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Abstract- This paper presents a novel peer-to-peer energy
trading system between two sets of electric vehicles,
which significantly reduces the impact of the charging
process on the power system during business hours. This
trading system is also economically beneficial for all the
users involved in the trading process. An activity-based
model is used to predict the daily agenda and trips of a
synthetic population for Flanders (Belgium). These drivers
can be initially classified into three sets; after discarding
the set of drivers who will be short of energy without
charging chances due to their tight schedule, we focus on
the two remaining relevant sets: those who complete all
their daily trips with an excess of energy in their batteries
and those who need to (and can) charge their vehicle
during some daily stops within their scheduled trips. These
last drivers have the chance to individually optimize their
energy cost in the time-space dimensions, taking into
account the grid electricity price and their mobility
constraints. Then, collecting all the available offer/demand
information among vehicles parked in the same area at the
same time, an aggregator determines an optimal peer-to-
peer price per area and per time slot, allowing customers

with excess of energy in their batteries to



share with benefits this good with other users who need to
charge their vehicles during their daily trips. Results show
that, when applying the proposed trading system, the en-
ergy cost paid by these drivers at a specific time slot and in
a specific area can be reduced up to 71%.

. Introduction
ore than 70% of European population is living in
cities [1] . Most of this population is exposed to pol-
lutants at levels above the limits declared safe by
the World Health Organization (WHO) [2]. These
pollutants do not only affect to the urban population, but
also increase the global average surface temperature,
warming the climate [3]-[53]. Governments are promot-
ing different initiatives to reduce greenhouse gases (GHG)
emissions, trying to mitigate the climate change effects
and improve air quality in urban areas. In particular, the
European Union (EU) has developed ambitious plans to re-
duce GHG emissions up to 85-90% by 2050, through vari-
ous initiatives [6]—[8].

Electrification of the road transportation represents
an essential part of these plans, due to the fact that the
transport sector is one of the largest GHG producers in
Europe [8], [9]. In order to boost this deployment, EU Gov-
ernments are promoting electric vehicles (EVs) through
different initiatives [10]-[13]. As a direct result of these
initiatives, EV registration has increased in Europe up to
49% in 2015 and Europe is leading the market share per-
centages for EVs, with significant differences depending
on the country [14].

Despite the advantages of the electrification of the road
transportation, a large scale deployment of EVs will impact
on the distribution power grid, increasing power losses, volt-
age drops and unbalances, overloading distribution trans-
formers and cables, generating harmonics and degrading
power quality. This impact can also affect to a higher level
of the power systems, increasing the investment in new gen-
eration units and transmission networks [15]-[19].

Traditionally, a way of reducing this impact is to de-
velop smart charging algorithms for all EVs, filling the
valleys of the electric demand profile, making a better
use of baseload units and reducing both power losses and
voltage deviation. One step ahead is to use EVs to support
electric grid (known as vehicle to grid (V2G)) through an
EV aggregator, as it was originally proposed in [20]. The
energy stored in the EV batteries was initially used to re-
duce the peak power demands and since then, the feasi-
bility of other electric markets has been analyzed in the
literature [21].

P2P applications began to grow in the 90s, allow-
ing millions of people around the world to share music,
video and other digital contents over the Internet. After
this first phase of sharing these type of intangible assets,
these systems have evolved to create a sharing economy,

interconnecting supply and demand in different markets,
such as online auction, car-sharing, taxi cabs, parking
lots, spare rooms, home services, etc. [22]. Recently, some
new companies have broken the centralized infrastruc-
ture of the electric grid, allowing the direct connection of
power producers and consumers, bypassing the central
agent and trying to change the landscape of the electric
power sector [23]. These first P2P energy applications
are connecting small distributed renewable energy gen-
erators with consumers interested in buying cheaper and
more renewable energy.

In [24] a novel peer-to-peer (P2P) energy trading system
among electric vehicles was initially proposed, helping to
reduce the demand over the electric grid during the peak
tariff periods. This paper is a significantly extended and
revised version of [24], with the following new contribu-
tions: a better description and justification of the validity of
the activity-based model; a new consumption model devel-
oped for different EVs, adding variability in order to obtain
more realistic behaviors; the consideration of the charging
and discharging battery efficiencies, which adjusts down-
wards the expected benefit of the proposed energy trad-
ing system, and finally, the main difference arises from a
deeper mathematical formulation of the P2P trading sys-
tem, analyzing the existence and uniqueness of the opti-
mal solution.

In Section I, an activity based mobility model for the
Flanders region (Belgium) is described. From this in-
formation, and assuming that all vehicles have been
completely recharged during the off-peak night period,
in Section 1I, a consumption model for each vehicle is
presented and the driver agents of the mobility model
are classified into three different sets: those who com-
plete all their daily trips with an energy excess in their
batteries (set A), those who need to and can charge
their vehicle during their daily stops to reach their fi-
nal destination (Set B) and a third type of drivers who
can never use EVs in their daily trips without modifying
their scheduled mobility behavior (set C). In this work
it is assumed that only the two first sets of agents will
make the transition from an internal combustion engine
(ICE) vehicle to EV as a first approximation. Agents that
must substantially change their mobility behavior (set C)
will not change their conventional vehicles until the EVs
have a greater autonomy. The P2P trading system is de-
signed in two independent steps. Firstly, an optimization
algorithm for each driver from set B is presented in Sec-
tion III. This algorithm minimizes the electricity cost to
be paid by each driver in the time and space dimensions,
determining when and where these EVs will be charged
during the business hours at a minimum cost, respecting
the mobility restrictions. Secondly, taking advantage of
the fact that EVs from sets A and B are parked in the same
zone at the same time slot during the day, a P2P energy



trading system among the two
sets of EVs is proposed in Section
IV. The results of this P2P energy
system are described in Section V
and the final section presents the
main conclusions.

Il. Activity Based Model

Activity-based models predict the daily agenda for each
member in a synthetic population. This section explains
the concepts of the FEATHERS (Forecasting Evolutionary
Actwity Travel of Households and their Environmental Re-
percussions) model for Flanders (Belgium) [25] aimed to
predict travel demand, and used as an input in the P2P en-
ergy trading research described in this paper. This model
was employed in [26] to predict the time dependent electric
power demand for Flanders under specific assumptions of
electric vehicle (EV) market share and several scenarios
for vehicle charging behavior.

Daily agendas consist of a sequence of episodes each of
which contains exactly one trip followed by an activity.

Activity locations are traffic analysis zones (TAZ) with
an average area of 5 km?. For each activity the #ype (home,
work, leisure, social visit...) as well as start (fy) and end (Z;)
times are specified. For each trip the transportation mode
(car, walk, bike, bus, train...) is specified; trip timing fol-
lows from the activity timing.

In order to limit computational complexity, the FEATHERS
model considers individuals to be mutually independent ex-
cept for members of the same household. Effects of coordi-
nation constraints are reflected in the input data and hence
captured by the data mining techniques used in FEATHERS.

The purpose of activity-based modeling is to predict
the travel behavior for each synthetic individual as a
function of several parameters. The FEATHERS model
predicts the outcome of the decisions taken by each in-
dividual while building a daily agenda. The model cov-
ers both the activity planning and the scheduling stages.
Planning involves decisions about the composition of the
set of activities to be completed during a given day (what
to do). Scheduling determines the sequence order and
timing for the selected activities (when to do). Activities
are either mandatory (work, school, pick/drop) or discre-
tionary (leisure, shop, etc.).

The behavioral model consists of several sub-models:
the most important and sophisticated ones are the location
choice, the transport mode choice and the activity sequence
choice models. Such models in turn make use of more basic
components like gravity models for distance selection.

The agenda for each individual is generated by a series
of mutually dependent decisions taken in a predefined
order. Those decisions are data driven: their outcome is
determined by a stochastic process making use of deci-
sion trees trained by means of survey data. Fig. 1 shows the

The purpose of activity-based modeling is to predict the travel
behavior for each synthetic individual.

main data flows involved in schedule prediction. The most

important data sets are:

1) land-use data listing TAZ properties: number of inhab-
itants, number and size of schools, job opportunities,
shops ...).

2) the synthetic population which is generated from cen-
sus data such that the marginal distributions for spe-
cific quantities in each TAZ are similar for real and
synthetic populations.

3) the performance characteristics of the transportation
networks for each travel mode (car, train, bus, bike ...)
expressed as expected travel times (impedance) be-
tween TAZ centroids for both peak and off-peak cases.

4) a set of decision trees trained on OVG survey data col-
lected by periodic travel surveys in Flanders [27]. The
4th OVG survey campaign covers the period 2008-2013
and involves approximately 8000 respondents. Each de-
cision tree relates the outcome of a specific decision to
socioeconomic data and to the partial agenda already
built (hence the mutual dependency of decisions).
Activity-based models are stochastic micro-simulators

(Monte Carlo simulators), whose predictions are vali-

dated by comparing data aggregated at a specific level
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FIG 1 Data flows for the FEATHERS activity-based model. Ovals represent
processes, rectangles represent data sets.
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FIG 2 Normalized electric consumption for different models of EVs

to observations. FEATHERS was validated by aggregating
traffic flows between TAZ for each hour of the day and load-
ing the resulting demand onto the transportation networks.
The resulting link flows for arterial network links, were
compared to time dependent hourly flows derived from traf-
fic counts. Commuting trips were validated by comparing
the predicted arrivals for commuting trips to census data
that apply to the complete population and specify the work
zone for each individual [28].

Once all agendas have been predicted, they serve two
purposes, using different techniques. The first technique
aggregates detailed data in several ways to produce statis-
tics applying to specific segments of the population (e.g.
the number of trips with shopping purposes for a given seg-
ment of the population during a given period of the day).
The second technique uses details from each predicted
schedule to feed a specific model involving a single indi-
vidual and aggregates this model’s results [e.g. counting
the number of commuting trips that can be driven by bat-
tery-only EV for people living in a particular TAZ and be-
ing able to charge at the work location (the specific model

step); then deriving energy demand for each TAZ during
working hours (the aggregation step)].

lll. Consumption Model and Drivers Classification

A. Consumption model

There are different methods in the literature for estimat-
ing the average consumption (kWh/km) of EVs. The first
type of methods estimates the energy consumption from
a mathematical model which evaluates the power and en-
ergy requirements of an EV over a real trip defined by its
GPS traces [29]. The second methodology estimates the
consumption from recorded real consumption data using
different regression techniques, determining the relation-
ship between consumption and other input variables (dis-
tance, speed, acceleration, etc.) [30].

The only mobility output data provided by the FEATH-
ERS model is the travelled distance. Therefore, it is not
possible to use any of the previous methods proposed in the
literature to estimate the vehicle consumption. In the orig-
inal work [24], the energy consumption was assumed to be
constant for all involved EVs (using a conservative value
of 0.179 kWh/km). In this work, a more realistic consump-
tion model is derived, based on real data extracted from
[31]. This data base contains more than 480,000 vehicles
where car drivers have logged their own fuel (or electric)
consumptions. We have focused on 6 different types of EVs,
analyzing the real consumption from more than 120 EVs.

In order to provide variability to the consumption model
and take into account different driver behaviors, each con-
sumption sample for each vehicle type has been normal-
ized by the vehicle’s weight. The resulting consumption
distribution is located between 0.005 kWh/100 km/kg and
0.02 kWh/100 km/kg, with an average value of 0.011 kWh/
100 km/kg and with a slightly higher dispersion in case of
the BMW i3 consumption, as it is shown in Fig. 2. This dis-
tribution is approximately fitted by a normal distribution.
In order to generate different consumption profiles for dif-
ferent agents in the mobility model, initially, the weight of
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FIG 3 Classification of drivers depending on their daily trip distance.



one of the six different EV models is
randomly selected. Then, this value
is multiplied by a randomly select-
ed consumption sample extracted
from the distribution, obtaining a
particular electric consumption
value to be used by a particular
agent in the mobility model.

B. Daily Trip Distance Evaluation
According to the mobility model, there are 1,141,735 vehi-
cles driving daily around the Flemish region.

It is assumed that only drivers that can fulfill their dai-
Iy activities without any modification of their scheduled
trips will make the transition from ICE vehicles to EVs. To
evaluate the EV penetration rate in assumed conditions, all
vehicles are fully charged at the beginning of the day, as
aresult of a charge during night off-peak hours. It is also
assumed that the effective battery capacity of each EVis 20
kWh, with a nominal capacity of 24 kWh (see Fig. 3 right),
therefore when the effective state of charge reaches 0%,
there are still 3kWh remaining in the battery. After evalu-
ating the daily range for each vehicle in the model, taking
into account their particular consumption, three different
sets of drivers are found (Fig. 3 left):

Set A is composed by all drivers who can complete
their daily activity schedule using their EVs without per-
forming any intermediate charging along the day. These
EVs will have an excess of kWh in their batteries at the
end of the day. Set B consists of those drivers who can
also complete their daily activities without modifying
their mobility behavior, but their EVs will require inter-
mediate charging along the day, taking the advantage
that vehicles are parked during long periods of time.
Finally, set C congregates those drivers who cannot
complete their daily trips without modifying their daily
mobility behavior. Drivers from this set will not initially
adopt an EV and therefore, these drivers are not consid-
ered in this work.

Note that drivers from set B must charge their EVs dur-
ing peak periods to complete all daily scheduled trips. Due
to the high electricity prices at peak periods, vehicles from
this set will be recharged only the bare minimum to reach
their final destination, waiting for the off-peak night pe-
riod to be fully recharged.

Fig. 4 shows the excess energy distribution stored in
the battery packs of vehicles belonging to set A at the end
of the day for the whole Flanders region. It is observed
that most of these vehicles travel very short trips, consum-
ing a small amount of energy (more than 200,000 vehicles
store more than 18 kWh). The total stored energy amount
is 13,246 MWh.

Fig. 5 presents the additional energy demanded by ve-
hicles from set B to reach their final destinations. It is ob-

Only drivers that can fulfill their daily activities without any
modification of their scheduled trips will make the transition
from ICE vehicles to EVs.

served that most of these vehicles require a small amount
of energy (more than 30,000 vehicles will require less
than 6 kWh to finish their daily trips). The total demanded
energy amount is 563.67 MWh, therefore, there is 36 times
more energy stored in the batteries of vehicles from set A
than the total energy demanded by vehicles from set B.

IV. Intermediate Charging Process Optimization

Drivers from set B have to recharge their EVs during their
scheduled stops in business hours. Assuming that variable
hourly grid electricity prices are known in advance (usu-
ally, in a day-ahead time horizon [32]) and taking into ac-
count their own daily scheduled activities, provided by the
mobility model, car owners optimize their daily energy
costs, scheduling where (in which TAZ) and when (at what
time slot) they have to charge their vehicle at minimum
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FIG 4 Total energy stored in batteries of set A vehicles at the end of
the day.
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FIG 5 Total energy demanded by vehicles from set B to fulfil all scheduled
daily trips.




Table 1. Charging optimization problem constants.

Symbol Description Value

Ttep Departure time 1 time slot
7o Arrival time 96 time slot
S0C™ Maximum Effective State of Charge 20 kWh
s0c™ Minimum Effective State of Charge 0 kWh

CR Charging energy limit 0.825 kWh
Ve Charging efficiency rate 0.95

cost, without modifying their mobility behavior and fulfill-
ing their daily agenda.

The objective function to be minimized for each agent
belonging to set B is given by

min
i(t)

@

o
Ecn (t)Pr(t)]
t=T%

where P:(f) is the grid electricity hourly price (in €/kWh),
Ecn(f) is the energy extracted from the electric grid to
charge in the battery pack (in kWh) and 7% and 7*" rep-
resent the departure time (when the first scheduled trip
starts) and the arrival time (when the last scheduled trip
finishes) respectively.

Note that E.x(f) depends on i(#), which is the decision
variable and represents the effective energy (in kWh) inject-
ed to the battery during the time slot , as it will be shown in
(5) and Fig. 3, through the battery charging efficiency.

This objective function is subject to the following re-
strictions:

S0C™™ < S0C(t) < SOC™*
0<i(t)<CR

@)
©)

SOC(t) =SOC(t —1)+i(t)—o(t) “)
Ea(t)=VA(1)i(t)/yen 6))
o(t) =[1 —VA(t)].con.d(t) (6)
SOC(T**?) =20 kWh (7)

where (2) determines the limits for the effective battery
state of charge (SOC) and (3) imposes the charging rate
limit, with CR representing the maximum energy trans-
ferred per time slot (in kWh). The dynamic evolution of the
battery state is given by (4). The current SOC is equal to the
previous SOC plus the energy injected to the battery dur-
ing the charging process, i (f), minus the energy consump-
tion due to driving activity, o (f) (in kWh). The following
equation determines the amount of energy extracted from
the electric grid, E.(f) which is finally paid by the owner.
This variable depends on the vehicle charging availability
provided by the mobility model, VA (), (where VA (t) =1 if
the car is stopped at this time slot and can be charged, or
VA (t) =0 if the car is moving), and yer <1 is the charg-
ing efficiency rate [33]. In this work, the consumption
due to driving activity, o(#) in (6), is proportional to the
consumption rate derived by the consumption model,
con (in kWh/km), and the total distance traveled, d()
which is also provided by the mobility model. Note that the
consumption rate value con is different for each vehicle as
it was previously described in Section III.

Finally, (7) is the initial condition of the effective SOC
and determines that all vehicles are fully charged just be-
fore departure. Equations (1-5) constitute a linear opti-
mization problem that is solved using GAMS® and CPLEX
Solver optimizer for each of the EVs from set B.

Constants used for the optimization program are shown
in Table 1. The day is divided in 96 time periods of 15
minute each, so the departure time refers to the period
00:00-00:15 and the arrival time to
23:45-24:00. The limits for the SOC

& 100 70 ) are set between 0 and 20 kWh, which
is the effective battery capacity. The
80 160 g charging rate CR is set to 0.825 kWh
® 50 S for each period of 15 minutes, which
o 60 @» is the maximum power delivered by
8 40 § a slow charging station of 3.3 kKW.
> 30 % Finally, the charging efficiency rate
% 40 'E Yerr is derived from [34].
= — Battery SOC 20 § Fig. 6 shows the application of this
= — Electricity Price ] 40 W optimal charging algorithm for a sin-
o, . . . . WS \SSRSNE| gle EV belonging to set B. The back-
01234567891011 121314 151617 1819 20 21 22 23 24 ground colors indicate the particular
Time (h) zone where the car is parked when
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FIG 6 Effective battery SOC evolution for a vehicle belonging to set B (blue line), grid electricity price

(green line) and TAZ zones (background colors).

tivities. This user performs 3 daily
trips: a first trip from 06:45 to 07:30,



leaving the blue TAZ and arriving to the red TAZ, traveling
12.73 km. A second trip from 12:30 to 13:45, leaving the red
TAZ and arriving to the grey one, travelling 59.48 km and
the final trip, from 18:30 to 19:15, going back to the blue TAZ
and traveling 44.85 km. The total distance covered is 117.06
km, which, given a consumption of 0.198 kWh/km, implies
a total consumption of 23.18 kWh. This value is above the
effective battery capacity: therefore, this user needs to per-
form intermediate charging.

The scheduled charging is programmed in 2 periods:
07:30-08:00, just after arriving to the first destination, and
15:00-16:00, during its second scheduled stop. The effective
SOC at the end of the day is 0 (that is, with 3 kWh remaining in
the battery), the minimum allowed, since ending the day with
a small amount of energy would be inefficient: electricity cost
is lower during the night than at any other period of the day.

As it was described above, the owners of these vehicles
schedule their daily charging periods in advance, determin-
ing when and where they will recharge at minimum cost. Ag-
gregating this information from all EVs from set B, the energy
demanded in each TAZ and in each time period is evaluated.

Fig. 7 shows the temporal energy demand for a particular
TAZ (#904, the most demanded one) and the electricity grid
price. Itis observed that the maximum demand (1,382 MWh)
is produced at 15:00 h, when the hourly electricity price is
lowest during the central business hours. There are also
some peaks, the first one at 8:00 h in the morning, as soon
as the vehicles arrive at their first scheduled destination and
the electricity price is still very low, and the second peak at
noon, coinciding with a small reduction in the hourly elec-
tricity price.

Fig. 8 shows the spatial energy demand distribution per
each TAZ at 15:00 h, coinciding with the lowest electric-
ity price value during the business hours (highest energy
demanded). It is observed that the demand is lower in the
periphery, denoted by blue areas, and increases in larger
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FIG 7 Temporal energy demand for TAZ #904 (highest energy demand)
and grid electricity price (green line).

urban centers such as Brussels, Gent, Brugge, Antwerpen
and Hasselt.

V. Peer to Peer Trading System

In order to reduce the impact of recharging EVs on the
electric grid during the business hours, a P2P trading
system is proposed. In the same way as other P2P shared
economy business, the trading platform interconnects
both market actors: electricity “producer” (vehicles with
an excess of energy in their batteries-set A) and electricity
“consumers” (vehicles demanding energy to finish their
daily trips-set B).

The market mechanism operates as follows: at the be-
ginning of the day, owners belonging to set B optimize
their daily charging cost individually by programming
when and where charge their vehicles, taking into account
the day-ahead electricity price provided by the electric
market operator [32] (May, 7th, 2014). This demanded en-
ergy can be provided directly from the electric grid at the

}
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FIG 8 Spatial energy demand per each TAZ in Flanders region. Scale in kWh (more info available at: http:/cdb.io/1BjL9pX).




In order to reduce the impact of recharging EVs on the electric
grid during the business hours, a P2P trading system is proposed.

current grid tariff (which is different at each day-hour) or
can be extracted from those vehicles belonging to set A that
are parked at the same time period and the same TAZ. In
this case, both actors should agree on a common electric-
ity price.

Drivers belonging to set A are willing to sell energy if
they are paid above the maximum value of the off-peak
tariff plus an additional cost that takes into account the
efficiency losses caused during the charging-recharging
process and the battery degradation; this lower limit is de-
noted by p™" and it is the same for all drivers. On the other
hand, these drivers are willing to sell at the possible high-
estprice with a fixed upper limit determined by the electric
grid price at this particular time, p™**. These drivers fix
an amount of energy to share in this trading (named z7),
so that they have enough energy stored in their batteries to
finish their daily trips plus an additional security margin
to avoid problems in their daily trips.

Drivers belonging to set B are willing to pay as little as
they can with an upper limit, determined by the electric
grid tariff at this particular time, p™**. If the P2P trading
price is higher than this value, these drivers will recharge
their vehicles directly from the electricity grid. The total
amount of energy demanded by all vehicles from set B in a
particular TAZ at a particular time slot Z, is denoted hy D.
This demand is inelastic because all vehicles belonging to this
setmust be charged in order to fulfill their daily trips; therefore,
this demand will not depend on the final P2P delivery price.

In order to determine a price to be paid in this P2P trad-
ing system for each TAZ and for each time period, (denoted
by pi), an optimization algorithm is proposed. The objec-
tive function is to minimize the total cost of the energy ex-
change by all EVs at every TAZ and every time slot.

A. Optimization of Price and Supply Distribution
For each time slot, the offer price function of each EV from
set A is given by

pi(@) =aixi+p™, x:i€l0,27], i=1,..,n (8)

where function p; represents the price paid to the ith EV
from set A (in €); x: denotes the energy extracted from
this ith EV (in kWh); p™* represents the maximum price
to be paid to the ith EVin € and p™" represents the mini-
mum price to be paid to the ith EV in € (p™ > p™™);
o= (p™™ —p™™) /2! denotes the slope of the TAZ’s

price curve; xi indicates the en-
ergy available to exchange by the
ith EV (in kWh) with other ve-
hicles, representing its offer, with
x? > 0,vi=1,...,n, and finally, n
represents the number of vehicles
from set A parked at this time slot
in a particular TAZ.

Given the maximum energy deliverable by the charging
point £™** > 0 in each time slot, we define:

"™ =min{a?, E™Y},  Vi=1,..,n ©)

as the maximum practical energy deliverable by vehicle i,
so that the total combined offer relies on the feasible com-
pactregion: Q = [0, 21" X [0, 25" X ... X [0, 27| € R".

Finally, given D > 0, the total energy demanded (in
kWh) by all EVs belonging to set B, parked in this particu-
lar TAZ during the considered time slot, we define the av-
erage cost function:

JOX) =S @1 0) = 5 X iP(x), 2EQ  (10)

so that the supply and demand equilibrium for each time
slot solves the optimization problem:

min/f(x)  subject to: > ai=D (11
v i=1

Letus call Q the set of points of Q satisfying (11); note that
Qq # @ ifand only if:

> a™=D (12)
i=1

B. Quadratic Programming Formulation

Problem (11) can be formulated as a quadratic program-
ming one with cost function:

Jx) =x"Qx +e'x

min 15
Q =%diag(a1,...,an), c= pD 1., D7 (13)

and the following linear restrictions g;(x) <0, =1,...,n
and i (x) =0, where:

gi@ =x;—a™™, j=1,..,n; h(x)=>.x:i—-D (14)
i=1
Note that a solution x* of (11)-(13)-(14) will implicitly

satisfy x*> 0 (i.e., i > 0, Vi). The Karush-Kuhn-Tucker
conditions to be satisfied by x* are:

| _~, 98 oh .
axi - _/§1 J axi - axi 1-*’ 1= 1,-..’ n
ui<0, j=1,.,n
ﬂigi(X*) = Oa ] = 1’"" n
h(x*)=0 (15)



which for (13)-(14) take the form:

Qo2 +p™in

S —=w+a, i=t,.,n (16)
w<0, j=1,.n (17)
ui(xj—xf™)=0, j=1,.,n (18)
,Zn;x' =D (19)

C. Algorithm for Solving the System (16)—(19)

Since Q is a (diagonal) positive definite matrix, the prob-

lem is computationally feasible; here we propose a simple

algorithm for solving it.

1) Start by initially assuming that the minimum is reached
in the interior of Q; then x; =0, j =1,..., n and we get:

o
. T .
zi=D—**t— i=1,..,n

kz=1 22 (20)

2) If @i =ai™,Vvi=1,...,n then x* isin Q and solves the
problem. If i > "™ for some i, go to the following step.
3) Let JC{1,...,n} be the subset of indexes for which
xj > ™, vj €J. Then we redefine 2j =27 (these
component values remain fixed in the rest of the algo-
rithm) and solve the system (16) and (19); then x; <0,
j €J andtheremaining components xi, i € {1, ...,n}\J.
4) If ai =a™,vi={1,..,n}\J, x* solves the problem.
Otherwise, add to the set of indexes Jthose indexes for
which xj > 2™, in this new stage; then go to the previ-
ous step to repeat the procedure.
The algorithm finishes after a maximum number of
nsteps.

VI. Results
In this section the different effects of the proposed peer to
peer energy trading system are analyzed. First, the analysis
focuses on the individual behavior of a
vehicle from set A and a vehicle from

until 14:00, arriving at zone 2 (red) at 14:30. It stays there
for 45 minutes, leaves at 15:15 and reaches zone 3 (grey)
at 15:45, where it stays for 15 minutes. Then, the vehicle
returns at the departure zone (blue), where it stays from
16:15 until the end of the day. The amount of energy left in
its battery is 13.65 kWh, implying that the vehicle has sold
a total of 2.61 kWh in the P2P energy trading.

This P2P market for this particular EV starts at 06:00,
when all vehicles have been charged during the night-time
period and some of them have departed from home. During
the first period in which the vehicle is parked (06:00-14:00),
there are two periods of great energy exchange activity,
from 06:00 to 08:00 and from 12:00 to 14:00, and it is re-
flected both in the P2P delivery price (black line in Fig. 9)
and the decrease in the battery SOC. Those are the peri-
ods in which the grid electricity price is lower, and there-
fore most vehicles from set B had planned their charging.
Once this vehicle reaches zone 2 (red), almost no energy
is exchanged. Nevertheless, once the vehicle reaches zone
3 (narrow grey strip), it sells a large amount of energy dur-
ing just 15 minutes (0.37 kWh from a maximum of 0.825
kWh for a 15 minutes period) at its maximum price during
the day (33.24 €/MWh, while the grid price is 47.22 €/MWh);
it can be inferred that the ratio between vehicles from set
A and those from set B is rather low in this particular TAZ,
but not low enough for the vehicle to sell its energy at grid
price. The grid electricity price during that period (15:00-
16:00) is the smallest in the business hours (from 08:00 and
20:00); therefore most vehicles from set B have scheduled
their charging during such period, and this fact benefits
the vehicle under study.

Finally, back at the departure zone (blue area), the vehi-
cle sells a relatively large amount of energy between 15:15
and 16:00 (0.5 kWh); after that, it barely sells any amount
of energy until the end of the day (0.15 kWh). The peri-
ods with lower demand are 18:00-19:00 and 23:00-24:00,

set B. Then, TAZ areas are globally f 17 70 R

analyzed and they are categorized ac- leo ~

cording to market behavior. &l E
Fig. 9 shows the application of = 50 %

the P2P trading system from the g la0 3
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to set A. This vehicle travels very ® 30 5

short trips during the day, consum- @ — Battery SOC 120 E
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cess is: af =(SOC™ —ci) Yer = \_ Time (h) y

(20 -1.95).0.95 = 16.19 kWh.
This vehicle is parked at its de-
parture zone (blue background color)

FIG 9 P2P trading behavior of a vehicle belonging to set A, representing the effective battery SOC (blue
line), hourly grid electricity price (green line), P2P delivery price (black line) and visited TAZ during the
daily trips (background colors).



o

100

80 £
g s
O 60 o)
8 )
(7] §
) 40 o
: |
20| — Battery SOC | %
— Grid Price {10 L&ﬁ

—— P2P Price

0072345678910 111213 14 15 16 17 18 10 20 21 22 23 24°
Time (h)
_J

FIG 10 Effective battery SOC evolution for a vehicle belonging to set B (blue line), grid electricity price
(green line), TAZ zones (background colors) and P2P delivery price (black line).

-

1.2

>

)

[0}

&

Wog
8
5 06
Q
)
=
o)
2
3
o

-t
'

— TAZ #2350 (Low Ratio)
—— TAZ #2286 (Medium Ratio)
—— TAZ #1824 (High Ratio)

o

- ﬁﬁ]
0.2 - “‘
o [ I
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)
. Y,
FIG 11 P2P ratio at three trading zones.
( )
80 — TAZ #2350 (Low Ratio)
— TAZ #2286 (Medium Ratio)
70

.

2}
(=]

[4)]
o

W
o

Electricity Price (€/MWh)
8 &

—
o

— TAZ #1824 (High Ratio)
— Grid Price

6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

J

FIG 12 P2P delivery price at three zones and grid electricity price.

which are, respectively, the highest
grid price period and the last period
of the day, when most of the vehicles
have arrived at home.

The amount of energy left in
its battery is 13.65 kWh, implying
that the vehicle has sold a total of
2.61 kWh, for which it has required
to charge 2.89 kWh from the grid
during the off-peak night period,
taking into account the charging-
discharging efficiency. The total
revenue from selling this energy is
0.077 € and the net benefit, if the
energy has been charged at 16.5 €/
MWh, is 0.029 €. Daily vehicle con-
sumption is 6.37 kWh, which implies
a cost of 0.105 €. In conclusion, the
total cost of charging the vehicle has
been reduced in 27.6%.

Fig. 10 shows the day-charging for
the EV from set B analyzed previously
in Fig. 6. It can be seen that the cost of
charging has been severely decreased,
from 0.156 €to 0.0934 €, which im-
plies a reduction of 40.1% in the day-
charging cost. Since fully charging
the battery at night implies a cost of
0.3056 €, the savings reach up to a
13.6% of the total daily cost.

Fig. 11 shows the ratio between the
total number of vehicles demanding
and total number of vehicles offer-
ing energy in three zones, whereas
Fig. 12 shows the resulting P2P deli-
very price in each zone. In TAZ #2350
(blue line, very low ratio zone), there
are many more EVs offering energy
surplus than EVs demanding energy
during the whole market period (an
average value of 1043 vehicles from
setAand 91 vehicles from set B, repre-
senting an average ratio of 0.087). In
TAZ #2286 (green line, medium ratio
zone) this ratio is slightly increased
during certain periods, obtaining an
average ratio of 0.346. Finally, in TAZ
#1824 (red line, very high ratio zone)
the number of vehicles is very low,
with an average ratio of 0.4, reaching
near 1 at 10:30.

The interpretation for the low ra-
tio zone is the following. The offered
energy at each period varies between



752.4 KWh to 990 KWh, while the maximum demanded ener-
gy during this period is 27.6 kWh. Therefore, the P2P delivery
price barely varies between 27 )/MWh and 27.62 ) /MWh.
This price is reached at 15:00, when the grid electricity price
is the lowest, although it is still 71% higher than the P2P de-
livery price (47.22 ) /MWh).

The interpretation for the medium ratio zone is as fol-
lows: the offered energy at each period varies between
493 kWh and 4291 kwh, while the maximum demanded
energy is 1215 kWh. The maximum P2P delivery price is
reached at 07:45, 32 ) /MWh, while the grid price at this
instant is 46.04 )/MWh (44% higher). A similar price is
reached during the periods 12:00-13:00 and 15:00-17:00,
whereas the demand is kept low during the other day peri-
ods (08:00-10:00and 17:00-24:00).

Finally, the high ratio zone shows that both the offered
and the demanded energy are low. The offered energy in
each period varies between 0.825 kWh (one vehicle) and
5.775 KWh (seven vehicles) and the demanded energy varies
between 0 and 1.65 kWh (two vehicles). During the period
10:30-11:00 the offered energy is equal to the demanded en-
ergy, which implies that the P2P delivery price is equal to the
grid price, as it is shown in Fig.11. At other periods in which
this ratio is still high (e.g., 11:00-11:45) the P2P delivery price
is still lower than the grid electricity price but it is higher
than the previous P2P delivery prices obtained in the other
analyzed zones.

VII. Conclusions

This paper has presented a novel P2P energy trading
system between EVs which can be used to reduce the
impact of EV charging on the power grid during the
peak periods.

The paper has analyzed the electrification of a fleet
of private vehicles in a nationw ide scale, classifying the
drivers of EVs into different categor ies, depend ing on
their daily inter mediate charge requ irements. It has
been obser ved that the number of vehicles requiring
inter med iate charge is much smal ler than those not re-
quiring it.

Two disjoint optimization problems are solved. Firstly,
an individual optimal charging algorithm has been de-
signed to obtain the best daily charging schedule (in time
and space), according to public day-ahead grid electricity
prices for those vehicles requiring intermediate charge.
Once this individual optimization problem has been
solved, the total expected demand, D, per each time slot
and per TAZ is determined.

Secondly, a P2P energy trading mechanism between EVs
which are parked in the same TAZ at the same time period
is developed. This mechanism determines the optimal P2P
delivery price to be paid at every location and during each
time slot. The proposed P2P energy trading system severely
modifies the price currently paid by those vehicles which

require intermediate charge, reducing the total daily en-
ergy cost up to 71%.

Decoupling both optimization procedures allows for
a simple practical implementation where the decision of
where and when to charge is independent of the consequent
P2P saving benefits.

Future works will study the coupling between both op-
timization problems, analyzing how the first optimization
procedures is affected if some P2P market price informa-
tion is available in advance; in addition we will also take
into consideration other applicable business models which
may maximize the monetary gain of the energy providers
or may consider additional costs to the DSOs.
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