

University of Birmingham

Hybrid Online Model-Based Testing for
Communication-Based Train Control Systems
Wang, Yuemiao; Chen, Lei; Kirkwood, David; Fu, Peng; lv, jidong; Roberts, Clive

DOI:
10.1109/MITS.2018.2842230

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Wang, Y, Chen, L, Kirkwood, D, Fu, P, lv, J & Roberts, C 2018, 'Hybrid Online Model-Based Testing for
Communication-Based Train Control Systems', IEEE Intelligent Transportation Systems Magazine, vol. 10, no.
3, pp. 35-47. https://doi.org/10.1109/MITS.2018.2842230

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Final Version of Record available at: http://dx.doi.org/10.1109/MITS.2018.2842230
(c) IEEE 2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1109/MITS.2018.2842230
https://doi.org/10.1109/MITS.2018.2842230
https://birmingham.elsevierpure.com/en/publications/3488b8f1-7258-4193-b8ff-fcaec6f12e49

Correspond author: Lei Chen, AE

Hybrid Online Model-Based Testing for

Communication-Based Train Control Systems

Yuemiao Wang, Lei Chen*, AE, Dave Kirkwood, Peng Fu, Jidong Lv, Clive Roberts

Abstract—Communication-Based Train Control (CBTC)
systems have been increasingly implemented on metro systems
because of their characteristics, which result in safety and
capacity improvements for metro operations. Automatic testing
methods such as Model-Based Testing (MBT) have been applied
to solve some particularly simple and ideal case studies. To
bring automation to HIL testing, the authors apply MBT to
HIL testing and present a novel hybrid online MBT testing
platform that combines formal modelling methods with
simulation. The theoretical methodology of the hybrid MBT, the
platform architecture, and the testing results produced by the
platform are described with a case study of a system under test
(SUT) of a real Vehicle On-Board Controller (VOBC).

Keywords—CBTC; Online testing; HIL testing; Hybrid

Model-based testing;

I. INTRODUCTION

A Communication-Based Train Control (CBTC) system
consists of three main subsystems, which are the Vehicle-
On-Board Controller (VOBC), the Zone Controller (ZC) and
the Data Communication System (DCS) [1]. Based on the
cooperation between these three parts, the system realises a
moving block operation, which provides higher resolution on
train location and a higher capacity. On the other hand, the
system operation safety largely depends on these subsystems.
To ensure the safety of the whole system operation, it is
essential to test these three subsystems [2].

Despite the evolution of testing technologies applied in
railway systems, testing of the CBTC system is still difficult
and time-consuming due to its characteristics of high
complexity and non-determinism [3]. Automatic test
generation technologies have been introduced into the field
to satisfy the growing demand for quicker delivery with
higher quality [4]. However, the application of current testing
methods on the CBTC systems is usually based on manual
test case generation and execution, which makes the testing
accuracy, efficiency and expandability stay low [5]. Even
worse, traditional testing methods which manually generate
and execute the testing cases are not able to deal with non-
deterministic systems. To address this problem and also to
automate the testing process, Model Based Testing [6]
(MBT) has been introduced into the field of railway
systematic testing. The authors in [7] present a model based
railway signaling system and verify its safety-critical
specifications, exploring the possibilities of applying model-
based technologies to railway system verification. The
authors in [8] introduce automatic test case generation
algorithms based on Coloured Petri- Net (CPN). They apply
their algorithms on movement authority (MA) handover

scenarios (where the MA is transferred from the current ZC
to an adjacent ZC when the train is approaching the
boundary of the two ZCs) to automatically generate testing
cases with an adjustable coverage strategy. The presented
research is generally based on assumptive or ideal scenarios,
where the SUTs and their operation environment are
relatively simple. However, real CBTC systems are usually
far more complex. Dealing with the real system complexity,
MBT becomes challenging and limited because of the
exponentially increasing difficulties in modelling and test
case generation from the model [9]. As a result, partition test
of the SUTs becomes necessary to decrease the complexity
of the system modelling. Hardware-In-the-Loop (HIL)
testing is generally a straight forward way to realise this goal.
Before all of the related components are developed, HIL
testing provides a simulated environment for the SUTs where
they can operate normally, as they do in a real working
environment [10]. Therefore, the cost and damage risk of the
testing can be reduced. With the characteristic of simulation,
HIL testing can support various testing scenarios without
large expense. Furthermore, HIL testing makes it possible to
refine the SUTs into several functions which are easier to
implement during testing.

Previous researchers have explored how to combine
MBT and HIL testing to take advantage of both methods. J.S.
Keranen T.D. Raty, implement MBT technologies in the HIL
simulation environment to structure a prototype testing
platform based on MBT in HIL testing [3]. The authors in
[11] design a software MobiGUITAR to automate the test
generation and execution process on mobile APPs with a
combination of model-learning and model-based testing
technologies. The authors in [12] define a formal definition
for testing oracle strategy (guidance for test tools generating
test cases with different emphasis) for software MBTs. The
authors in [13] introduce Porantim, an approach providing a
combination of different MBT techniques for software
development. The presented researches focus on the MBT
field or the HIL testing field. Some of them try to combine
the two together to take both benefits from both sides.
However, the embedded application concept presented by
previous research limits the testing method application for
CBTC system testing because the CBTC system is a hybrid
system containing bi-direction communication between the
VOBC and the ZC. It is a challenge for previous methods
and tools to test such complexly integrated systems because
many functions of those systems are related to continuous
variables along with discrete commands. Formally modelling
such systems is too risky to guarantee the model correctness

and to avoid model state explosion (the state space expands
to infinite size which cannot be processed by computers).

In order to solve this problem, the authors introduce a
novel hybrid MBT online testing platform to implement
testing on subsystems in CBTC systems by the early
development stage. The novelty of this paper is that the
authors model the SUT by combining a formal method and
simulation. Based on the hybrid model, an online MBT
testing tool is applied to automatically generate test cases.
The generated test cases are executed with the help of
simulation so the continuous and discrete elements are
isolated by the simulation and formal method. Different from
the previous researchers, who suggest a straight combination
of MBT and HIL testing, our hybrid MBT testing platform is
compatible with a wider range of SUTs, not only the
embedded systems. The design of the testing platform aims
to explore whether the hybrid concept is a way to erase the
limitation which occurs in the formal testing method
application on an industrial level SUT. The paper is
structured as follows: we firstly present the concept of
conformance testing. Then we introduce the online MBT
theory, which is a realisation approach to conformance
testing. To break through the challenging exiting in the
current online MBT techniques, our novel hybrid online
MBT approach is elicited based on the theoretical derivation
and combinational application of MBT and simulation
techniques. A case study is designed based on a real SUT to
evaluate the testing platform we build up. Finally, we draw a
conclusion on our novel approach with analysis of the testing
platform performance.

II. METHODOLOGY: MODEL-BASED ONLINE TESTING

A. Conformance Testing

Input/output (IO) conformance testing is used to
determine whether a conformance relationship is satisfied
between the SUT and its requirement specification under a
specified testing environment [14]. It is widely applied on
railway system testing because of its characteristic which is
suitable for black box testing of real timed systems, such as
railway systems [15]. Fig 1 shows a general structure of
conformance testing utilising MBT testing tools [16].

Fig 1 Schematic of conformance testing with MBT

Based on Fig 1, there are three key factors for the
realisation of IO conformance testing with MBT, which are
the oracle model [17], the MBT testing tool and the IO
conformation relationship. In the remaining content of this
chapter, these key factors are explained in detail and the
complete methodology is presented.

B. Online MBT

The authors choose MBT to realise conformance testing
because it provides automation for the testing on real timed
systems. MBT testing can be classified into online and off-
line testing. Online MBT generates testing cases
automatically and executes the generated test case
simultaneously, which means there is no complete testing
case in online MBT [18, 19]. Due to the online feature, it is
more suitable for testing non-deterministic SUTs in a real-
time region because one input can be corresponding to
several legal outputs[20]. For highly complex SUTs, the
formal model size maybe too large to fully cover all
possibilities by offline test generation. Online MBT is more
applicable when testing such SUTs since the generated
inputs are executed immediately without being stored in the
computer memory. Different from online MBT, offline
MBT firstly generates an entire test case and then executes
the generated test case [21, 22]. Every input must correspond
to an output in a certain condition, which means it is not
eligible for testing non-deterministic SUTs. Due to the
feature of offline test generation algorithm, the entire state
space needs to be obtained to guarantee the coverage of the
generated test cases, which means it can be challenging for
offline MBT when testing complex SUTs of which the
formal model size is too large for the maximum
computational ability of the computer[23]. If the system has
a very strong restriction on time, online MBT could become
challenging because the simultaneous generation and
execution processes may take a relatively long time [3, 24].
Since the SUT does not have very strong time restrictions
and it is non-deterministic, online MBT is chosen to be the
testing method.

To realise automatic testing by implementing online
MBT, the SUT behaviour needs to be formally described so
that it can be analysed by computers. Therefore, the
modelling theory TIOTS is introduced to formally define the
relations between the I/O actions and the state transitions
based on the theory of Timed Automata (TA).

1) Timed I/O Transision Systems (TIOTS): The modelling

theory
A TIOTS is an evolution of the Labelled Transition

System (LTS) under descriptions of time-related constraints.
The LTS is designed to present the system behaviour in the
format of a state machine. An LTS generally consists of
nodes and transitions between nodes. Actions can happen
when valid transitions happen. Restraints are defined to
specify which node or transition is valid. Definition 1 gives a
formal description of an LTS:

Definition 1. An LTS 𝑆𝐵 is a 4-tuple (𝑆, 𝑆0, 𝐴𝜏, 𝑇𝑟) where 𝑆
is a finite and non-empty set of states, and 𝑆0 is the set of
initial states of 𝑆 satisfying: 𝑆0∈𝑆 [25]. 𝐴𝜏 is a set of actions
containing observable action set 𝐴 and internal action set 𝜏,
satisfying: 𝐴𝜏=𝐴⋃{𝜏}; 𝑇𝑟 is a set of transition relations that
happens in 𝑆, satisfying: 𝑇𝑟⊆𝑆×𝐴𝜏×𝑆. The Fig 2 presents an
example of LTS:

AI0

Ao0 Ao1

S0

S1 S2

AI0

Ao0 Ao1

S0

S1 S2

Fig 2 Modelling in the formal of LTS

Derived from classic LTS, I/O transition systems can be
seen in Fig 2. Let 𝐴 = 𝐴𝐼 ∪ 𝐴𝑂, 𝐴𝐼 ∩ 𝐴𝑂 = Φ. Happened in
the system, 𝐴𝐼 indicates external input actions and 𝐴𝑂
indicates external output actions. With a set of time restraints
placed on the system, a Timed I/O transition system (TIOTS)
can be obtained.

Definition 2. A TIOTS 𝑆𝑇 is a quintuple of (𝑆, 𝑆0, 𝐴𝜏, 𝑇𝑟, 𝑋)
where the 𝑆, 𝑆0, 𝑇𝑟 has the same meaning as in Definition 1,
satisfying: 𝐴𝜏 = 𝐴⋃τ = 𝐴𝐼⋃𝐴𝑂⋃τ . 𝑋 stands for time
restraints of the system and it consists of a finite set of clock
variables. Assume there exists a finite sequence of

observable transitions: 𝑠0
𝑎0
→ 𝑠1

𝑎1
→ 𝑠2

𝑎2
→…𝑠𝑘−1

𝑎𝑘−1
→ 𝑠𝑘, where

𝑠𝑘 ∈ 𝑆, 𝑎𝑘−1 ∈ 𝐴 . Then an observable trace σ with timed
restraints can be obtained: σ = 𝑑0 ∙ 𝑎0 ∙ 𝑑1 ∙ 𝑎1 ∙ 𝑑2 ∙ 𝑎2 ∙
… 𝑑𝑘−1 ∙ 𝑎𝑘−1 ∙ 𝑑k ∙ 𝑎𝑘, where 𝑑𝑘 ∈ 𝑋. Let 𝑠0 and 𝑠𝑘 are the
initial state and final state of the assumed trace σ where

satisfies: 𝑠𝑡
𝜎
⇒ 𝑠𝑡

′, 𝑠𝑡 ∈ 𝑆, 𝑠𝑡
′ ∈ 𝑆 , then the observable timed

trace from every state can be written: 𝑆𝑡𝑟a𝑐𝑒 = {𝜎 ∈
(𝐴 ∪ {𝑅 ≥ 0})∗}, where * denotes an abstracted transition
relationship and 𝑅 ≥ 0 denotes a non negative real number
[19]. Let divide the 𝑆𝑡𝑟𝑎𝑐𝑒 into input actions 𝐼𝑛𝑝𝑢𝑡(𝑠𝑡) and
output actions 𝑂𝑢𝑡𝑝𝑢𝑡(𝑠𝑡) which satisfy: 𝐼𝑛𝑝𝑢𝑡(𝑠𝑡) = {𝑎 ∈

𝐴𝐼|𝑠𝑡
𝑎
⇒} 𝑂𝑢𝑡𝑝𝑢𝑡(𝑠𝑡) = {𝑎 ∈ 𝐴𝑂|𝑠𝑡

𝑎
⇒}. Then the external

input actions and output actions are defined formally [16,
19].

2) Timed I/O Conformance Relationship
To determine whether the SUT complies with the

specification, the I/O conformance relationship needs to be
formally defined. In black-box conformance testing, the
testing objective is to determine the external I/O action
conformance relationship against the specification which
means internal actions inside the SUT are usually ignored
[26]. Therefore, we extend the existed I/O Conformance
Relationship (ioco) to a timed region so that it can be utilised
in timed I/O transition systems [27]. The formal definition is
shown below:

𝑖 𝐫𝐭𝐢𝐨𝐜𝐨𝐞 𝑠 = ∀𝜎 ∈ 𝑆𝑡𝑟(𝑠, 𝑒). 𝑂𝑢𝑡((𝑖, 𝑒) 𝐀𝐅𝐓𝐄𝐑 𝜎) ⊆
𝑂𝑢𝑡((𝑠, 𝑒) 𝐀𝐅𝐓𝐄𝐑 𝜎)

Where the 𝐫𝐭𝐢𝐨𝐜𝐨𝐞 denotes: after executing any possible
timed IO trace 𝜎 under based the parallel of system
specification 𝑠 and environment specification 𝑒, the output
generated from the implementation 𝑖 with the environment 𝑒
will always be the subset of the output generated from the
specification 𝑠 with environment 𝑒 [16]. The 𝐀𝐅𝐓𝐄𝐑 𝜎
presents all the achievable states specified by the
specification environment (𝑠, 𝑒) after executing a timed IO
trace 𝜎. If this equation holds, the implementation 𝑖 is
considered to conform to the specification 𝑠. Therefore, the
conformance relationship is defined formally.

C. Hybrid MBT

A CBTC system is a part of a metro system and it is a
real timed system with a series of time constraints relevant to
safety. In order to ensure the functional correctness of a
CBTC system, the functions need to be tested in the whole
integrated metro system, which includes the vehicle
controlled by the CBTC system and the network where the
vehicle runs. We introduce our novel microscopic railway
simulator, which can provide the necessary testing
environment for the MBT testing. The simulator is written in
JAVA at the University of Birmingham and is utilised to
build up the kernel of a virtual railway laboratory at the
Birmingham Centre for Railway Research and Education
(BCRRE) [28]. By microscopic we mean that the simulator
is built on detailed level where most of the components
consisting of a railway control system are included, such as
signals, axle counters, balises, etc. The microscopic railway
simulation provides a simulated testing environment which is
essential for the MBT. Rather than a real testing
environment, the simulated environment reduces the testing
costs significantly and makes it possible to test a subsystem
before the whole integrated system is finished.

Based on the presented formal modelling method, we
introduce our novel MBT method which combines the
formal modelling method and simulation. The modelling
methods for MBT in previous research model the SUT and
HIL environment in a single modelling method. However,

when dealing with CBTC systems, these methods are limited
because of the different system characteristics. In a CBTC
system, the VOBC and ZC keep exchanging data via bi-
direction communication with a desired period, which means
some safety-critical functions cannot be realised individually
by the VOBC or ZC. For example, the overspeed protection
function requires the VOBC to judge whether the train's
current speed is over the speed limit within a specified time.
The involved speed limit is calculated by the VOBC based
on the current MA which is calculated by the ZC and the
temporary speed which is limit sent to the VOBC. In order to
test such function which is realised collectively by several
components in CBTC systems, the specification
requirements should be divided into several sub-
requirements targeting on each involved component. Some
of these sub-requirements could be ineligible for formal
modelling because they contain so many variables or
calculation processes which make the possibility space
become too large to implement model checking [29]. To
address the challenge, we introduce our novel hybrid MBT
method.

Definition 3. A TIOTS 𝑆𝐼𝐸 is a quintuple of (𝑆, 𝑆0, 𝐴𝜏, 𝑇𝑟 , 𝑋)
where 𝑆, 𝑆0, 𝑇𝑟 , 𝑋 are the same as defined before and
𝐴𝜏 = 𝐴𝐼 ∪ 𝐴𝐸 ∪ 𝜏 , where 𝐴𝐼 stands for the internal
observable actions and 𝐴𝐸 stands for the external observable

actions, which means 𝐴𝐼 = 𝐴𝐼_𝑖𝑛 ∪ 𝐴𝐼_𝑜𝑢𝑡 and 𝐴𝐸 = 𝐴𝐸_𝑖𝑛 ∪
𝐴𝐸_𝑜𝑢𝑡 . Let a finite sequence of observable transitions:

𝑠0
𝑎0
→ 𝑠1

𝑎1
→ 𝑠2

𝑎2
→…𝑠𝑛−1

𝑎𝑛−1
→ 𝑠𝑛, where 𝑠𝑛 ∈ 𝑆 and 𝑎𝑛 ∈ 𝐴𝐼 ∪

𝐴𝐸 . Then the observable timed trace ∑ ⊆ 𝜎𝐼 × 𝜎𝑂 , where

𝜎𝐼 × 𝜎𝑂 = 𝑑0 ∙ 𝑎0
𝐸 ∙ 𝑑1 ∙ 𝑎0

𝐼 ∙ 𝑑2 ∙ 𝑎1
𝐸 ∙ 𝑑3 ∙ 𝑎1

𝐼 ∙ … 𝑑𝑁 ∙ 𝑎𝑛
𝐸 ∙ 𝑑1 ∙

𝑎𝑛
𝐼 , where 𝑑𝑁 ∈ 𝑋 , 𝑎𝑛

𝐸 ∈ 𝐴𝐸 , 𝑎𝑛
𝐼 ∈ 𝐴𝐼 . Assume there is a

transition, 𝑠𝐼𝐸
∑
⇒ 𝑠𝐼𝐸

′ ∈ 𝑆 , then the observable timed trace
from every state can be written: 𝑇𝑟(𝑠𝐼𝐸) = {∑ ∈
(𝐴 ∪ {𝑅 ≥ 0})∗}, where * denotes an abstracted transition

relationship [16]. Let 𝐼𝑛𝑝𝑢𝑡(𝑠𝐼𝐸) = {𝑎 ∈ (𝐴𝐼_𝑖𝑛 ∪ 𝐴𝐸_𝑖𝑛)|𝑠𝐼𝐸
𝑎
⇒} , 𝑂𝑢𝑡𝑝𝑢𝑡(𝑠𝐼𝐸) = {𝑎 ∈ (𝐴𝐼_𝑜𝑢𝑡 ∪ 𝐴𝐸_𝑜𝑢𝑡)|𝑠𝐼𝐸

𝑎
⇒} .

Therefore, observable inputs and outputs on both internal and
external layers are respectively .

Based on the introduced definitions, the modelling
method can be illustrated as follows:

IUT module

Observable

I/O actions

Abstract

module

Simulation

Module

SUTInternal I/O

External I/O

External I/O

Environment

Fig 3 Schematic of hybrid modelling for hybrid online testing platform

As shown in Fig 3, all the observable inputs and outputs
are put into a formal module and simulation module. The
formal module directly interacts with the simulation module,
which acts as a simulated environment for the HIL testing
environment; in the simulation module, the whole SUT
module is inserted into the HIL testing environment and
interactions happen between the simulation module and the
HIL environment. The modelling structure takes advantage
of the two modelling methods in two modules so that the
SUTs with hybrid characteristics can be modelled and tested.
The formal module takes charge of checking the refined
discrete specification and the simulation module is designed
to deal with continuous variables and refine them into an
acceptable format desired by the specification in the formal
module. The limitation of formal methods can be overcome
because the elements which may cause state explosion could
be removed by the simulation module. However, the
challenge is that the two layers bring us a new problem
which needs to be solved. How to synchronise the behaviour
which happens on the two layers is the key issue of the
hybrid MBT method.

D. Hybrid Online Testing Platform

Based on the introduced hybrid MBT method, we present
our novel hybrid online MBT platform in this chapter.
Before starting to build the platform, the software tools
applied to form the simulation and formal modules need to
be determined. Based on chapter C, the microscopic railway
simulator developed by the BCRRE group is eligible to
provide a HIL environment for a CBTC system, and we have
chosen it as a software tool for the simulation module. To
build up the testing platform, the next step is to choose an
appropriate MBT testing tool which is compatible with the
simulator written in JAVA. We eventually chose UPPAAL-
TRON as the MBT tool because it supports the online testing
function, provides a non-commercial license and has a decent
compatibility with the JAVA programme [30]. This chapter
depicts the process of building up our novel hybrid online
MBT platform.

1) Online MBT method with UPPAAL-TRON
To realise the online testing, we introduce an online MBT

algorithm presented by Algorithm 1 which can determine
the conformance relationship between the SUT and the
specification. Based on the reachability analysis according to
the current states, valid inputs are generated by the algorithm
and sent to the SUT. The outputs from the execution of
inputs are collected and compared with the expected outputs
from the specification [20]. If the observed output
responding to the current input complies with the expected
one from the specification, the algorithm will record it and
move to the next set of states where a new set of inputs is
available due to the updated reachable set of states[31]. In
order to realise the algorithm, UPPAAL-TRON is adopted as
the online MBT testing tool. The testing tool continuously
repeats this process until an inconsistency is found and a
“Fail” is returned, or no inconsistency is found when the
testing time is up and a “Pass” is returned.

Algorithm 1.

 𝑰𝒏𝒊𝒕𝒊𝒂𝒍: RS ≔ {(𝑠0, 𝑒0), 𝑐𝑙𝑜𝑐𝑘 = 0}

 𝒘𝒉𝒊𝒍𝒆 RS ≠ Φ and 𝑐𝑙𝑜𝑐𝑘 ≤ 𝑑𝑒𝑙𝑎𝑦

 𝒅𝒐 choose randomly:

 𝑨𝒄𝒕𝒊𝒐𝒏:

 𝒊𝒇 Input (RS) ≠ Φ

 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ 𝑜𝑜𝑠𝑒 𝑎𝐼 ∈ Input (RS)

 𝑠𝑒𝑛𝑑 𝑎𝐼 𝑡𝑜 SUT

 RS ≔ RS 𝐴𝑓𝑡𝑒𝑟 𝑎𝐼
 𝑫𝒆𝒍𝒂𝒚:

 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ 𝑜𝑜𝑠𝑒 𝑑 ∈ 𝐷𝑒𝑙𝑎𝑦𝑠(RS)

 𝑤𝑎𝑖𝑡 𝑓𝑜𝑟 𝑑 𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑒𝑑 𝑏𝑦 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑂 if 𝑑′ ≤ 𝑑

 𝒊𝒇 𝑎𝑂 𝑎𝑟𝑟𝑖𝑣𝑒𝑠 when 𝑑′ ≤ 𝑑

 𝒕𝒉𝒆𝒏

 RS ≔ RS 𝑨𝒇𝒕𝒆𝒓 𝑎𝑂

 𝒊 𝒇 𝑎𝑂 ∉ 𝑂 𝑢 𝑡 𝑝 𝑢 𝑡 (RS) 𝒕 𝒉 𝒆 𝒏
𝒓 𝒆 𝒕 𝒖 𝒓 𝒏 𝑓 𝑎 𝑖 𝑙
 𝒆 𝒍 𝒔 𝒆 RS ≔ RS 𝑨 𝒇 𝒕 𝒆 𝒓 𝑎𝑂

 𝒆 𝒍 𝒔 𝒆 RS ≔ RS 𝑨 𝒇 𝒕 𝒆 𝒓 𝑑
 𝑹 𝒆 𝒔 𝒕 𝒂 𝒓 𝒕 :
 RS ≔ {(𝑠0, 𝑒0), 𝑐𝑙𝑜𝑐𝑘 = 0}

 𝒓 𝒆 𝒔 𝒆 𝒕 SUT 𝒊 𝒇 RS = Φ

 𝒕 𝒉 𝒆 𝒏 𝒓 𝒆 𝒕 𝒖 𝒓 𝒏 𝑓 𝑎 𝑖 𝑙

 𝒆𝒍𝒔𝒆 𝒓𝒆𝒕𝒖𝒓𝒏 𝑝𝑎𝑠𝑠

SUT model

(Timed Automata)
Simulator

UPPAAL

TRON

A
d

a
p

te
r

Xml SUT
Abstract

IO

Simulated

IO

Real

IO
Analysed

Hybrid online MBT platform
Hardware in the Loop

Fig 4 The configuration of the hybrid online MBT platform

Revealed by the pseudo code in Algorithm 1, the repeated
processes are: Action where a timed input is randomly
chosen from the set of valid inputs determined by the current
reachable set and sent to the SUT; Delay where the testing
tool waits for the output derived from the sent input and
inspect whether the arrived output is the expected one
satisfying the time constraints and legal output values; Reset
when the reachable set is empty so that no input is available
for testing.

2) Hybrid online MBT testing platform

Based on the chosen MBT tool and simulator, we
developed a hybrid online MBT platform for system testing
as shown in Error! Reference source not found.. The main
components of the testing platform are integrated on a
portable host PC which can be conveniently taken to the
testing site. The adapter can be customised for different
SUTs and integrated into the simulator after the SUT
functions are well determined. The hybrid online MBT
platform consists of four main components, the SUT model,
the MBT tool UPPAAL-TRON, the microscopic railway
simulator, and the adapter. The SUT model is written in the
format of Timed Automata [32, 33] by UPPAAL, which is a
modelling and verification tool based on the TA theory and it
is the engine of UPPAAL-TRON. Discrete SUT behaviour is
written in the model based on the specification requirement
which is provided by the SUT manufacturer. The MBT tool
UPPAAL-TRON is utilised to analyse the TA model and

generate the test cases by extracting abstract inputs and
outputs. The received outputs are compared with the
expected outputs to determine whether the SUT behaviour
complies with the specification requirements. The simulator
models the functions that relate to continuous variables and
provides a testing environment for the SUT. The inputs and
outputs are translated into recognisable formats for the SUT
and simulator via a customised adapter.

III. CASE STUDY

In this section, we design a case study to explain how we
implement CBTC system testing on the hybrid online MBT
platform. We determine the SUT to be the VOBC which is
used as the on-board controller of Hefei Metro Line 1. We
focus on the overspeed protection function of the VOBC and
the objective is to determine whether the VOBC can protect
the train from overspeed when a risky situation happens. The
test environment is provided by the microscopic railway
simulator which is developed by the BCRRE group. Error!
Reference source not found. depicts the testing process of
the testing platform. The testing platform consists of the TA
model and simulation model which stands for the test oracle,
the online MBT testing tool UPPAAL-TRON, the I/O
handler which determines the input and output sequence, and
the simulator which provides a general testing environment
for the SUT.

Correspond author: Lei Chen, AE

SUT

InterfaceIn
te

rf
ac

e

Inputs

(simulated)

Inputs

(simulated)

Simulator

I/O

Handler

Simulator

I/O

Handler

Inputs(environment) Outputs(environment)

Outputs

(simulated)

Test platform

Simulation

model

Simulation

model

Outputs

(simulated)

TA model

UPPAAL-

TRON

XML

file

Test case generation module

Inputs

(abstract)

Outputs

(abstract)

Fig 5 Data flow during the test process with the testing platform

A. Components of the Hybrid MBT Platform

1) SUT (the VOBC)
The VOBC we choose as the SUT is a real VOBC which

can be installed on vehicles of Hefei Metro Line 1, which is
designed to train trainee drivers before they drive real trains.
Our goal is to test one of the VOBC functions, the overspeed
protection function. This function is realised by the
cooperation of hardware and software modules in the VOBC
and involves a series of complex interactions between
different components. We focus on the system level variables
such as train speed and train position, but not the actual
analogue signal sent from the speed sensor.

2) TA model and UPPAAL-TRON
We build a TA model based on refined specification of

the SUT, the VOBC. The specification requires the VOBC to
protect the train from overspeed by triggering the emergency
brake (EB) when the train is about to overspeed. This
specification is related to the VOBC, the ZC and the
signalling and the train, which generate a series of different
testing scenarios including different reasons for train
overspeed. No matter what factor makes the train overspeed,
the VOBC should always comply with the rule that the train
current speed should never be higher than the train current
speed limit. Based on the hybrid MBT theory introduced
before, we refine the SUT specification into the following
sub-specification:

a. The VOBC should receive the train current speed with a
period of 200 ms.

b. The VOBC should receive the train MA with a period of
200 ms.

c. The VOBC should calculate a correct speed limit based on
the received train MA.

d. In every period, the VOBC should compare the received
train speed with the calculated speed limit. If the train speed
is over the speed limit, the VOBC should trigger the EB
within 1 second.

Since the refined specifications b and c contain relatively
complex calculation processes and have a potential risk of
increasing the TA model complexity, we model these two
specifications by simulation and refine the specification for
the TA model:

a. The VOBC should receive the train current speed with
a period of 200 ms.

b. In every period, the VOBC should compare the
received train speed with the calculated speed limit. If the
train speed is over the speed limit, the VOBC should trigger
the EB within 1 second.

The implementation model and the environment model of
the SUT in UPPAAL are presented in Fig 6 and Fig 7. As
introduced in the section II, circle nodes stand for states and
arrows stand for transitions from one state to another. Along
with transitions, input actions with ‘!’ and output actions
with ‘?’ can happen. For example, the ‘Depart!’ in Fig 7 and
the ‘Depart?’ in Fig 6 mean that the tester sends an departure
command to the SUT and the SUT receives it when the
conditions of both involved transitions are satisfied.
Equations marked in blue are the variable manipulations
happen with the corresponding transitions. The expressions
marked in light yellow define uncertainties of the observed
output values, which can be caused by the nondeterministic
SUT behaviour or the uncertain communication delays
between the testing platform and the SUT.

Correspond author: Lei Chen, AE

Fig 6 An example of the SUT implementation model written in UPPAAL

Fig 7 An example of the SUT environment model written in UPPAAL

To achieve the testing objective, we need to formulate the
test case for train overspeed. There are lots of factors that can
cause overspeed. In this paper, we only choose the most
straightforward one. We integrate an inexperienced driver
who randomly chooses to accelerate and decelerate. We
define a token to specify the probability that the driver
chooses accelerating and decelerating. In this model, the
probability of accelerating is 93% and the probability of
decelerating is 7%.

3) Simulation model

Fig 8 Overspeed scenario: exceeding the speed limit generated by MA

To reduce the complexity of the TA model, the simulation
model is designed to calculate the speed limit of the train
based on the received MA from the HIL environment. The
VOBC should follow the minimum speed limit of the line
speed limit and the speed limit generated by the MA. The
two graphs in and Fig 9 show two different scenarios of
overspeed, which are the overspeed caused by exceeding the
speed limit generated by MA and the overspeed caused by
exceeding the speed limit generated by line speed limit.
Since the VOBC provider does not classify the braking into
service braking or emergency braking, we name both two
kinds of braking as emergency braking.

Fig 9 Overspeed scenario: exceeding the speed limit generated by line
speed limit

As revealed by Fig 8 and Fig 9, the train trajectory, the
line speed limit, the braking curves determined by the line
speed limit or the train MA, and the maximum train speed
limit are presented in the figures. After simulating the
calculation of the speed limit based on the presented
elements, the combination of the TA model and simulation
model can be used to stand for the specification of the SUT.

4) I/O handler
Since the specification model consists of the TA model

and the simulation model, two kinds of interaction happen in
the testing process. The internal interaction happens between
the TA model and the simulation model, and the external
interaction happens between the specification model and the

SUT. The correct sequence of I/O actions needs to be
guaranteed to avoid conflict against each field. Therefore, the
I/O handler is designed to manage the internal and external
I/O sequence. As shown in Fig 10, three kinds of I/O
channels are designed to realise the interactions between the
specification model and the simulation environment. The
internal channel is used for internal interactions between the
UPPAAL-TRON and the simulation model, which in this
case is the train current speed and speed limit. The external
I/O channel 1 is used for the interactions between the
UPPAAL-TRON and the simulation environment. In this
case, it is used to pass the train control command, such as the
acceleration and deceleration command. The external I/O
channel 2 is used for the interactions between the simulation
model and the simulation environment. In this case study, it
is used to pass the train speed and the MA. To protect each
channel from conflict against others, the I/O handler needs to
determine what channel should be activated and no two
channels can be activated at the same time.

UPPAAL-

TRON

Simulation

model

I/O

handler
Environment

(simulation)
Internal I/O channel

Internal field

External I/O

Channel 1

External I/O

Channel 2

Simulated

I/O

Fig 10 The operation principle of the I/O handler designed for the
testing platform

5) Simulation environment
The simulation environment is provided by the

microscopic railway simulator. In this environment, all the
components essential for the system operation are simulated.
During the testing process, the SUT VOBC is installed on a
simulated train and the train is controlled by the inputs
generated from the specification model. When the simulated
train moves along the track, the simulator keeps updating the
conditions of the whole network and sends related outputs
back to the testing platform. The simulation environment
merges all the components into an integrated platform and
system level testing can be implemented based on that
platform.

As can be seen in Error! Reference source not found.,
which presents the testing environment utilised in the case
study, the testing environment consists of four stations and
one depot. During the testing, the train always departs from
the depot which is on the right of the top line. The train runs
along the track until it reaches the left end of the top line.
The train’s movement is controlled by the MBT tool. If the
EB is triggered during the procedure, the whole system will
be automatically reset after the train completely stops.

B. Testing Implementation

Traditional testing on CBTC systems is usually based on
manually generated testing cases which only cover the

Train trajectory

Braking curves

Train trajectory

Line speed limit

Maximum train speed

function under test in a single scenario. Error! Reference
source not found. shows an example of the manually
generated test case which is aimed at testing the overspeed
protection function of a VOBC in a scenario of a 40 km/h
line speed limit. To implement the test, the tester needs to
follow the instructions specified by the test case and
manually operate the SUT, which means that the testing can
only cover a single sequence but not all the possibilities.

Different from traditional testing, the hybrid online MBT
platform implements the testing by randomly choosing a
valid input and executing it automatically. After the input is
successfully executed, the platform carries on choosing
another one until all the valid inputs have finished executing.
Therefore, the tester does not need to decide when or where
to inject the fault to achieve the testing objectives.

Fig 11 The overall outlines of the testing platform

Table 1: A real example of the testing case utilised in traditional testing of a CBTC system

C. Testing Results Analysis

After continuously testing for about 12 hours, we record
the train behaviour while it is moving along the track. Since
different driving strategies significantly influence the testing
results, we adjust the driver’s tendency to make the testing
cover a greater area of the track. In Error! Reference source
not found. which records a part of train movements during
the test, the train driver has 7 percentages to decelerate the
train. Revealed by Fig 12, the train firstly stops at the point

around 2 kilometers and eventually stops at the point around
4.8 kilometers where it is closed to the end of the track.

We do not include the train position as a parameter in the
testing process because the combination of train position and
train speed will lead to state explosion in this scenario. The
train speed exceeds the speed limit represented by the orange
line because the real SUT has a 5 km/s tolerance for the
overspeed train. During the whole testing procedure, no
failure is found so that the testing is finally passed.

D. Mutation Testing

To prove our hybrid online MBT platform is capable of
finding out errors in the SUT, we design a set of mutation
testing on the testing platform [34]. To see whether the
testing platform can find out the inconsistency between the
SUT and the specification, the following mutation testing is
implemented and the results are presented in Table 2.

The Table 2 indicates the results of the mutation testing.
The mutation testing is recorded as passed if the testing

platform detects the inserted errors and it is recorded as
failed if it does not detect the inserted errors. Based on the
results, only one mutation is failed. When we add a minor
delay in the range of 10 ms to 100 ms, the SUT behaviour is
slightly delayed by 10 ms to 100 ms and the testing platform
cannot detect this amount of delay. When the delay is more
than 100 ms, we find that the testing platform can steadily
detect the delay and it sends out a failed verdict.

Fig 12 The train behaviour during the testing process: 93% acceleration

Mutation error Error in the platform Test results

Wrong output action e.g. accelerate the train
when the driver
decelerates the train

Passed

Incorrect output value e.g. make the train
accelerate with an
incorrect acceleration.

Passed

Minor delay
(10ms~100ms)

e.g. insert a minor delay
in the I/O channel

Failed

Major delay (>100ms) e.g. insert a major delay
in the I/O channel

Passed

Missing state e.g. remove states “stop”
(see Fig 6) in the
simulation

Passed

Transition to wrong state e.g. change the transition
“Decelerating” to
“queryACC” (see Fig 6)

Passed

Incorrect initial value e.g. give the train a non-
zero initial speed

Passed

Table 2 The summary of testing results for mutation testing

E. Coverage analysis

Coverage is a concept of off-line MBT testing which
indicates how many traces, locations and variable values out
of all the possible values have been covered by the generated
test cases. Two key factors influence the coverage, the model
complexity and the search depth. A complex model contains
numerous possible states and usually leads to a low
coverage. The search depth means the steps used to generate
the test cases, where 1 step means 1 transition from one
location to another one. More steps give the algorithm

possibility to achieve more locations and thus more
coverage. To determine the performance of our online MBT
platform, we compare the coverage with the offline test
generation algorithm under the same model. The offline
testing coverage analysis is realised by a tool box integrated
in UPPAAL and the online testing coverage is obtained from
the testing log file. We extract the covered and uncovered
traces or variable values from the log file then calculate the
coverage by comparing them with the all possible set of
traces or variable values. Based on the graph of the coverage
against the search depth, the quantised performance of the
online and offline testing methods can be obtained. Revealed
from Error! Reference source not found. and Error!
Reference source not found., online testing performs worse
than offline testing at the early stage of the search depth.
However, with the increasing search depth, the online testing
performance eventually surpasses the offline performance at
crossing points, 1443 steps for trace coverage and 211 steps
for variable coverage. The reason is that our online testing
platform is not restricted by the formal model size when it
generates the testing cases, but the offline test generation is
very sensitive to the model size. When the model is relatively
large and complex, offline testing cannot search as deep as
online testing can because it needs to record all the pattern to
achieve the optimised coverage. When the memory is used
up, the coverage reaches its limitation. Our hybrid online
MBT reduces the model size by introducing simulation
modelling and generates possible input randomly without
recording any pattern during the testing procedure. As a
result, when offline coverage is blocked by the limitation of
the computer's computational ability, our online MBT
platform can still achieve 100% coverage for both trace and
variable.

The online testing results indicate that our hybrid online
MBT platform can detect errors from the SUT more
efficiently than traditional testing methods. Since the test
generation and execution are automatic, the time taken to
finish a single test is significantly reduced. Better efficiency
means that the online MBT platform can cover many more
situations than traditional testing methods do. By introducing
simulation into online testing, the platform manages to
implement MBT in a HIL environment, which makes the
testing results more convincing than the results from
individual testing. Furthermore, our online MBT platform is
more extendable and flexible than traditional testing
methods. When modification is made on the SUT, the online
MBT platform can easily cope with the changes by changing
its model, whereas traditional testing methods have to rewrite
the specification, test generation and execution. Based on the
mutation testing results, the online MBT platform is able to
find out most of the errors, except the minor delay error,
because it generates and executes test cases simultaneously.
As a result, some hard-real-time requirements could be
challenging for online MBT [35]. For these hard-real-time
requirements, the communication delay between each
component and the computation time of the testing platform
become nonnegligible. To deal with this kind of
specification, communication delay and computation time
may need to be taken into consideration by the specification
model. A comparison between the online and offline

coverages indicates that the online MBT platform can
achieve 100% coverage test generation to guarantee that all
of the possibilities inside the specification model can be
taken into consideration and no potentially risky situations
could be missed. Since the online MBT platform is less
limited by the model complexity or the computational ability
than offline testing, it is more eligible for testing complex or
industrial-sized systems, such as CBTC systems.

IV. CONCLUSION

This paper presents a hybrid online MBT platform by
explaining the hybrid online MBT theory and depicting the
operation principle of the platform via a case study based on
a real SUT. The testing platform is built with the
combination of online MBT and our novel microscopic
railway simulator. We evaluate the platform with a SUT
which is a real VOBC used in metro systems and by use of
mutation testing to determine whether the platform is eligible
for testing on the CBTC system. It generally succeeds in
detecting inconsistency between the SUT and the modelled
specification. The testing performance is improved by the
hybrid online MBT platform because it removes the manual
elements from the testing process. With the benefit of model-
based testing which makes the testing more efficient and
accurate, the testing platform proves the possibilities to
evolve railway system testing into the era of automation.

Fig 13 The trace coverage tendencies along with search depth

30%
40%
50%
60%
70%
80%
90%
100%
110%

c
o
v
e
r
a
g
e
 (
%
)

Search Depth (steps)

Trace Coverage vs Depth

Online

Offline

Fig 14 The variable coverage tendencies along with search depth

 ACKNOWLEDGMENT

The authors would like to thank the support from
Birmingham Centre for Railway Research and Education.
The research work was also supported by Chinese
Scholarship Council, the National Natural Science
Foundation of China (U1434209) and the Fundamental
Research Funds for the Central Universities (2016JBZ004).

REFERENCES

[1] IEEE, "IEEE Standard for Communications-Based

Train Control (CBTC) Performance and Functional

Requirements," ed: IEEE, 2004.

[2] D. Giannakopoulou, C. S. Pasareanu, and C.

Blundell, "Assume-guarantee testing for software

components," IET Software, vol. 2, pp. 547-562,

2008.

[3] J. S. Keranen and T. D. Raty, "Model-based testing

of embedded systems in hardware in the loop

environment," IET Software, vol. 6, pp. 364 - 376,

04 October 2012 2012.

[4] P. Samuel, R. Mall, and A. K. Bothra, "Automatic

test case generation using unified modeling

language (UML) state diagrams," IET Software,

vol. 2, pp. 79-93, 2008.

[5] IEEE, "IEEE Recommended Practice for

Functional Testing of a Communications-Based

Train Control (CBTC) System," vol. 1474.4-2011,

ed: IEEE, 2011.

[6] M. Utting and B. Legeard, Practical model-based

testing: a tools approach. San Francisco: Morgan

Kaufmann, 2007.

[7] E. Dincel, O. Eris, and S. Kurtulan. (2013, 23

October 2013) Automata-Based Railway Signaling

and Interlocking System Design. IEEE Antennas

and Propagation Magazine. 308 - 319.

[8] W. Zheng, C. Liang, R. Wang, and W. Kong,

"Automated Test Approach Based on All Paths

Covered Optimal Algorithm and Sequence Priority

Selected Algorithm," IEEE Transactions on

Intelligent Transportation Systems, vol. 15, pp.

2551-2560, 2014.

[9] J. Zander, I. Schieferdecker, and P. J. Mosterman,

Model-based testing for embedded systems: CRC

press, 2011.

[10] O. Tkachuk and M. B. Dwyer, "Environment

generation for validating event-driven software

using model checking," IET Software, vol. 4, pp.

194-209, 2010.

[11] D. Amalfitano, A. R. Fasolino, and P. Tramontana,

"MobiGUITAR: Automated Model-Based Testing

of Mobile Apps," IEEE Software, vol. 32, pp. 53 -

59, 10 April 2014 2015.

[12] N. Li and J. Offutt, "Test Oracle Strategies for

Model-based Testing," IEEE Transactions on

Software Engineering, vol. PP, pp. 1-1, 02 August

2016 2016.

[13] A. C. Dias-Neto and G. H. Travassos, "Supporting

the Combined Selection of Model-Based Testing

Techniques," IEEE Transactions on Software

Engineering, vol. 40, pp. 1025 - 1041, 20 March

2014 2014.

[14] R. Cardell-Oliver, "Conformance Tests for Real-

Time Systems with Timed Automata

Specifications," Formal Aspects of Computing, pp.

350-371, 2000.

[15] B. Beizer and J.Wiley, "Black box testing:

Techniques for functional testing of software and

systems," IEEE Software, vol. 13, p. 98, 1996.

[16] W. Yuemiao, C. Lei, W. Jinwen, D. Kirkwood, X.

Qian, J. Lv, et al., "On-line conformance testing of

the Communication-Based Train Control (CBTC)

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%

C
o
v
e
r
a
g
e
 (
%
)

Search Depth (steps)

Variable Coverage vs Depth

Online

Offline

system," in 2016 IEEE International Conference

on Intelligent Rail Transportation (ICIRT), 2016,

pp. 328-333.

[17] L. Padgham, Z. Zhang, J. Thangarajah, and T.

Miller, "Model-Based Test Oracle Generation for

Automated Unit Testing of Agent Systems," IEEE

Transactions on Software Engineering, vol. 39, pp.

1230-1244, 2013.

[18] M. Mikucionis, K. G. Larsen, and B. Nielsen,

"Online On-the-Fly Testing of Real-time Systems,"

Basic Research in Computer Science, p. 14,

December 2003.

[19] Z. Xiaolin, L. Teng, L. Kaicheng, and L. Jidong,

"Online Testing of Real-time Performance in

High-speed Train Control System," presented at the

IEEE 17th International Conference on Intelligent

Transportation Systems (ITSC), Qingdao, China,

2014.

[20] M. Broy, B. Jonsson, J.-P. Katoen, and M. Leucker,

Model-Based Testing of Reactive Systems:

Springer, 1973.

[21] L. Jidong, W. Haifeng, L. Hongjie, Z. Lu, and T.

Tao, "A model-based test case generation method

for function testing of Train Control Systems," in

2016 IEEE International Conference on Intelligent

Rail Transportation (ICIRT), 2016, pp. 334-346.

[22] S. Li, X. Chen, Y. Wang, and M. Sun, "A

Framework for Off-Line Conformance Testing of

Timed Connectors," presented at the International

Symposium on Theoretical Aspects of Software

Engineering, 2015.

[23] J. Lv, K. Li, G. Wei, T. Tang, C. Li, and W. Zhao,

"Model-Based Test Cases Generation for Onboard

System," 2013 IEEE Eleventh International

Symposium on, pp. 1-6, March 6-8 2013.

[24] G. Gay, S. Rayadurgam, and M. Heimdahl,

"Automated Steering of Model-Based Test Oracles

to Admit Real Program Behaviors," IEEE

Transactions on Software

Engineering, vol. PP, pp. 1 - 1, 05

October 2016 2016

[25] D. Xu, M. Kent, L. Thomas,

T. Mouelhi, and Y. L. Traon,

"Automated Model-Based Testing of

Role-Based Access Control Using

Predicate/Transition Nets," IEEE

Transactions on Computers, vol. 64,

pp. 2490-2505, 2015.

[26] J. CHEN, Y. REN, X. GAO, and Y. JIN, "The

Research on Conformance Testing Platform of

Numerical Substation," presented at the

CICED2008, 2008.

[27] K. G. Larsen, M. Mikucionis, B. Nielsen, and A.

Skou, "Testing Real-Time Embedded Software

using UPPAAL-TRON: An Industrial Case Study,"

presented at the ACM International Conference On

Embedded Software, Jersey City, NJ, USA, 2005.

[28] L. Dai, "Data for constructing experimental

scenarios on testing the performance of

rescheduling approaches," Data in brief, 2016.

[29] D. Angeletti, E. Giunchiglia, M. Narizzano, A.

Puddu, and S. Sabina, "Using Bounded Model

Checking for Coverage Analysis of Safety-Critical

Software in an Industrial Setting," Journal of

Automated Reasoning, vol. 45, pp. 397-414,

December 2010 2010.

[30] C. Rutz and J. Schmaltz, "An Experience Report on

an Industrial Case-Study about Timed Model-

Based Testing with UPPAAL-TRON," presented at

the Fourth International Conference on Software

Testing, Verification and Validation Workshops,

2011.

[31] M. Mikucionis and E. Sasnauskaite, "On-the-fly

Testing Using UPPAAL," Master, Department of

Computer Science, Aalborg University, Fredrik

Bajers VEJ 7B, 9220 AALBORG ØST,

DENMARK, 2003.

[32] A.Anier and J.Vain, "Timed automata based

provably correct robot control," presented at the

12th Biennial Baltic Electronics Conference,

Tallinn, Estonia, 2010.

[33] D. K. Kaynar, N. Lynch, R. Segala, and F.

Vaandrager, "Timed I/O automata: a mathematical

framework for modeling and analyzing real-time

systems," in Real-Time Systems Symposium, 2003.

RTSS 2003. 24th IEEE, 2003, pp. 166-177.

[34] R. Baker and I. Habli, "An Empirical Evaluation of

Mutation Testing for Improving the Test Quality of

Safety-Critical Software," IEEE Transactions on

Software Engineering, vol. 39, pp. 787-805, 11

September 2012 2013.

[35] I. Schieferdecker, "Model-Based Testing," IEEE

Software, vol. 29, pp. 14-18, 2012.

THE AUTHORS

Yuemiao Wang received the B.E. degrees of Engineering

from Fudan University, Shanghai, China and the University

of Birmingham, Birmingham, the UK, in 2014. He is

currently working toward the Ph.D. of railway engineering

degree in the Birmingham Centre for Railway Research and

Education, the University of Birmingham. His research

interests include railway system testing, formal verification

and testing, and CBTC system modelling.

Lei Chen received the B.Eng. degree

in automation engineering from

Beijing Jiaotong University, Beijing,

China, in 2005, and the Ph.D. degree

in railway traffic management from

the University of Birmingham,

Birmingham, U.K., in 2012. He is

currently a Birmingham Fellow for Railway Traffic

Management with the Birmingham Centre for Railway

Research and Education, University of Birmingham. His

research interests include railway traffic management and

control, railway safety critical system design, and railway

simulation.

David Kirkwood received a BSc. in

Computing Science in 2002 from

Staffordshire University, UK. He then

worked as a software developer in

industry, specialising in Air Traffic

control simulation. In 2015, he was

awarded a PhD from the University

of Birmingham and now works as a

Research Fellow in the Birmingham

Centre for Railway Research and Education at the

University of Birmingham, specialising in the development

and application of railway simulation software. He has

participated in research projects related to railway traffic

management, train control algorithms and hardware in the

loop simulation and testing.

Peng Fu, senior engineer, graduated

from Tongji University in major of

communication engineering, works in

STEDI and he is both the associate

dean of the electrical branch of

STEDI and project manager in

Beijing. He mainly works for the

communication signal, integrated

monitoring, design of the operation

control center and consulting in the

field of tunnel engineering and rail transit.

Jidong Lv received the B.Eng.

degree in Automation Engineering

from Beijing Jiaotong University,

China, in 2004, and the Ph.D. degree

in Traffic Information Engineering

and Control also from Beijing

Jiaotong University, in 2011. He is

now an associated professor with the

National Engineering Research

Centre of Rail Transportation

Operation and Control Systems at Beijing Jiaotong

University. His research interests include formal modeling

and verification of hybrid systems, especially in real-time

systems and model-based test case generation in high-speed

railway train control systems.

Clive Roberts is Professor of

Railway Systems at the University of

Birmingham. Clive is Director of the

Birmingham Centre for Railway

Research and Education, which is the

largest railway research group in Europe with just over 100

researchers. He works extensively with the railway industry

and academia in Britain and overseas. He leads a broad

portfolio of research aimed at improving the performance of

railway systems, including a leading strategic partnership in

the area of data integration with Network Rail. His main

research interests lie in the areas of railway traffic

management, condition monitoring, energy simulation and

system integration.

