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Intersection Warning System for Occlusion Risks
using Relational Local Dynamic Maps
Florian Damerow1*, Tim Puphal2*, Benedict Flade2, Yuda Li1 and Julian Eggert2

Abstract—This work addresses the task of risk evaluation
in traffic scenarios with limited observability due to restricted
sensorial coverage. Here, we concentrate on intersection scenarios
that are difficult to access visually. To identify the area of
sight, we employ ray casting on a local dynamic map providing
geometrical information and road infrastructure. Based on the
area with reduced visibility, we first model scene entities that
pose a potential risk without being visually perceivable yet. Then,
we predict a worst-case trajectory in the survival analysis for
collision risk estimation. Resulting risk indicators are utilized
to evaluate the driver’s current behavior, to warn the driver in
critical situations, to give suggestions on how to act safely or to
plan safe trajectories. We validate our approach by applying the
resulting intersection warning system on real world scenarios.
The proposed system’s behavior reveals to mimic the general
behavior of a correctly acting human driver.

Index Terms—relational local dynamic map, visibility estima-
tion, trajectory prediction, survival analysis, occlusion risk, risk
map, behavior planning, intersection warning system.

I. INTRODUCTION

IN recent years a wide range of advanced driver assistance
systems (ADAS) has been developed in order to detect

upcoming obstacles and avoid collisions. In general, static
and dynamic objects front of the vehicle are captured by
on-board sensors, such as lidar, radar or camera. Based on
scene observations, upcoming hazards are determined to warn
the driver or actively perform an evasive maneuver. As an
example, adaptive cruise control (ACC) systems [1] detect
leading vehicles and adapt the ego driver’s velocity to safely
follow the leading vehicle.

State of the art intersection warning systems identify col-
lisions purely based on the actual sensor input, but do not
consider sensor limitations due to occlusion. In this sense,
research presented in [2] predicts trajectories of all traffic par-
ticipants to determine their intersecting points and calculates
the corresponding risk employing the time-to-collision (TTC)
indicator.

To overcome sensor range limitations, recent approaches,
such as [3], rely on active systems pysically integrated in
the road infrastructure at intersections. Approaching vehicles
that are undetectable by on-board sensors, are detected by the
road infrastructure unit, e.g. by vehicle-to-infrastructure (V2I)
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communication, to warn all drivers of imminent collisions.
However, such infrastructure units are mostly not present and
the majority of nowadays traffic participants is not equipped
with such communication systems.

We propose a method to assess the risk with on-board
sensors of the ego vehicle. Hereby we focus on scenarios
in which surrounding buildings hinder the perception of ap-
proaching traffic participants. For this purpose, we (1) estimate
critical occluded areas, (2) model virtual vehicles with specific
behaviors and (3) calculate inherent risk for the ego vehicle.
This method is then applied to evaluate the driver’s current
behavior when approaching an intersection with areas of lim-
ited visibility in order to issue a warning in critical situations.
Our intersection warning system considers sensor limitations
without the restraint of requiring additional hardware. The
prediction of occlusion risk was presented previously in [4].
In this paper, it is extended by a relational local dynamic map
(R-LDM) [5] and evaluated in more extensive experiments.

A. Related Work

Uniform occlusions in traffic scenes, covering the whole or
large parts of the image, can arise from weather conditions
(dust, fog, rain and snow) or sun paths (brightness, darkness
or shadows). The visibility reduction caused by fog is shown
in [6]. The authors use camera data in order to exploit the
difference of intensity in lane markings at various distances
ahead of the vehicle. Similarly, [7] derived metrics for the
detectability and discriminality of traffic lights in images with
not equally distributed illumination.. In both cases, occlusions
affect the overall visibility.

On the contrary, sources for selective occlusions are dy-
namic entities (e.g. oversized vehicles) and static objects (e.g.
buildings and trees). They can be incorporated in the driver’s
sensory observable area in multiple ways. For instance, [8]
uses a lidar sensor to extract a three dimensional model of
the environment, which is transformed into an object-free
planar area. Furthermore with a stereo camera, object detection
algorithms [9] are utilized to filter cars which reduce the
visible area. [10] focuses on detecting occlusion patterns in
cars using support vector machines (SVM).

By looking at the behavior of cars with limited visibility
area, one can infer the occluded road structure or presence
of potential pedestrians. Consequently, an occupancy grid
is created in [11]. As an alternative, the authors of [12]
propose to divide detected lane structures into patches and to
connect them as an undirected graphical model. Geometrically
extrapolating the road out of the sensor range allows to
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Fig. 1. Warning system for intersections of limited visibility by modeling virtual cars in occluded areas.

infer information at occlusions. For representing map data, a
suitable model is required. Bender et al. introduce the so-called
lanelets which are atomic lane segments, defined by its left and
right boundary polyline with the aim of storing topological
and metrical infrastructure information [13]. In [14], the road
representation consists of basic curves such as straight lines,
circles, and clothoids (spiral curves), which all share the same
curvilinear 2D equation. [15] combines a local dynamic map
with vehicle-to-vehicle (V2V) connectivity to localize vehicles
behind buildings at intersections.

Numerous approaches for calculating risk on longitudinal
scenarios exist in literature, but risk at intersections is still an
open research topic. The authors of [16] learn a typical velocity
profile of vehicles approaching intersections with a Bayesian
network. The result is a value that descibes the probability
of the occurence of a dangerous situation while approaching
another vehicle. [17] takes vehicles on intersections into ac-
count to retrieve an interaction probability. In [18], velocity
profiles are clustered into several candidates and used to
calculate the post encroachment time (PET) as a risk indicator.
Lastly, [19] tackles accident detection at intersections with
a hidden Markov model (HMM) and its features relative
velocity, orientation and position of two objects.

Motion planning techniques allow to find trajectories in the
driving space which are optimized towards driving duration
with the restraint of being collision-free. For this purpose, [20]
employs a state machine with model predictive control (MPC)
for overcoming static obstacles while [21] trains a Deep Q
network (DQN) to depart safely for left and right turning plus
forward passing at unsignalized intersections. In a related but
coarser approach [22], the authors compare V2I intersection
managers with stop sign or traffic light based intersections
and show that V2I intersection managers can reduce the delay
of vehicles. Simpler techniques are incorporating V2V for an
improved traffic light control [23].

In total, increasing work try to tackle limited visibility
problems in inner-city scenarios due to low robustness in
object detections of active sensors. Cameras cannot reliably
detect other vehicles at night or in glaring images [6,7]. Lidar
does not have a long range [8] and radar holds small opening
angles. To overcome car detection issues, data-based solutions
[16,17,21] lack the generalization to arbitrary dynamic scene
evolutions and static road geometries. V2V or V2I [15,22,23]
are able to function theoretically in all cases, but create
practical time synchronization and spatial alignment issues for

all connected vehicles. Finally, previous model-based solutions
[11,12,18,20] are often tailored occlusion heuristics and fail to
handle real collision risks.

B. System Overview

At intersections, the risk estimatoin is dominated by ap-
proaching traffic participants. Depending on traffic rules, the
collision risk with each has to be estimated. However, numer-
ous areas around inner-city intersections are difficult to access
visually since they are occluded by buildings. Therefore, the
occlusion risk cannot be derived directly. The ego driver has to
assume potentially present but indetectable entities and their
trajectories.

Taking this into consideration, an example is the act of slow-
ing the ego vehicle down when approaching an intersection
of limited observability to be able to stop in a right-of-way
situation. Once the intersection is fully observable and a safe
crossing is ensured, the ego car can retake speed and keep
on driving. Our approach mimics this concept and its block
diagram is shown in Fig. 1.

The basis forms the R-LDM, which is realized as a con-
nected graph database storing road and building information.
Starting from the current position of the ego car, we first
estimate the detectable area at the intersection. Therefore, we
use a ray casting algorithm [24] on the basis of surrounding
buildings which are used as occluding objects. In this process,
the sensor range is reduced. We overlay the visible area with
map data containing the geometries of relevant incoming lanes
in order to determine occluded lane segments with potential
risk sources. On these segments, virtual cars are modeled.
Subsequently, we predict future spatio-temporal trajectories
with constant velocity models for the virtual cars.

A variation of possible ego trajectories in combination with
fixed trajectories of the other cars are evaluated in terms
of collision risk which allows to build predictive risk maps
[25]. Exploiting the risk map, we calculate constant velocity,
deceleration and acceleration trajectories and select the ones
with low-risk. By comparing the driver’s current behavior with
the alternatives, we achieve an ADAS that is able to warn
the driver in cases in which approaching the intersection is
considered to be dangerous. In addition, the most suitable
choice can be communicated.

The remainder of this paper is structured as follows: in
subsequent Sections II, III and IV, individual components of
the risk-based driver assistance are described in more detail.
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Fig. 3. Map data enhancement. a) Road centerlines. b) Calculation of lane centerlines. c) Inference of topological connections. d) Interpolation of junction
centerlines. e) Full intersection geometry.

Fig. 2. Graph-based R-LDM concept.

In Section V, we validate the system on real world intersection
scenarios. To conclude, Section VI shows research areas for
further improvement.

II. RELATIONAL LOCAL DYNAMIC MAP

A. Concept

Intelligent vehicles require knowledge about the ego posi-
tion and about the position of other related traffic entities. Such
data ranges from absolute GNSS coordinates over vehicle-
relative lidar measurements to building information denoted
in Cartesian coordinates. A solution to this task presents the
local dynamic map, which is serving as a hub for receiving,
integrating, storing, fusing, updating and predicting ADAS-
relevant data. It allows to collect and manage environment
information from different sources. Similar to the SAFESPOT
project [26] and its subsequent research, our R-LDM is real-
ized as a 4 layer model, see Fig. 2. On its first or lowest layer,
static data is managed, mainly consisting of road infrastructure
related information which is changing on a slow timescale.
The second layer handles quasi-static data which is changing
on a scale of several days or longer. Examples are traffic
rules expressed as traffic signs, roadside infrastructure, road
constructions, buildings or trees. On the third layer, transient
data is managed which is changing after some hours or
faster. Whereas traffic lights themselves are assigned to the
quasi-static layer, traffic light phases belong to the transient
layer. Further examples of transient data are traffic density,
congestion areas and temporal road changes like slippery road

conditions. Last but not least, dynamic data is stored in the
highest layer including the state of other traffic participants
such as vehicles or pedestrians.

B. Data Enhancement

Yet unanswered is the question of the data source. While
the majority of entities from upper layers are sensed online or
exchanged via communication protocols, entities from lower
layers mostly rely on offline data. Especially geometrical and
topological mapping information needs to be obtained and
stored in advance. Approaches range from recording new data
while using extensive sensor equipment [27] to creating map
data by parsing aerial satellite images as presented in [28] or
[29].

In our research, we use data from publicly available crowd-
sourced map databases, more specifically from OpenStreetMap
(OSM) [30]. Collaborative mapping projects offer map data
with the advantage of their data being editable and updated
regularly. OSM data contains geometry data on road or half-
road level. In this context, we define a half-road as being
the sum of all lanes in one direction which allows us to
express directionality. Data provided by OSM is sufficient for
navigational purposes on a strategic level. However, lane-level
information, such as intersection topology and connectivity,
is mostly not provided explicitely. Therefore, our idea is to
enhance basic OpenStreetMap data as previously presented in
[31] and [32].

Fig. 3 illustrates the enhancement process. Starting from
polylines, obtained from OSM (Fig. 3 a), we infer lane seg-
ment centerlines. This is done by using the information about
the number of lanes, provided as tag, in combination with an
assumed lane width. Based on this lane segment information,
we then infer possible connections (Fig. 3 c) between lane
segments, using heuristics. Now having respective junction
information on topological level, the next step is to generate
geometrical lane junction information. Here, we interpolate
between two related lane segments using B-Spline curves
(Fig. 3 d). In last optional steps, left and right delimiter
polylines, describing the actual lane shape, can be added (Fig.
3 e). With regard to the later storage of the generated data,
we want to highlight that a segment is always followed by a
junction and vice versa. Furthermore, all junctions at a certain
location form an intersection.

As noted, the map enhancement is based on strong assump-
tions. The assumed lane width highly influences the inferred
lane-level geometry. According to the research of Hall et al.,
lane widths of freeways and arterial roads globally range from
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2.75 m to 4.0 m. Considering also minor or local roads, the
width ranges from 2.25 m to 4.0 m [33]. Nevertheless, taking
local guidelines for urban road design of the individual country
into account, the maximum error based on a certain road type
can be reduced. For the example of Germany, one can then
assume a maximum lane width error of +-25 cm. In order to
improve the accuracy, it pays off to compare the automatically
enhanced data with superimposed aerial images in order to
perform visual consistency checks.

In addition to road infrastructure information, the second
type of OSM-based information is data on buildings which
is part of the second or quasi-static layer. OSM provides the
outline of buildings in forms of polylines as well as explicit
height information in meters or implicit height information in
form of the number of floors. However, this information is not
provided reliably. Furthermore, it has to be noted that special
shapes such as balconies are not considered in our research.

C. Storage of Data

As introduced in [5], our R-LDM is realized as a native
graph database, more specifically a labelled property graph
model. Regarding the static layer, we store geometrical and
topological information on up to three different layers of detail,
depending on the requirements. The most detailed and lowest
abstraction layer are lanes. With regard to multi-lane roads, all
lanes pointing in the same direction form the so called half-
roads, presenting the second layer. A road, being the third
layer, therefore consists of up to two half-roads which by
themselves can consist of an arbitrary number of lanes.

For each element of every layer, it is possible to store
properties, ranging from current geometry information up to
surface material information. While properties can be chosen
freely, it is recommended to always include information de-
scribing the shape, e.g. the center of a lane segment defined by
a polyline or the outline of a building defined by a polygon.
All spatial references are denoted in geographic coordinates.
For junctions, it has proven useful to store the angle between
the two segments that are connected by the respective junction.
This is done by calculating the angle between the vector of the
first two polyline points before and after the junction element.
Furthermore, we express priority rules by connecting two lane
segments via an additional relation.

D. Data Retrieval

Choosing a graph database pays off in the data retrieval
step. Since relationships are first-class citizens of the graph
data model, new entities can easily be connected to any other
existing element from any layer which allows the embedding
of entities into a context. Especially when starting from a
certain map entity, this interconnectivity enables convenient
and quick information retrieval. Intuitively, a map entity such
as a vehicle can be connected to another map entity such
as a lane. Correspondingly, we connect buildings to the
associated half-road entity. Since half-roads are defined by
their directionality, we implicitely know whether a building
is located on the left or right side of the road, just by quering
for the connected half-road segment. In the case of static

map elements, it is easily possible to query for neighbouring,
following or preceding entities. In the same way, it is possible
to retrieve connected entities of a different abstraction layer,
such as all lane segments assigned to a specific road segment.
This also allows us to intuitively obtain a so-called “path
horizon”, describing all possible paths a vehicle can follow
based on its current position which is e.g. needed for inference
of future paths and intentions.

A second possibility for querying entities is to use their
spatial reference. This is especially useful if no starting node is
given, when retrieving entities within a certain radius around a
given position or when retrieving the closest entity of a certain
type. In this case, we use Global Navigation Satellite Systems
(GNSS) such as GPS, GLONASS or Galileo to obtain a coarse
absolute position estimation. We use an R-Tree, embedded
into the graph structure, for efficient indexing from metric
coordinates (e.g. latitude / longitude) to graph elements. R-
Tree data structures group objects by their location and store
the minimum bounding rectangle of each group. Besides quick
graph entry, an R-Tree allows for efficient retrieval of entities
within a certain spatial radius around a given position or for
the closest entity of a certain type, even if no explicit relations
exist (yet). Such spatial reference then allows us, for example,
to query for all buildings within a certain radius or to retrieve
possible paths based on the current position. In the latter
case, it is important to keep potential localization inaccuracies
or offsets between map data and GNSS data in mind. One
way to reduce the effect of localization errors is to perform
consistency checks, e.g. by checking if the direction of travel
according to GNSS fits the direction of the expected closest
lane segment.

III. OCCLUSION RISK

A. Estimation of Visible Area

The estimation of sensory observability, here especially the
estimation of the visible area at intersections, is crucial for the
evaluation of risk from non-perceivable traffic scene entities.
This area is treated as a mathematical polygon in the field of
computational geometry. Since the visibility is sought for the
ego vehicle, it is categorized as a point visiblity polygon [34].

In this work, we focus on occlusions caused by static
buildings. To a certain degree of accuracy, we assume that the
geometry of buildings is stored in the LDM. In a preprocessing
step, we query all buildings close to an upcoming intersection
and represent each building by its convex hull. Labeled points
inside the building description are thus erased. Fig. 4 a) depicts
the output for a generic example where the sensor is positioned
in the middle of an intersection. The number of relevant points
is further reduced in Fig. 4 b) by filtering their visible vertices.
The convex hulls are therefore transformed from Cartesian into
polar coordinates.

To find the visibility polygon, we start with the sensor’s
theoretical detection area. For simplicity, we assume a circle
with a radius r = 50m around the sensor position. Within this
circle, the sensor provides reliable measurements. In a next
step we use a ray casting algorithm, where we target only
the visible vertices. As a result, we gain occlusion polygons
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Fig. 4. Occlusion properties of buildings. a) Buildings represented by their convex hulls. b) Filtering of visible vertices. c) Ray casting in sensor range.
d) Union of occlusion polygons.

(see Fig. 4 c). The occluded area represents the union of
all occlusion polygons, whereby the visible area is found by
geometrically subtracting it from the sensor circle. Fig. 4 d)
shows the occlusion boundary line which separates the visible
area from the occluded one.

B. Modeling of Virtual Cars

The goal of the system is to assess the upcoming risk
for evaluating the current ego entity’s behavior and allowing
the planning of a risk-aversive behavior. This implies the
prediction of possible future scene evolutions. Besides entities
captured by sensors, it is necessary to consider entities that
cannot be sensed but which potentially cause high risks for
the ego vehicle. These are entities which approach the same
intersection as the ego vehicle, but which are occluded by
nearby buildings. Consequently, the system has to estimate
possible positions, where such non-observable critical entities
may be located and it has to predict their future behavior.

Topologic road information in the R-LDM defines how
incoming lanes are connected to outgoing lanes at intersec-
tions. We select those incoming lanes which have right-of-way
priority over the ego vehicle’s current lane. Then, we overlay
their geometry with the visible area gained in Section III-A to
achieve an estimate of relevant occluded lane segments.

A virtual car may be situated anywhere on each segment
with highly uncertain behavior. We introduce only one virtual
car at the occluded position closest to the intersection for
every segment. The car is assumed to drive with constant
velocity along the lane’s centerline (i.e. 40km/h for urban

Fig. 5. Example of a partially visible intersection. Left: Satellite view [35]
and visibility area. Right: Positioning of virtual car.

traffic). Once its position is at the most critical location, right
in the middle of the intersection, we assume a sudden stop
in the trajectory prediction. This represents a worst-case-like
behavior for the ego driver and enables a computationally
inexpensive way to reproduce different position and velocity
profiles of the virtual car.

Fig. 5 illustrates a green ego car approaching an intersection.
The visible area (orange) is limited due to occlusion caused
by buildings (blue) and a virtual car (red) is located on the
relevant lane (light red) at the boundary of the visible area
with a longitudinal velocity profile pointing to the intersection
center.

C. Collision Risk Evaluation
In general, risk is the expectation value of the cost related

to critical future events [36]. The evaluation of risk includes
a prediction of those critical events as well as an estimation
of the damage in case a related event occurs. Future risk1 is
defined as the cost expectation value

r(t + s,xt) =
∫

ct+s P(ct+s|xt)dct+s, (1)

where P(ct+s|xt) is the probability of a damage ct+s, happen-
ing at future time t + s, for the known states xt of the current
scene.

Since the scene may be composed of several entities
(e.g. different traffic participants) with state vectors xi

t (ego
car state x0

t ), we write xt := {x0
t ,x1

t , ...,xn
t }. Using discrete

time step indices t, t + 1, ..., t + s (time step size ∆t), state
vector sequences are additionally introduced as

xt:t+s := {xt , ...,xt+s}, (2)

which describe the state of the scene from t (now) until a time
t + s (s into the future).

According to [37], by assuming risks being caused by
rare critical events and incorporating approximations on the
probabilistic state vector sequence xt:t+s by a prototypically
predicted state vector sequence x̂t:t+s and a deterministic
damage calculation ĉt+s, the general expression for future risk
is proposed as

r(t + s,xt)∼∑
et+s

ĉt+s(et+s, x̂t+s(xt))

·P(et+s|x̂t:t+s(xt),s). (3)

1To be precise, this is the risk density over time.
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P(et+s|x̂t:t+s(xt),s) describes the event triggering probability
with the discrete variable et+s describing a certain critical
event at future time t + s, such as car-to-car, car-to-pedestrian
or car-to-infrastructure collisions.

In order to advance from a general definition of risk to an
actual risk measure for a given prototypically predicted state
vector sequence, 1) the deterministic damage calculation using
a damage approximation model and 2) the probability of the
future event happening at time t + s have to be modeled.

The event probability P(et+s) of a single event et+s can be
expressed as the combination of the instantaneous event rate
τ−1

et+s (assuming that the entity “survives” until future time t+s)
and the probability that the entities actually survive

P(et+s|x̂t:t+s(xt),s)

= τ
−1
et+s(x̂t+s(xt),s)S(x̂t:t+s(xt),s)δ t. (4)

Here, the so-called inhomogeneous survival function S takes
into account that the observed entities possibly have already
been involved in another critical event, e.g. a collision, before
it could actually be involved in the considered event

S(x̂t:t+s(xt),s)

= exp{−
∫ s

0
τ
−1
0 + τ

−1(x̂t+s′(xt),s′)ds′}, (5)

with the total event rate, combining all possible event rates

τ
−1(x̂t+s(xt),s) = ∑

et+s

τ
−1
et+s(x̂t+s(xt),s). (6)

In [38] different event rates have been modeled. Exemplar-
ily, for car-to-car collision risks, an appropriate model for the
instantaneous event rate depends on the distance between two
traffic participants such that the instantaneous event rate is
large for small distances and decreases with an increase in
predicted distance

τ
−1
d (x̂t+s(xt),s)

= τ
−1
d,0 exp{−βd(s) ·max(d̂t+s(xt)−dmin,0)}, (7)

where d̂t+s(xt) is the predicted distance between the ego
car and another traffic participant and βd(s) their spatial
position uncertainty which grows with the predicted time s.

x̂i
t:t+s

x̂0
t:t+s

x̂i
t:t+s

x̂0
t:t+s(q)

l̂0
t+s

ri
sk

q

ri
sk

l̂0
t

l̂0
t+sl̂0

tq

Fig. 6. Generation of a predictive risk map. Top: Use of risk model. Bottom:
Variation of ego car’s predicted velocities.

The parameter dmin stands for the minimal allowed distance
corresponding to a physical overlap.

In Eq. (3), the expected cost/damage is modeled determin-
istically. For car-to-car collision risks, an appropriate approxi-
mation of damage in case a collision occurs is modeled by the
energy transfer between colliding entities. As a result, a 2D
inelastic collision model is considered (more accurate damage
models can be applied in similar ways), such that

ĉt+s(et+s, x̂t+s(xt ,ht))

∼ wc ·
1
2

m0mi

m0 +mi
||v̂0

t+s(xt ,ht)− v̂i
t+s(xt ,ht)||2, (8)

where m0, mi are the masses and v̂0
t+s(xt), v̂i

t+s(xt) define
the vectorial velocity components of the ego- and another
entity involved in the collision risk estimation while wc is
a weighting factor. The velocity components can be derived
from the prototypically predicted state vector x̂t+s(xt), which
relies on the current states of the scene xt .

The risk model (3) is used to build predictive risk maps,
as shown in Fig. 6. In the process, we do not only calculate
the risk along a defined path l̂0 for one predicted trajectory
of the ego car x̂0 with respect to the other car’s predicted
trajectory x̂i. Instead, we create a set of ego car trajectories
x̂0(q) defined by variation parameters q and evaluate the risk
for each trajectory. When we use the predicted ego car velocity
v̂0 as q, a predictive risk map can be composed. It indicates
how risky a chosen ego velocity will be for the predicted time
t + s.

IV. DRIVER ASSISTANCE

A. Planning of Risk-Aversive Behaviors

Risk maps allow the evaluation of future behavior alter-
natives for the ego vehicle. A modified, globally optimizing
version of the rapidly-exploring random tree search algorithm
has been used in [39] to plan the most suitable velocity profile
as a “path” through the map, minimizing risk and maximizing
utility considerations. Fig. 7 displays the outcome of the
algorithm for an intersection scenario with two other traffic
entities. The future cost-optimized trajectory swerves around
the two corresponding hot spots in the risk map.

To fulfill computation time constraints, we use a planning
algorithm of reduced complexity by only considering the
three behavior alternatives: 1) keep on driving with constant
velocity, 2) brake with constant deceleration to be able to
stop at the stop line of the intersection and 3) accelerate
with constant acceleration to safely pass in front of the non-
detectable approaching vehicle.

In a first step, the three behavior alternatives have to be
calculated. Each is represented by a deceleration/acceleration
value. For driving with constant velocity, we set

aconst = 0m/s2. (9)

The deceleration that is needed to stop at the stop line is
calculated according to

astop =−
v2

0
2 dsl

, (10)
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Fig. 7. Behavior planning using risk maps. Top: Intersection scenario with
two other cars. Bottom: Risk map with planned trajectory.

where v0 is the current ego car velocity and dsl the distance
to the intersection entry point or stop line. The distance dsl is
derived from our map data introduced in Section II.

For passing in front of potentially approaching vehicles, we
use the risk map to estimate the target velocity vtrg that has to
be reached at the intersection to pass with a certain low risk
value. The required acceleration is then

aacc =
v2

trg− v2
0

2 dcp
, (11)

with dcp describing the distance to the expected crossing point
on the intersection between the ego and other vehicle’s path.

In a second step, we evaluate the three behavior alternatives
aconst, astop and aacc within the risk map. Hereby, not only
the collision risk from virtual vehicles, but also from detected
vehicles by the ego vehicle’s sensors are depicted in the
risk map and have priority over occlusion risks. In case
the resulting risk value exceeds a threshold, the behavior
alternative is neglected and not considered as a suitable action.

In [40], a situation classification is used as a preprocessing
step prior to the behavior planning in order to consider
different possible interactions of the traffic participants. The
proposed approach for occlusion risk can seamlessly be incor-
porated into this full behavior planning framework.

B. Driver Warning and Behavior Suggestion

We suppose an ADAS functionality that only steps in,
when the currently performed behavior of the human driver
is critical. For that purpose, we categorize the planned risk-
aversive behaviors aconst, astop and aacc in four levels of
intervention according to Fig. 8: comfortable (green), heavy
(yellow), emergency (red) and non-reachable (gray) [41].

It can be seen that aconst lies in the comfortable area.
However, the values of astop and aacc can vary depending on
the current state of the risk map (respectively the intersection
and occlusion geometry) and thus reach different levels of
intervention. We define that if both astop and aacc have left the
comfortable region, the driver behavior is seen as critical. If

0 3-3 6-6-10
a [m/s2]

astop aconst aacc

Fig. 8. Levels of necessary braking or accelerating.

those behaviors were applied, the car would reach its physical
limits. If astop or aacc are in the non-reachable area, they have
to be disregarded because it is not possible to execute them.

In compliance with the definition of driver criticality, we
display a warning if aconst = 0m/s2 is not safe (not among the
proposed actions) and the alternative stopping and accelerating
trajectories are outside of the comfortable region

astop ≤−3m/s2 ∧ aacc ≥ 3m/s2. (12)

At this point, the behavior option with the lowest level of
intervention can be provided to the driver.

On top of this, it can be considered to automatically activate
a control mode if the driver is not responding appropriately.
As shown in Fig. 8, we do not consider aacc as an appropriate
emergency action. Nevertheless, if the best possible action
(lowest level of intervention) is astop in the emergency area

−10m/s2 ≤ astop ≤−6m/s2, (13)

the system could intensify the warning at first and initiate an
emergency brake after waiting a predefined period of time.

V. SIMULATION RESULTS

We applied the proposed ADAS functionality for approach-
ing intersections which are hard to access by the vehicle’s on-
board sensors to real world scenarios taken from the KITTI
dataset [42]. In general, the behavior of the human drivers
in this dataset can be described as safe. Traffic rules and
occlusions in urban environments were taken into account
adequately. To evaluate driver behavior that can be considered
as critical, we chose scenarios where the ego vehicle is
actually on a priority road. However, we postulate that there
is no priority information in the simulation. This results in
a behavior, where the driver crosses intersections of limited
visibility while neglecting potentially approaching but not
detectable vehicles.2

A. Statistics of Visibility Area

Depending on the visibility percentage of the intersection
and the ego car’s position and velocity, occlusion risk may
be present. However, intersections and surrounding buildings
alignment vary strongly. For demonstration purposes, the vis-
ibility estimation algorithm was tested on a 7:35 minutes long
run with 40 intersections. We then examined the road visibility

2In the scenario with safe human behavior, we can thus exploit the taken
velocity course of the test driver as a baseline and compare it with the planned
velocities of our ADAS. The scenario with critical human behavior is only
dangerous in our differently postulated resimulation. Nonetheless, this reflects
real situations with occlusion-unaware traffic participants.
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Fig. 9. Road visibility spread of different intersections.

as the quotient of the visible and the total road area within a
radius of r = 50m. The current lane of the ego car is excluded
in this case.

Fig. 9 shows the outcome with a box plot. It consists of
mean µ (middle stroke), first and third quartiles ±0.6745σ

(box) as well as min and max values (end of whiskers) for
decreasing distance intervals to the intersections. While µ is
1 at 80−60m before, it declines to 0.5 in 40−20m and rises
back to 1 for 5−0m.

The variance σ is high for positions far away from the
intersection (80−5m). On the one hand, there are intersections
in which only few buildings are nearby. In this context, the
road visibility stays approximately at the max value 1. On the
other hand, there are intersections with high building coverage,
leading to min values of 0 to 0.2. The box heights amount to
0.25 within 40−20m, 0.3 inside 80−60m plus 20−5m and
0.5 at 60−40m. Close to the intersection point at 5−0m, σ

is small and the minimal road visibility is approximately 0.6.
Occlusion risk is in inverse proportion to the visibility and

thus appears only before crossing the intersection. When the
ego car is in the middle of the intersection, the risk disappears.
To minimize the risk, the driver should react accordingly when
approaching the intersection. To summarize, it can be said that
occlusions play a dominant role in inner-city scenarios. On
average, the worst-case visibility reaches down to 50%.

B. Scenario with Safe Human Behavior

Fig. 10 outlines a satellite view of the ego vehicle ap-
proaching a partially visible intersection with buildings on the
right limiting the field of view. The modeling of the virtual
car and the corresponding risk maps are shown for three
consecutive time steps represented with the traveled distance
d = [84,118,126]m.

Besides depicting risks from modeled virtual cars at occlu-
sions, the plot also indicates the actually driven velocity profile
of the human driver (purple line), the velocity profiles of the
proposed behaviors aconst, astop and aacc (yellow lines), the
position of the stop line at the intersection dsl (white vertical
line) as well as the velocity that is necessary at the collision
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Fig. 10. Evaluation of intersection assistance for limited visibility applied
to a scenario with correct human behavior. Top: Satellite view and visibility
area. Bottom: Simulation view and risk maps for the traveled distances 1)
d = 84m, 2) d = 118m and 3) d = 126m.
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point to pass in front of any potentially non-detectable vehicle
vtrg (black horizontal line).

Out of the concatenation of aconst, astop and aacc, two risk-
minimizing/safe trajectories can be derived, which are plotted
together with the intervention levels in Fig. 11. The three time
steps are marked in the plot with three dashed vertical gray
lines.

In this case the human behavior can be considered as being
safe. The driver slows down until the intersection is mostly
visible and accelerates back to the desired cruising velocity.
Consequently, it is always possible to safely stop at the stop
line if a car emerges from the occluded area.

At d = 84m the intersection is largely occluded, but the stop
line is still dsl = 50m away. A deceleration of astop =−1m/s2

is proposed so that the velocity profile in the risk map avoids
the risk spot.

When the ego vehicle is closer to the intersection with
dsl = 15m at d = 118m, the required deceleration increases
to astop = −2m/s2. At the same time, the intersection is
visible to such an extent that an acceleration of aacc = 6m/s2

would allow to pass the intersection in front of the virtual
car by reaching vtrg = 12m/s. Since aacc = 6m/s2 is in the
heavy intervention level, astop =−2m/s2 is the recommended
behavior. If a real vehicle appears from the non-visible area,
by executing astop =−2m/s2, the ego vehicle would be able
to safely stop at the stop line without a collision.

Finally at d = 126m, the intersection is nearly completely
visible. Keeping the velocity constant with aconst = 0m/s2

would not result in collision anymore. At all time steps the
proposed behavior resembles the actual safe human behavior.
The slope of one of the yellow curves matches the purple
curve. Hence, the required deceleration astop stays small and
at no time a warning is triggered.

C. Scenario with Critical Human Behavior

Figs. 12 and 13 depict the simulation results of the ego
vehicle approaching an intersection with an occluded incoming
lane with priority over the ego vehicle’s lane for three time
frames d = [58,72,86]m. The driver does not reduce the speed
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Fig. 12. Evaluation of intersection assistance for limited visibility applied to
a scenario with incorrect human behavior.
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Fig. 13. Trajectories for scenario with incorrect human behavior.

while coming closer to the intersection, which allows the
assumptions that he is not considering potential hazards.
Therefore, his behavior is seen as being critical.

At d = 58m the ego velocity has a maximal value of
v0 = 14m/s so that a braking maneuver with astop =−3m/s2

is necessary to guarantee a safe halt in dsl = 30m. Because
astop =−3m/s2 is the only behavior alternative and lies in the
heavy intervention level, a warning is indicated to the driver.

Shortly after, at d = 72m the braking distance decreases
to dsl = 16m whereas the velocity stays the same with v0 =
14m/s, leading to astop = −5m/s2. At this point, it is easier
to avoid the risk spot by accelerating to vtrg = 17m/s with
aacc = 3m/s2. Since vtrg = 17m/s > 50km/h, the acceleration
aacc = 3m/s2 is neglected and the warning stays activated. In
this context, 50km/h is the allowed speed in inner-cities.

In this example, there is no real car on the right lane. The
intersection becomes entirely visible at d = 86m and thus the
risk map does not show a risk spot anymore. At this point in
time, driving with constant velocity aconst = 0m/s2 is proposed
to the driver without a warning.

In the first two time steps the behavior suggestion deviates
from the actual human behavior. The slope of the yellow and
purple curves have different values. When astop reaches the
heavy intervention level, the system determines a critical driver
behavior and gives a warning about 3s before a possible crash.

VI. DISCUSSION AND OUTLOOK

In this work, we introduced a novel intersection warning
system that not only allows for the evaluation of collision risks
from vehicles detected by on-board sensor, but also of risks
originating from hypothetical cars appearing at occlusions. The
sensor’s visibility area to look into the upcoming intersection
for dynamic road entities is thus virtually enhanced and a risk-
aversive behavior becomes plannable.

Simulations showed that the proposed system’s behavior is
matching the general behavior of a correctly acting human
driver. In scenarios in which the actual human behavior is dif-
fering from the proposed behaviors of the system, a warning is
released to successfully avoid potential hazards lying at areas

which cannot be accessed by on-board sensor. Optionally, we
display the safe trajectory with the lowest intervention level.

So that the system can be implemented for real-time use
on a test car, the ego position has to be aligned on the R-
LDM. This is achievable either with high-accurate GPS or
a localization module. Furthermore, the provided map data
in the R-LDM should contain detailed geometric information
about the lanes and buildings. Only if collision risk of other
real vehicles is also considered, active sensors (e.g. lidar or
camera) are needed to retrieve the relative position of those
vehicles.

Currently, occlusions only result from buildings around the
intersection. The sensor range can additionally be reduced by
other static objects, such as parked cars and trees on the side,
or by cars driving nearby. Furthermore, the assumed behavior
of the virtual entity matches the behaviors of cars, but not that
of pedestrians or bicyclists. Nevertheless, it is straightforward
to extend the proposed general approach for other occlusion
sources and entity types.

When planning necessary braking and accelerating maneu-
vers, human factors, like driving experience, have not been
integrated yet. At the same time, one or more proposed
behavior alternatives are possibly not executable since they
would violate traffic rules. Future research will concentrate on
incorporating realistic driver types, so that a personalization
of warning can be achieved.
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