a detector outlier, whére counted
downstream value has been fixed for 3 minutes. Bgma of

* Actual, estimated and errgrand are respectively the 3 chi-square test of the normalized innovation eepigalso

actual average travel time, the estimated traves ti
and the relative error for thtéh estimation interval.

called the Mahalanobis distance), the UKF model has
rejected the outlier, whereas CUPRITE could nadieg to

«  MAPE stands for the mean absolute percentage err@n aberrant travel time estimation.

e Accuracy indicates the mean exactitude in %.
* nis the total number of estimation interval.

V. RESULTS AND ANALYSIS

Table | summarize the average accuracy in percent

with 1% and 5% mid-link sinks/sources, for 10 siatigns,
for the classical analytical procedure, CUPRITE &ndF
with 1%, 5%, and 10% of probe vehicles. It is olngdhat
both UKF and CUPRITE correct the bias in the clzasi
analytical procedure. As expected, their accuratiesease
with probe vehicle percentage.

Fig. 4 and 7 represent respectively the classitalysical
procedure error in minute for 1% and 5% mid-linkksand
source. We notice the cumulative effect of the yrésdtion

VIIl. CONCLUSION

The UKF filter developed here provides encouraging
results for urban link travel time estimation withid-link
sinks and sources. The evolution model of this rilgm is

%Fased on the classical analytical procedure. Tlserohtions
are vehicle counts from loop detectors locatechatend of
every link and travel time from probe vehicles aftey have
been associated to the appropriate link by mapraic

The main contribution of this article is that theKEJ
stochastic approach overcomes the sensitivity o th
CUPRITE deterministic approach to probe vehicle gang.
Actually, CUPRITE supposes that data are exact @dsethe
UKF filter offers the possibility to introduce amrer model
for the travel time obtained by map-matching asl aslfor



percentage of mid-link sink/source. The feasibibfyoutlier
detection and exclusion has been demonstrated,tHisit
should be deepened and the next step is to deterthi
observation error from real data. Furthermore gjtyglication
of this model to an urban network is under develeptmit is
an extension of the proposed model with no inforomabn
the turning movement proportion at crossroads.

loop detectors. Thus, the estimation is smoothelistatistic
tests, made possible by the UKF formalism, enabteafion
and exclusion of outliers, like mis-matched GPSlawp
deficiency. Furthermore, UKF can be applied in al-tene
context. In this article many simulation were rurithw
variable flow, variable percentage of the vehicleat are
randomly selected and considered as probe, anéblari

Classical analytical procedure Error in min

Figure 4. Classical analytical procedure estimation errohvi¥e mid-link

sink/source. sink/source.
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Figure 5. CUPRITE estimation error with 1% mid-link sink asource. Figure 8. CUPRITE estimation error with 5% mid-link sink asdurce.
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Figure 6. UKF estimation error with 1% mid-link sink and soer
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Figure 10.Cumulative number of mid-link sink/source with 1%
perturbation.

60

8 : T |
— Reference Lo
7H——capP RIRE
6l CUPRITE i i i |
— UKF [
| | |
\J |

|
|
|
| !
|

Travel time in min

Time in min

ure 11.Travel time estimation by classical analytical maare (CAP),
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