
Abstract—Road traffic mobility can be described by its Level of 

Services (LoS). A major challenge in traffic state and LoS 

estimation is the limitation of observed traffic data. To derive the 

traffic state of a road network, a sensor network needs to be 

installed. Most stationary sensing techniques involve high 

investment in terms of the sensor installation, data communication 

and computational resources. This paper proposes a low-cost 

image processing system for road traffic state estimation using 

time-spatial image (TSI) processing. The TSI is an image 

processing technique for transforming a series of video images into 

a single image. Therefore, the TSI can reduce memory resources 

compared with the traditional methods. A camera can be exploited 

for traffic-state estimation through integration with TSI 

generating and processing modules. In addition, traffic state 

variables such as space-mean-speed, flow and density can be 

estimated. Empirical results are provided based on several 

experiments to show that TSI processing is a viable low-cost 

approach to traffic state estimation. 

Index Terms—: Traffic state estimation, Space-mean-speed, 

Traffic flow, Traffic density, Level of service, Time-spatial image 

processing, Low video frame rate processing  

I. INTRODUCTION

RAFFIC state estimation is an essential process of

describing the traffic state on a particular road segment. The 

traffic state is estimated based on a number of traffic variables 

e.g. flow, speed, and density. The estimation results are

fundamental requirements for improving traffic control,

operation, and planning. In addition, providing real-time traffic

information to road users can improve road service capabilities

in terms of speed and volume. The road users can make use of

the real-time information to avoid congestion and minimize

their travel time [1].

In terms of traffic data collection, two types of traffic sensing 

technologies are used: stationary sensors and floating data. For 

taking measurements, stationary sensors such as inductive loop 

detectors [19], radar detectors [20] and closed-circuit television 

cameras [4] are widely used due to their ability to collect traffic 
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data from most of the passing vehicles at a particular reference 

point or detection zone. In addition, the sensors can provide 

traffic state information by lane. A major drawback of 

stationary sensors, however, is the cost of sensor installation, 

which significantly affects the number of sensors installed on 

each road segment. Moreover, the installation and maintenance 

processes for inductive loop detectors interrupt the traffic 

operation.  

Floating data or mobile data are alternative traffic state 

estimation approaches that include cellular phone signals [2], 

GPS [3], and Bluetooth data [24]. The floating data can be 

considered as low-cost traffic data since the data can be 

collected from ubiquitous smartphones. Furthermore, sensor 

installation is unnecessary for most forms of floating data. The 

traffic data derived from an individual vehicle are travel time 

and speed. These data may not represent the actual traffic state 

at the macroscopic level, however, since the floating data alone 

are unable to estimate the traffic flow and density directly.   

Due to the limitations of floating data, it is easier for traffic 

operators and road users to perceive and interpret the traffic 

state from stationary sensors. In particular, CCTV cameras are 

usually installed on most road segments for road traffic 

monitoring, especially on expressways, owing to the 

advantages of relatively low installation costs and low traffic 

disruption during maintenance. With the advancement of image 

processing and computer vision techniques, the methodologies 

of traffic data extraction using video images have been 

developed [4]. Table I summarizes the latest traffic sensing 

technologies, particularly video detection systems based on 

CCTV cameras. The information in Table I is adapted from the 

Traffic Monitoring Guide [18] in order to compare types of 

traffic data in different dimensions.  

In general, the existing image processing techniques for 

traffic data extraction can be classified into 2 types: 

background-subtraction-based approaches [5, 6, 7, 9] and 

motion-detection-based approaches [8, 10, 11, 12]. High-

quality video images might be required for collecting accurate 

traffic data in this way. In order to produce the required high-
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quality video images, it is also necessary to have access to high 

quality video cameras, sufficient communication bandwidth, 

and sufficient processing time. In order to compromise the extra 

requirements caused by high-quality video images, a group of 

researchers [13-17] has developed a method of extracting traffic 

data extraction based on a time-spatial image technique (TSI). 

The TSI is an adapted image processing technique used to 

transform a series of video images into a single time-spatial 

image [13]. By setting a virtual detecting line on a monitoring 

road section, this technique can continue capturing the image 

details on the line and discard other information. The line 

information captured from a series of video images over time 

can then be constructed as a stack of lines called a TSI, which 

includes the data of vehicles that travel across the virtual 

detection line. It is worth noting that TSI significantly reduces 

the required memory storage compared to video images for an 

equal amount of time. Hence, this technique could minimize 

data communication costs and be suitable for decentralized 

processing.  

TSI has been adopted for traffic data extraction by some 

researchers [14-17]. Li et al. [14] introduced a methodology for 

estimating traffic states with TSI. The method involved 

installing a video camera to observe a road junction and the 

results showed that the time-spatial images in free-flow traffic 

conditions were totally different from in congestion cases. In 

their study, Li et al. were able to identify congested traffic states 

with this technique. In another study, Yue [15] used TSI for the 

purpose of counting vehicles. By implementing a 

morphological technique and hole filling on the edge of the 

detected image, the system was able to extract and count the 

vehicles on an urban road. In 2016, Zhang et al. [16] extended 

the work initiated in [15] by adding a foreground extraction 

technique to provide more accurate vehicle shape estimations 

for vehicle counting purposes. Li et al. [17] also used TSI 

processing for vehicle classification. According to the previous 

studies, TSI processing is capable of estimating traffic 

conditions and traffic state information. However, there is a 

lack of research about vehicle speed and density estimation and 

real-time traffic state estimation using the TSI technique.  

To this end, this paper proposes a low-cost road traffic state 

estimation system based on the TSI technique. The system is 

capable of estimating lane-based traffic variables (e.g. traffic 

flow, space-mean-speed, and density) in real-time with 

minimum requirements in terms of sensor costs, data storage, 

communication bandwidth, and processing time. As a potential 

solution to the need for a low-cost traffic state estimation 

system, the original works on TSI are extended by proposing a 

method for speed and density estimation. Moreover, the use of 

low-quality video images and low video framerates are 

investigated in order to find the limitations of the proposed 

system compared to a commercial speed-trap video sensor. It 

can be seen from Table I that the traffic information provided 

by the proposed system is similar to the information provided 

by Autoscope. However, the proposed system has lower 

resource requirements in terms of video resolution and sensor 

costs. This paper provides an in-depth examination of the 

system performance in terms of estimation accuracy and data 

transmission cost compared with the traditional video 

processing method.  

This paper is organized as follows: Section II describes the 

detailed procedures of traffic state estimation using TSI. In 

Section III, empirical studies are carried out to evaluate the 

performance of the proposed system. Finally, section IV 

provides the conclusions of the study.   

II. TRAFFIC STATE ESTIMATION USING TSI 

As illustrated in Fig. 1, the proposed system consists of 4 

main parts: TSI initialization, TSI generating, vehicle tracking 

and traffic state estimation. The first part involves determining 

a virtual detection line for generating TSI. The TSI generating 

process is for video data pre-processing and TSI construction.. 

In the vehicle tracking part, a TSI is processed to estimate 

vehicle numbers, occupancy time, vehicle entry time, vehicle 

exit time and time headway. Finally, the information from 

vehicle tracking can be further used for traffic state estimation.   

 

TABLE I 
LITERATURE REVIEW AND COMPARISON OF TRAFFIC SENSING TECHNOLOGIES 
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Inductive Loop [19] X  X*  X N/A L-M L L 

Microwave Radar [20] X X X X X N/A M L-M M 

Video Detection System (Background subtraction) [6] X  X X X H M L-M L 

Video Detection System (Motion detection) [10, 11] X  X X  M-H M L-M M-H 

Video Detection System (Autoscope) [5] X X X X X H L M-H L 

Video Detection System (TSI) [13, 14, 15, 16, 17] X   X X M-H L L L 

Video Detection System (Proposed system) X X X X X L L L L 

N/A = not applicable, X* = required multiple sensors, X = applicable, L = Low, M = Moderate, H = High 

 



A. TSI Initialization 

1) Camera setup 

Before the TSI generating process, several camera settings 

and image pre-processing procedures are required for 

enhancing the quality of the video scene. Sometimes a vehicle 

may obscure the following vehicle due to the vehicle height. 

Therefore, this study has a restrict assumption on camera 

installation: the camera height and angle setting must be 

carefully adjusted and the vehicles in the video should not be 

obscured. 

The camera should be installed in a high building or a gantry 

with a narrow camera angle to the vertical axis or similar angles 

to the top down angle. For image preprocessing, noise reduction 

is required [21]. Gaussian noise is adopted to reduce salt and 

pepper noise in the video data. In this study, the camera angle 

is restricted and carefully installed on a building to capture the 

traffic data.  

2) Virtual detection line setup 

A digital image is represented by a two-dimensional matric, 

where the X-axis and Y-axis represent image width and height 

in a pixel units, respectively (e.g. *W H ). Therefore, an 

image from a video source at time T  can be denoted as a color 

intensity matric , *T W HF . An element ,T ijf  is a vector 

representing the intensity of a pixel in the 3 primary color 

domains of red, green, and blue 

, , ,,

T

T ij T ij T ijT ijf r g b =    where i  and j  are location of 

the pixel in x-axis and y-axis respectively. The intensity value 

of each color is quantized into 256 values (i.e. ,
0 255

T ij
r  ) 

where zero represents the lowest color intensity or the darkest 

color, and vice versa.  

To set a virtual detection line 
nD where n  is an index of the 

detection line 
nD , two points at both ends of a line, 

1 1( , )i j

and 
2 2( , )i j , must be chosen from the , *T W HF . For example, 

a virtual detection line 
1D  can be drawn along an observing 

lane as a straight line as can be seen in Fig. 3a. The actual 

detection length of 
1D  is denoted as 1D

l  in meter units.  

The only limitation of setting the virtual detection line is the 

length of the line. The virtual detection line must be longer than 

the minimum length which can be estimated based on 2 factors: 

the video frame per second (fps) and the maximum speed on the 

observed road. For defining the minimum length of the 

detection line, the maximum distance of a vehicle traveling at 

maximum speed in a video frame must be determined.   

 
max

max
3.6*

v
s


=                 (1) 

where 
maxs is the maximum distance of a vehicle traveling at 

maximum speed in a video frame (m/frame), 
maxv is the 

maximum speed (km/hr) and   is the video frame per second 

(frame/s). Finally, the minimum length of the detection line is 

equal to 
maxs . 

 Fig. 2 demonstrates the minimum length of the detection line 

based on various video fps and maximum vehicle speeds. In this 

study, the video fps is 25 and the maximum speed is 80 km/hr. 

Therefore, the detection line length 1D
l in Fig. 3a is 

approximately 24 m which is longer than the 0.9 m. The effect 

of different length detection lines will be discussed in section 

VI.  

The color intensity value at each pixel on the detection line 
1

TD  at time T  will be used for constructing TSI and for road 

traffic data extraction in the next following sections. 

B. TSI Generating Process 

Time-spatial imagery (TSI) is a technique used to generate a 

two-dimensional image constructed with lines data over the 

period. TSI can be represented as a compact Time-Space 

diagram. Let P  represent the number of video frames in a TSI 

construction period (frame). Therefore, 
*n

TD P
  represents a 

 
Fig. 1.  Overall TSI processing framework   
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Fig. 2.  Minimum detection length per video fps based on different maximum 
free-flow speeds 
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two-dimensional image of a TSI generated from a virtual 

detection line
n

TD while {1,2,3,..., }t P= .  

 
1 2*

. .n
t

T
n n n

PD P
D D D  =             (2)

where (2) may be called the transformed image of a video 

stream period or TSI. The virtual detection line setting ensures 

that every vehicle in the detection lane is well recorded in the 

TSI apart from vehicles which changed lanes. The system 

captures the line data 
n

TD  of each time-frame of 

{1,2,3,..., }t P=  , then constructs the TSI as 
*n

TD P
  as can 

be seen in Fig. 3b.  

In this study, frame-seconds will be used as a unit of time 

instead of seconds for estimating road traffic information. As 

can be seen in Fig. 3b, the frame-second represents a unit of 

time corresponding to the video format image per second or 

frame per second (fps).  

 Pt


=                        (3) 

where P  is the total number of frames or TSI height (frame), 

t  represents time (s) and   is video frame per second 

(frame/s). For example, a video with a resolution of 25 fps 

generates a TSI of 25 pixels per second. This means that a 

minute of P  frame will be 1,500 pixels long in the Y-axis for 

a 25fps video. Therefore, the units of a TSI in the Y-axis are 

frame-seconds, which can be transformed into seconds by using 

fps directly.  

As can be seen in Fig. 3a, the 
1D  detection line is established 

along the detection area. The right side and left side of the 
1D

’s TSI are the upstream and downstream, respectively. A 

vehicle that passed the detection zone from upstream to 

downstream will appear as a complete slope line from left to 

right in 
1D ’s TSI in Fig. 3b. A vehicle changing lane either out 

of or into 
1D  will result in an incomplete slope line from left 

to right. 

C. Vehicle Tracking 

To estimate the traffic state from a TSI, individual vehicles 

need to be identified. The TSI is an image constructed from 

several line data 
n

TD  where {1,2,3,..., }T P=  from (2) as 

can be seen in Fig. 4a. First, the edge detection technique is 

implemented to detect the distinctiveness of an object’s contour 

[22]. However, the texture within a TSI is changed due to the 

time dimension. Therefore, TSI edge detection 
*n

TD P
  can be 

considered as an estimating edge based on the time dimension 

instead of the 2 dimensions of height and width which would 

be used in an ordinary 2-D image as can be seen in Fig. 4b. The 

*n
TD P

  can be constructed using (4), (5) and (6).   

 
1 2*

. .n
T

T
n n n

PD P
E E E  =              (4) 

 1

n n n

t t tE D D −= −                (5) 

 
, 1,

,

0 ;( )

1 ;

n n

n T x T x

t x

d d k
e

otherwise

−− 
= 


            (6) 

where 
n

tE  represents the edge detection line generated from 

line data subtraction in color of 1

n n

t tD D −− . Each element 

,t xen is a binary value representing edge detection while 

,1 ,2 ,{ , ,.., }n n n n

T T T X te e e E , , {0,1,2,3,...,255}n

T Xd =  is an 

average pixel value from 
,T X

f  (grayscale value) to minimize 

the complexity of the image processing and 

,1 ,2 ,{ , ,.., }n n n n

T T T X td d d D . 

Then the location of the vehicles in the TSI can be estimated. 

The dilate, contour filling and blob coloring technique [23] are 

adopted to identify the estimated distinctiveness of the vehicle. 

The dilated image will enlarge the edge detection line by an 

image filter of 3x3 instead of by 1 pixel to join the contours of 

the same vehicle together. Contour filling will be used for 

filling any holes in the edge detection process. Then blob 

coloring will show the distinct vehicles in the TSI as can be seen 

in Fig. 4c and Fig. 4d. 

_ ( _ ( )))n
TD xP

Blob coloring Contour filling       (7) 

where the vehicle location in the time axis within the TSI will 

be stored in a look-up-table. 

The vehicle tracking data from Fig. 4c are vehicle counting, 

vehicle entry time, vehicle exit time, and time headway. The 

data sets will be stored in a data look up table for each time 

interval. The data table can be further used in the following 

 
(a)                                                     (b) 

Fig. 3.  Virtual detection line setting (a) and TSI generated from 1D  (b) 

  

 
          (a)                     (b)                    (c)                     (d) 

Fig. 4.  TSI (a), edge detection image of TSI (b), contour filling of TSI (c) and 
Blob colouring of TSI (d) 
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section for traffic state estimation including traffic flow, time-

mean speed and density. 

D. Traffic State Estimation 

This section consists of 4 sub-sections including traffic flow 

estimation, space-mean-speed estimation, density estimation 

and level of service estimation. The flow and space-mean-speed 

can be derived from a TSI input while the density will be 

estimated indirectly from the time headway and space-mean-

speed information. 

1) Traffic flow estimation 

Traffic flow is the number of vehicles passing a reference 

point per time unit. Since TSI is an image generated from a 

reference detection line for a period of time, the system can 

simply count the number of vehicles in the TSI and estimate the 

flow. 

,

1

3600 M

n j

j

q P
T



=

=                                                           (8) 

where q represents average flow (veh/hr/lane),   is frame 

rate of the video (frame/s), M  is number of vehicle in a TSI, 

,n jP is a vehicle index j  in the TSI generated from detection 

line n , and T  is the height of the TSI (pixels).  

2) Traffic space-mean-speed estimation 

Normally, there are lane markings along the road network, 

whereby the length between each lane marking is constant. The 

detection line length can be set up based on the lane markings’ 

constant lengths.  

The following assumptions are: 

•All vehicles pass the detection zone without changing lane  

•Each vehicle speed is constant within the detection zone. 

• The vehicle must not stop at the virtual detection line 

longer than the TSI generating time. Otherwise, the result 

would be 0 km/hr.  

The estimated speed from the TSI is a space-mean-speed 

since the TSI is a group of lines over time. The space-mean-

speed is an average speed over the period. 

 1

1

1
( )

M

i i

V M
v

−

=

=                  (9) 

where V  is the space-mean-speed (km/hr), M  is the number 

of vehicles (veh), and 
iv  represents t h e  spot speed of an 

individual vehicle i  (km/hr).  In order to estimate 
iv , the time 

occupancy must be estimated. The vehicle entry time and 

vehicle exit time are recorded in the TSI in frame-seconds. As 

mentioned in the previous section, the Y-axis represents the 

time. Therefore, the speed during each vehicle’s occupancy in 

the detection area can be computed. 

 
3.6* *

| |

Dn

i

i

l
v

L


=


                (10) 

where nDl  represents the length of detection line Dn  (m), 

is video frames per second (frame/s), and 
iL  is the occupancy 

time or the difference in the Y-axis of the same vehicle in two 

TSIs (pixels). Finally, the space-mean-speed can be calculated. 

 1

1

| |
( )

3.6* *

M
i

i Dn

L
V M

l F

−

=


=                 (11) 

3) Traffic density estimation 

TSI contains information of vehicle pixel-time-headway as 

well. As can be seen in Fig. 4d, the gap between two 

consecutive vehicles can be estimated as time-headway. 

 
1

1

1

1
( )

M

p n n

n

h L L
M

−

+

=

= −               (12) 

where ph  is the average pixel-time-headway (pixels), M  

represents the number of vehicles in each lane (veh*lane), and 

nL  is the location in the Y-axis of vehicle n .  In order to 

transform the pixel-headway into time-headway, the frame-rate 

of the source video is applied for dividing the pixel-headway. 

 
3600*

p

t

h
h


=                  (13) 

where 
th  denotes time-headway (hr), and   is represented by 

video frames per second (frame/s). The estimated time-

headway can be directly used for calculating density. 

 
1

1

1

3600* *

( )
M

n n

n

M
k

V L L


−

+

=

=

−
              (14) 

where k  is the density (veh/km/lane), and 
sv  represents the 

calculated space-mean-speed (km/hr) calculated in the previous 

section.  

4) Level of Service (LoS) estimation 

Basically, the density can be used for estimating the level of 

service as listed in Table II. In practice, road users do not need 

the precisely estimated data to plan their journey. For example, 

the Hong Kong Transport Department provides the traffic speed 

on a tri-color basis which is similar to most countries. 

Moreover, Google Traffic maps also illustrate the traffic state 

using tri-color representation. Therefore, the level of services in 

this study will be categorized into 3 distinct groups. The levels 

of service A and B are grouped as free-flow cases. The 

moderate traffic condition is grouped as C and D levels of 

service, while high congestion consists of levels of service E 

and F. 

TABLE II 

LEVEL OF SERVICE BASED-ON DENSITY ON FREEWAY SEGMENT 

HMC based Combined from HCM 

Level of 
 service 

Density  
(veh/km/lane) 

Level of  
service  

Density 
(veh/km/lane) 

A 0-7 
A and B 0-11 

B 7-11 

C 11-16 
C and D 11-22 

D 16-22 

E 22-28 
E and F >22 

F >28 

Source: Special Report 209: Highway Capacity Manual, Fourth Edition, 

Copyright 2000 by the Transportation Research Board, National Research 

Council, Washington, DC. 



One of the traffic state characteristics is changing restrictions 

on the traffic state. A free-flow state cannot be suddenly 

changed into a high-congestion state, and vice-versa. However, 

a low-congestion traffic state can be developed to a free-flow 

or high-congestion state while both free-flow and high-

congestion states can be developed to the low-congestion state 

only. This leads to a weight traffic level of service estimation.  

A high-congestion case can be determined by the 

preprocessing stage. The jam density is 28 veh/km/lane while 

the density in free-flow and low-congestion cases is varied.   

 

1 t

t 1 t

(1 )

0 ;| |

0.5;

t tk k k

k k

otherwise

 




−

−

= + −

− 
= 



               (15) 

where 
tk  is density (veh/km/lane),  t  represents time index,   

is weight, and   is the supervised learning density that will 

trigger the sudden change from free-flow to high-congestion. In 

this case, the trained    can be represented as 11 veh/km/lane. 

The system will not include the weight to recalculate the   

when 
t 1 t| |k k− −  is equal to or lower than  . On the other hand, 

the high values of   will lead to data misinterpretation for free-

flow to high-density cases. The abnormal difference of density 

in two consecutive times can be smoothed with (15). 

III. EMPIRICAL STUDY 

In this section, the test site is described. Several experiments 

are carried out to evaluate the TSI processing performance in 

several aspects, e.g. data communication cost, flow estimation 

accuracy and space-mean-speed estimation accuracy. 

A. Test Site Description 

A 4-lane road segment of the Chatham Road South located 

in front of The Hong Kong Polytechnic University, Block Z 

campus is used as the test site in this study. The special 

characteristic of this road segment is that there is traffic 

congestion on two slow lanes during peak hours. Some vehicles 

change lane on this road segment. On the other hand, the traffic 

state of the other two fast lanes is rarely congested, even in the 

peak hours.  

A video camera was installed on the 11th floor of Block Z 

facing toward the traffic scene as can be seen in Fig. 3a. This 

study uses the video data recorded during one hour of the 

morning peak period. The light is varied during this period. The 

virtual detection lines were set on each lane. Therefore, the 

empirical results include various traffic conditions.   

 The length of each detection line is 24 m and the estimated 

interval is every 60 s including 60 s line data collection and 

~0.005 second simultaneous processing during the TSI 

construction period. 

 The system is tested using different fps video inputs. The 

original video was transformed into several fps videos. The 

commercial speed-trap video sensor using 25-fps videos as 

input is considered as actual data for the TSI result validation.        

B. TSI Characteristics 

From the previous section, a virtual detection line captures 

and stores a line of each frame in the array data along a time-

frame period. The arrays of each time-frame can be constructed 

into a TSI. As shown in Fig. 5a, the X-axis of the TSI represents 

the captured line at each frame while the Y-axis represents the 

time of the captured line in frame-seconds. For example, the 

frame rate of the video stream is 25 frames per second. The 

system acquires 25 pixels of height from each second. If the 

system sets the TSI image height equal to 1,500 pixels, the TSI 

generating time is a little over 30 seconds including the 

computational time. The TSI height corresponds to the time of 

the TSI constructing period as (3). 

In cases where there are no vehicles passing the virtual 

detection line, the plain background of the pavement texture is 

captured in the TSI. The vehicles will be recorded in the TSI 

and the vehicles’ shapes can be changed due to the vehicle 

behavior during different states and the location of different 

virtual detection lines.  

The vehicles traveling in the free-flow traffic conditions tend 

to pass the detection line at a high speed as can be seen in Fig. 

5a. The slope lines in 1TD xP represent vehicle speeds. The 

slope is gentle and constant most of the time because the vehicle 

speed is considerably high. 

The TSIs generated during traffic congestion cases are shown 

in Fig. 5b. The slope of the lines in 1TD xP is uncertain owing 

to the variation of speeds on the detection line 1D . 

The length of the virtual detection line affects the resolution 

of the estimation. A longer detection line provides more 

estimation details which insignificantly affects the estimation 

 
                     (a)                                                         (b) 

Fig. 5.  Time Spatial Images generated from 1D  during (a) free-flow, and (b) 

congestion traffic condition 

  

 
Fig. 6.  Traditional video size comparison with TSI size from various video fps 

sources 
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results. However, a longer detection line might introduce a 

higher rate of vehicles changing lanes than a shorter line.  

C. Data Communication Cost and Processing Time 

Most of the traffic monitoring systems that process the traffic 

state data at a back-end server need to transmit the video stream 

to the server. On the other hand, the TSI approach transmits a 

single image over a time period. The required memory is, 

therefore, significantly reduced, compared with the back-end 

processing or centralized systems as can be seen in Fig. 6. The 

TSI technique uses approximately one tenth of the data size 

required by other systems. For 5-fps videos, the memory size is 

significantly reduced.  

To implement the system on a real-time basis, multi-thread 

processing can be performed. The line data collection procedure 

will not be interrupted by the traffic state estimation process, 

which will perform its tasks periodically. The computational 

time is less than 0.5 s using a computer with Intel Core i7-

7700HQ, 16 GB RAM. Therefore, the estimation interval 

depends on the video fps resolution plus the processing time 

(less than a second). 

D. Traffic State Estimation Results Using Various Frames 

per Second  

Suppose that the results from a traditional video-based speed-

trap using an Autoscope sensor provide a ground truth dataset. 

The accuracy of the Autoscope system is more than 98% [5]. 

The Mean Absolute Percentage Error (MAPE) can be estimated 

as: 

 
1

100
(%)

n
t t

t t

A F
MAPE

n A=

−
=           (16) 

where n  is the total number of data points, 
tA  is the data 

generated from Autoscope using 25-fps videos, and 
tF  is the 

estimated value from the proposed system. 

The recorded entry and exit times are used for speed and flow 

estimation. The 25-fps video is used for result validation. As 

can be seen in Fig. 7, the TSI technique outperforms the 

traditional approach in terms of flow estimation. The video fps 

directly influences the accuracy of the traditional approach. 

This is because the proposed system estimates the flow data by 

counting vehicles in the TSI, while the speed-trap method may 

encounter a problem of vehicle misdetection due to the low 

video fps. The lower video fps means a lower sampling rate. 

With the low sampling rate, several vehicle entry times or exit 

times are not registered in the speed-trap system. For the space-

mean-speed, the traditional approach provides higher accuracy 

with the higher video fps. However, the TSI method provides 

better results when the video fps is lower than 15-fps. For video 

at 5-fps, the TSI method is still able to estimate accurate results 

while the results of the traditional method are poorly estimated. 

E. Level of Service (LoS) Results 

The proposed system can roughly classify the level of 

services into 3 groups: “A and B”, “C and D” and “E and F”. 

From the calculated results, the accuracy of LoS classification 

is fairly high at 97% for “A and B”, 94% for “C and D” and 

93% for “E and F” from a dataset of one hour. However, higher 

traffic congestion leads to higher estimation error. First, errors 

can be caused by LoS misclassification. For instance, the 

calculated speed in heavy congestion cases may lead to the LoS 

for D or E which are not classified into the same LoS group. 

Second, the LoS misclassification can be caused by incomplete 

vehicle trajectories in a TSI. A vehicle trajectory in a TSI can 

be extended to the next TSI in the traffic congestion state.  

There are several ways to improve the accuracy in this 

respect. One method is to change the TSI to Time-Spatial 

Stream (TSS) processing. TSS is the same concept as TSI but 

TSI height is dynamic whereas TSS processing provides an 

opportunity to capture the road traffic information with lesser 

deflected results. However, the dynamic TSI height in the TSS 

approach consumes more computational time during the TSI 

generating process of estimating the vehicle occupancy within 

the virtual detection line. Moreover, temporal TSI processing 

can be used to estimate the vehicles that are separated into two 

consecutive TSIs. This approach needs to match the same 

vehicle in the two TSIs at the current time step and previous 

time step. Nonetheless, both approaches require more 

computational cost.   

F. Future research on vehicle classification 

Vehicle classification can be developed in future research 

based on vehicle length estimation. As can be seen in Fig. 4d, 

the vehicle length information that is also recorded in the TSI 

assumes that the vehicles do not change lanes while they are 

passing the VDL. 

To estimate the actual length, the positions of the vehicle 

front and rear bumper need to be identified in pixel units, which 

then need to be transformed into real-world dimension units 

Fig. 7. MAPE comparison of flow and space-mean-speed estimation using TSI 
technique and the traditional video-based speed-trap technique 
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based on the VDL length and the actual length of the VDL on 

the road segment. 

IV. CONCLUSION 

This paper proposes an efficient time-spatial image (TSI) 

processing technique for estimating real-time road traffic 

information. The TSI processing module can be integrated with 

CCTV cameras which have been installed on the road network 

for traffic surveillance purposes. Therefore, the unoccupied 

CCTVs can be opportunistically used to estimate the road 

traffic state and traffic information, such as flow, space-mean-

speed, and density. The TSI shows promising results in terms 

of data communication and processing costs. Moreover, the TSI 

can efficiently classify the traffic state of the road network into 

various levels of service for the illustration of congestion levels 

on the test site.  

The system can be delivered as several real-world 

applications, e.g. speed map and density map, since these 

speed-density maps normally use a tri-color system to represent 

the traffic states.  

However, there are several requirements for further 

improvement of TSI processing, such as the consideration of 

traffic speed and vehicle length in the TSI relationship, and 

vehicle classification using TSI. In addition, the current TSI 

processing system can be enhanced with some image 

processing techniques, e.g. shadow removal algorithms and 3-

dimensional object learning from TSI. Finally, Time-Spatial 

Stream (TSS) processing might be worthy of further 

investigation in order to explore its potential for improving the 

system accuracy by involving the temporal effect of partial 

vehicle trajectory in TSI. 
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