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Abstract— Recently the traditional taxi industry is struggling to 

keep its market share, especially with the emergence of new 

transport network companies (e.g., Uber). One of the problems 

with the traditional taxi services is the difficulty of matching the 

taxi demand to its supply when there is no phone booking or 

another reservation system. In that perspective, the taxi driver’s 

experience is important in reaching the next passenger. A taxi 

driver with limited experience may not know the high-demand 

locations and times of taxi stands or street sections to visit after 

dropping off a passenger. This causes a large number of vacant 

taxi drivers to regularly cruise the roads to search a passenger, 

contributing to congestion, pollution, and resource waste. We 

formulate the problem of a taxi driver’s next passenger pick-up 

location as a destination choice problem. Vacant taxi trips between 

drop-off and pick-up points are extracted from GPS records 

obtained from a taxi operator in Lisbon, Portugal to understand 

the travel behavior of vacant taxi drivers. We have estimated 

destination choice models with a multinomial logit and with a 

nested logit structure. It was found that passenger demand at the 

pick-up area, hotspot locations, service location preference, and 

major transport hubs positively influence a taxi driver’s next 

choice of passenger pick-up location. Results of this study provide 

insight regarding the factors that explain a taxi driver’s 

probability to choose a certain zone within a set of passenger pick-

up zones, contributing to a better understanding of taxi drivers 

travel behaviour. 

 
Index Terms—taxi GPS trajectory data, destination choice 

modeling, taxi travel demand, vacant taxi trip, multinomial logit, 

nested logit 

I. INTRODUCTION 

axi services are globally available and account for a 

small but significant portion of daily trips  [1]. The taxi 

industry is struggling to keep its market share. One of the 

reasons for this is the emergence of new transport alternatives 

such as peer-to-peer ridesharing and transportation network 

companies (TNCs) like Uber and Lyft [2]. 

One important issue for a taxi service is matching the taxi 

demand to its supply. Wong et al. [3] and Yang et al. [4] created 
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equilibrium models to express the relationship between taxi 

demand and a taxi driver’s search for passengers. These studies 

show that the absence of such equilibrium could lead to an 

excess of vacant taxis, which can create competitiveness to get 

the next passenger or longer wait times and unreliable taxi 

service [5]. The main innovation of a TNC is the development 

of a platform that connects passengers to drivers [2]. Most taxi 

agencies also provide telephone-based dispatch services, but 

the new TNC service refines the system by using geo-

positioning to reduce the time a passenger must wait for a driver 

[6]. 

Very often, a taxi driver’s mobility intelligence is important 

in reaching passengers. Experienced taxi drivers know the 

locations and times of high-demand taxi stands or street 

sections and will go to them after a passenger drop-off based on 

the day of the week and the time of day. Conversely, a taxi 

driver with limited experience faces difficulty in reaching the 

next passenger. This causes drivers of vacant taxis to cruise the 

road in search of passengers, which contributes to traffic 

congestion, air pollution, and resource waste [7],[8].  

A variety of studies have been carried out to understand the 

temporal and spatial variations of taxi demand. One method of 

achieving a more streamlined flow of taxi services has come in 

the form of detection for pick-up hotspots to aid vacant taxis in 

finding passengers  [8]–[10]. Another has identified efficient 

taxi service strategies based on revenue  [11], [12]. The 

aforementioned studies primarily focused on the use of 

historical GPS data to study the factors that affect a taxi driver’s 

mobility intelligence and consequently their choice regarding 

the best route and pick-up location. To improve taxi services, it 

is necessary to understand taxi demand, how that demand varies 

through space and time, and which attributes influence that 

demand. To achieve this goal, Lacombe et al. [7] and Yang et 

al. [13] developed two trip generation models, one for trip 

production and the other for trip attraction, and applied various 

explanatory variables such as demographics, land use, 

accessibility to transit, and weather conditions to those models 

to determine whether any of those were likely to influence taxi 

demand. 
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In this paper, we intend to address the issue of vacant taxi 

trips by identifying factors that influence vacant taxi trips. We 

argue that determining the factors that influence a taxi driver’s 

next choice of passenger pick-up location compared to their 

choice of whether to hunt or wait locally versus traveling a 

distance could provide additional insights on the 

characterization of vacant taxi trips. We formulate the problem 

of a taxi driver’s next passenger pick-up location as a 

destination choice problem. Traditionally, multinomial 

responses have been analyzed using the multinomial logit 

(MNL) model, which is the most common implementation of 

discrete choice model [14]. A number of studies have been 

conducted using MNL model to analyze individuals’ 

destination choice for leisure, tourism, and recreation [15], [16]; 

work, shopping, and other destinations [17]; and non-work 

related trips destinations [18]. The MNL model structure has 

also been applied to estimate destination choice models to show 

the distribution of occupied taxi trips [19], [20].  

In practice, often the researcher is unable to capture all the 

sources of correlation, especially in the case of destination 

choice modeling where spatial units are presented as 

alternatives. In this case, a more general model than the simple 

MNL model is needed [18], [21]. A common solution is to 

relax the independent and identically distributed error 

structure and there are several different types of model 

structures which may be used to model destination choices. 

Of these model structures, the following models have 

received particular attention in location choice analysis: 

Bhat and Guo [22] proposed the use of a mixed spatially 

correlated logit (MSCL) model for household residential 

location choice. The MSCL model has the advantage of the 

generalized extreme value (GEV)-based structure to 

accommodate correlation in the utility of the household 

residential units, and a mixing distribution over the GEV 

model structure to accommodate unobserved response 

heterogeneity. Wang et al. [23] explored the use of a paired 

combinatorial logit model to analyze location choice of 

metro commuters for after-work activities. Hammadou et al. 

[18] applied a mixed nested logit model to estimate 

destination choice model for non-work intra-urban trips. 
As there is a gap in the literature about how taxi drivers 

choose zones for passenger pickup purposes, two major 

contributions are made to the literature. First, we bring together 

taxi GPS trajectory data, open -and crowdsourced geospatial 

data (Foursquare check-in count, and Points of Interest (POIs)), 

Google Distance Matrix API, and census records to enrich the 

set of variables available for modeling multiple aspects of taxi 

travel demand. Second, to study the location choice of taxi 

drivers for passenger pickup, we have developed a choice 

modeling framework based on a nested logit and a multinomial 

logit models. To the best of our knowledge, this is the first study 

where a nested logit structure is used to model the location 

choice of taxi drivers for passenger pickup based on data 

obtained from multiple sources. In our attempt to develop the 

nested logit models, a k-means clustering technique is used to 

group destination zones that are similar in terms of trip 

generation roles. Then, destination zones in the same cluster are 

assumed to be in the same nest. Attempts are made to 

characterize the time of day profile of destination zones using 

POIs, Foursquare check-in count, and population density data. 

Such insight can be hardly obtained using a static information 

that mostly comes from traditional survey-based data. Thus, 

this is a timely study showing the opportunities of open and 

proprietary datasets and how effectively such datasets can be 

utilized to augment the capability of the traditional discrete 

choice models in vacant taxi travel demand modeling.  

The remainder of the paper is structured as follows. Section 

II discusses works related to improving taxi drivers’ passenger 

pick-up strategies, taxi travel demand models, and factors 

affecting taxi travel demand. Section III presents the 

methodology and data requirements, including model 

formulation, variable definitions, identification of explanatory 

variables, and case study area. Section IV presents and 

discusses the results of the models. Section V concludes and 

summarizes this paper’s main findings and points for future 

research directions.  

II. RELATED WORK 

The use of opportunistic sensing datasets produced from 

various sources has attracted a lot of attention from transport 

planners in recent years [12], [24], [25]. Some examples of 

analyses of this type of dataset are GPS data [26], [27], call 

detailed records data of mobile phones [28]–[32], and open and 

crowdsourced data [33], [34]. Transport planners now have new 

ways of providing insights regarding the spatial distributions 

and temporal evolutions of human and vehicular movements 

within cities. 

A significant portion of the literature is dedicated to detecting 

the spatial and temporal variations of taxi activity at major taxi 

trip generation and attraction points[8], [10], [35], [36]. The 

pick-up and drop-off events can be inferred by analyzing the 

transition of a taxi meter between the vacant and occupied 

statuses. This information can be used to understand the 

different taxi trip generation and attraction roles of the 

neighboring areas. For example, Wan et al. [36] applied a 

DBSCAN algorithm to cluster pick-up and drop-off points with 

the aim of predicting an area of interest for passenger pick-up 

based on the time of day. Lee et al. [10] applied a K-means 

clustering algorithm to generate popular clusters and to design 

a location recommendation service for vacant taxis to reduce 

their idling times. Chang et al. [9] developed a taxi demand 

hotspot prediction method based on drop-off location, weather, 

time, and request history information.  

Some existing works are intended to provide information to 

taxi passengers in addition to taxi drivers. Phithakkitnukoon et 

al. [37] developed a method to extract the number of vacant 

taxis in different areas of a city to assist passengers in finding 

taxi services with greater certainty. Yuan et al. [8] and Yuan et 

al. [38] developed recommendation systems to assist taxi 

drivers and passengers in their search for a pick-up location and 

a vacant taxi, respectively. Jianxin et al. [39] developed real-

time dispatch services where users can follow the location and 

ETA of the dispatched taxi. Moreira-Matias et al. [5] applied a 

time series forecasting technique to predict taxi demand for 

selected taxi stands in 30-minute intervals. Two classes of 

artificial neural networks, convolutional neural network  [40], 
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and long short-term memory [41], have been proposed for ride 

hailing demand predictions based on historical trip request data. 

The service strategies adopted by taxi drivers have direct 

influences on generated revenue. Veloso et al. [42] explored 

passenger searching and delivery strategies in Lisbon, Portugal 

and discovered that the preferred passenger pick-up strategy in 

the urban area was waiting at an adjacent taxi stand. Liu et al. 

[26] revealed that efficient and high revenue taxi drivers in the 

city of Shenzhen, China operate in different parts of the city 

based on the time of the day and avoid congested roads. Rong 

et al. [43] modeled a passenger searching strategy as a Markov 

decision process to optimize taxi driver revenue efficiency.  

Li et al. [11] and Zhang et al. [12] took a different tact by 

analyzing taxi service based on three strategies: passenger 

searching, passenger delivery, and service area preference. The 

revenue generated by each is used as indicator to differentiate 

between efficient and inefficient taxi service strategies. Very 

few studies have investigated the influences of different factors 

on taxi travel demand. Knowing why, when, and how people 

travel helps transportation planners identify travel patterns and 

trends, which are important pieces of information to inform 

future planning [44]. Previous studies by Lacombe et al. [7] and 

Yang et al. [13] developed taxi trip generation models that can 

be used to estimate the total number of pick-up and drop-off 

events, where the focuses of these studies are taxi movements 

during passenger delivery. There is a clear need to improve the 

knowledge on taxi travel demand estimation especially in what 

regards to the characterization of taxi movements associated to 

passenger searching. 

III. METHODOLOGY AND DATA REQUIREMENTS 

This study’s methodology aims to model the pattern of trips 

generated by vacant taxis. We develop models to explain the 

way in which vacant taxi drivers choose among different 

passenger pickup zones (destination choice). The overall 

approach taken by this study has four main components: (i) 

Overall model design; (ii) Data processing; (iii) Model 

specification; and (iv) Data and case study area description.  

A. Overall model design  

Fig. 1 shows an overview of passenger searching strategies 

that may be employed by a taxi driver. After dropping off 

passengers, the driver must choose from 𝑁 number of locations 

to search for a new passenger. In our study, these locations are 

assumed to be centroids of zones.  The choice could be local (if 

drop-off and pick-up locations are within the same zone: e.g., 

Zone 1) or going farther (𝑁 − 1 number of zones). The choice 

of destination (pick-up location) can be treated as a discrete 

choice problem and can be addressed with models at the 

individual level [44].  

 

 

 

 
Fig. 1. Overview of passenger searching strategies. 

 

B. Data processing 

The passenger-searching strategies of taxi drivers are 

observed based on the location and time of consecutive drop-

off and pick-up events extracted from taxi GPS trajectory data. 

In the context of taxi operation, we assume the GPS trajectory 

data represents all movements and activities. Fig. 2 shows a 

three-level data processing framework to generate vacant and 

occupied taxi trips. The framework encompasses data cleaning, 

activity detection, and vacant and occupied taxi trip extraction. 

The data cleaning process includes the removal of GPS pings 

outside the study region. We also remove occupied taxi trips 

with trip lengths over 30 km and trip durations of over 2 hours 

since the longest trip from one side of the city of Lisbon to the 

other side is around 22 km [42].   

We must calculate event indicators such as time and distance 

gaps between GPS pings to obtain the components of taxi 

operations: trips and activities. Activities are drop-off, pick-up, 

and passenger waiting events. Drop-off and pick-up events are 

detected when a taxi meter transitions between the vacant and 

occupied statuses. Trips are connections between the drop-off 

and pick-up activity locations.  

Fig. 3 shows the trajectory of a randomly selected taxi. The 

red line indicates passenger delivery (an occupied taxi trip). The 

green line indicates passenger searching (a vacant taxi trip). The 

change from red to green (#2) represents a passenger drop-off 

event. The change from green to red (#4) represents a passenger 

pick-up event. Zhang et al. [12] showed that a taxi driver’s 

initial passenger searching strategy may not always be 

successful. For instance, Fig. 3 shows a sequence of decisions 

made by the taxi driver between the passenger drop-off (#2) and 

passenger pick-up (#4) events. After the drop-off event, the 

driver initially moved to location #3, where he/she waited for 

23 minutes without finding a passenger (e.g., unsuccessful 

passenger pick-up attempt, driver resting).  

 

 
Fig. 2. Processing of taxi GPS trajectory data. 
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Fig. 3. Example of a single taxi’s GPS trajectory and status: occupied (red) and 

available (green)  

 

The driver then moved to location #4, where he/she 

succeeded in finding a passenger. The trip between location #2 

and location #4 is used in our passenger pick-up location choice 

modeling. However, the chosen passenger pick-up location may 

not be the driver’s initial intended destination for passenger 

pick-up.  
 

C. Model specification 

The taxi passenger pick-up location choice problem faced by 

a taxi driver will forthwith be referred to as a destination choice 

problem. With respect to the model specification, a discrete 

choice model has been the most widely used method to model 

the choice of a location among a set of mutually exclusive 

alternatives based on the principles of utility maximization [18], 

[22], [23]. We use discrete choice models in this study because 

the taxi passenger pick-up location choices are discrete and 

mutually exclusive. Traditionally, multinomial responses have 

been analyzed using the MNL model, which is the most 

common implementation of discrete choice model [21]. Zones 

are mutually exclusive and primarily created based on criteria 

that suggests homogeneous land use within a zone, but there is 

some level of correlation between zones located within mixed 

urban land use areas that share soft boundaries. These zones are 

likely to have similar unobserved attributes which introduces a 

dependency. To represent this dependency, a more general 

model than the simple MNL model is needed [18], [21].  

 
1) Multinomial Logit Model 

The probability (𝑃𝑖𝑚) that a taxi driver from zone 𝑖 chooses 

destination zone 𝑚 is given by the utility of zone 𝑚 and the 

utility of all other possible pick-up zones. The model’s general 

form is shown in Equation (1). The attractiveness of alternatives 

is represented using the concept of utility, as described in 

Equation (2).   

 

𝑃𝑖𝑚 =
𝑒𝑉𝑖𝑚

∑ 𝑒𝑉𝑖𝑧𝑁
z=1

 
(1) 

  

𝑈𝑛𝑚 = 𝑉𝑛𝑚 + 𝜀𝑛𝑚 (2) 

 

Where, 𝑉𝑛𝑚 is the measurable conditioning component of the 

utility individual 𝑛 associates with alternative 𝑚;  𝜀𝑛𝑚 is the 

error component of the utility individual 𝑛 associates with 

alternative 𝑚; and 𝑁 is the total number of pick-up zones in the 

study area, which is 108 in this case.  

In our case (108 zones), the study region is suitable for 

estimating the destination choice models with the full set of 

alternatives. However, the computational requirements of 

estimating destination choice models typically rise for a study 

area with a large number of zones (alternatives). Thus, to make 

the modeling framework study more general so it can be 

transferable for a study area with a large number of zones, we 

conduct a choice set formation method as suggested by Ben-

Akiva and Lerman [14]. In fact, because of the Independence 

from Irrelevant Alternatives (IIA) property of MNL, Ben-Akiva 

and Lerman [14] suggested using a restricted set of zonal 

alternatives rather than a full set when estimating a destination 

choice model. This study uses importance-based sampling with 

replacement procedure as in [14], [45], [46] to develop 

attractiveness indices for zones and thus calculates the 

probability of being included in the choice set.  

The importance-based sampling approach involved the 

following steps: (i) calculate selection weights and selection 

probabilities; and (ii) sample possible alternative destinations 

for the observed choice and select a final choice set that 

contains both the chosen zone and sample zones drawn from the 

full set of zones. The selection weight of destination zone 𝑗 
relative to origin zone 𝑖 (𝑊𝑖𝑗) is calculated using Equation (3).  

 

𝑊𝑖𝑗 = 𝐴𝑗 × 𝑒
(−2×

𝐷𝑖𝑗
𝐷𝑎𝑣𝑔

)
 

(3) 

 

Where, 𝐴𝑗 is destination zone’s size variable; 𝐷𝑖𝑗 is the travel 

impedance between the origin zone and the destination zone; 

and 𝐷𝑎𝑣𝑔 is average travel distance in the study region. This 

study uses the average number of Foursquare chick-in counts as 

size variable instead of the total number of trip ends, which was 

employed by [45].  

The selection probabilities are estimated using the formula in 

Equation (4):  

 

SPij =
Wij

∑ Wiz
N
z=1

 
(4) 

 

Where, SPij is the selection probability of destination zone 𝑗 for 

a vacant taxi trip starting from zone 𝑖.  
Once the selection probabilities were calculated, the next step 

is to select the destination zones that will be part of the choice 

set. Using the selection probabilities, the cumulative selection 

probability (𝑐𝑃𝑖𝑗) are calculated by adding the selection 

probabilities of each origin zone 𝑖 to all the possible 𝑁 

destination zones, which is 108 in this case. The 𝑐𝑃𝑖𝑗 of each 

destination zone 𝑗 from origin zone 𝑖 has a range. The lower 

limit was the cumulative sum of the selection probabilities 
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(∑ SPiz)
j−1
z=1  excluding the selection probability of zone 𝑗, and 

the value of the upper limit of the range equal to the selection 

probability of zone 𝑗 plus the lower limit (∑ SPiz
j
z=1 ). The upper 

limit of the last zone (j = 108) is equal to one.  

A numerical experiment was carried out by Nerella and Bhat 

[47] to study the effect of the sample size of alternatives on 

model performance for an MNL model. The study suggested a 

minimum threshold of an eighth of the size of the full choice set 

to estimate an MNL model and a fourth of the full choice set as 

a desirable target. This study uses a half of the full choice set 

such as 54 zones. Fifty four random numbers between 0 and 1 

were generated for each vacant taxi trip extracted from the taxi 

GPS data. The values of these random numbers were compared 

to the cumulative selection probabilities for the corresponding 

origin of the trip. If the random number fell in the range of 𝑐𝑃𝑖𝑗, 

the destination zone 𝑗 was selected to be part of the choice set. 

This step was repeated for each of the random numbers, where 

the destination was chosen with replacement each time. 

Because of the elimination of these duplicates, most of the 

choice sets has less than 54 zonal alternatives. 

A correction factor (CF) was added to reduce any bias that 

might occur in the model due to using a restricted set of zonal 

alternatives. The CF is only used in model estimation but not 

model application. The coefficient of this factor was 

constrained to 1. Correction factors take the following form 

CFij = − ln qij = −ln⁡(SPij × n), where, CFij is correction 

factor of zone 𝑗 for a trip starting from zone 𝑖; 𝑞𝑖𝑗 is overall 

probability of zone 𝑗 being included in the sample set for model 

estimation; 𝑆𝑃𝑖𝑗 = selection probability for a trip from origin 

zone 𝑖 to destination zone 𝑗 ; and 𝑛 is the number of alternative 

zones selected.   

 

2) Nested  Logit Model 

In practice, often the researcher is unable to capture all the 

sources of correlation, especially in the case of destination 

choice modeling where spatial units are presented as 

alternatives. For instance, a taxi driver could be faced with a 

choice set comprising several equally attractive zones for 

passenger pick-up. These equally attractive zones can be 

adjacent to each other or can be found at different parts of the 

city that are likely to have similar unobserved attributes. This 

introduces a dependency that conflicts with the IIA assumptions 

of the MNL functional form. In this case, a more general model 

than the simple MNL model is needed [21].  

We have estimated destination choice models with a nested 

logit structure. In our attempt to develop a choice modeling 

framework based on a nested logit, a K-means clustering 

technique is used to group destination zones that are similar in 

terms of trip generation roles (land use densities). In our 

analysis, different clustering techniques are possible candidates 

to segment destination zones based on their time of day profile 

represented by POIs, Foursquare check-in count, and 

population density data. K-means is a simple unsupervised 

machine learning algorithm and is chosen because of its 

simplicity in implementation. K-means clustering algorithm 

identifies clusters of behavior and returns a typical member of 

that cluster represented by the mean behavior in that group. 

Previous studies have also shown that K-means clustering 

technique can be used to identify clusters of locations with 

similar zoned uses based on activity patterns generated from 

opportunistic datasets [48]–[50].  

The K-means clustering method is applied on three zonal 

variables: Foursquare users check-in count, number of POIs, 

and population density. The values of POIs and population 

density do not change over time. In the case of Foursquare 

check-in count, we use the total hourly counts for each zone. A 

cluster may be comprised of zones that are adjacent to each 

other or can be found at different parts of the city. Then, choice 

alternatives (zones) in the same cluster are assumed to be in the 

same nest. This formulation assumes that a taxi driver first 

chooses an urban area of certain land use type and then, within 

that land use category, he/she will choose a specific passenger 

pick-up zone. In this study, we apply a nested logit formulation 

with two levels of decision for passenger pick-up location. To 

the best of our knowledge, this is the first study where a nested 

logit structure is used to model the location choice of taxi 

drivers for passenger pickup based on data obtained from 

multiple sources. 

Using a similar notation to Train [51], the mathematical 

formulation of the nested logit with two levels of decision can 

be described as follows. Let the set of pick-up zones j⁡be 

partitioned into K non-overlapping nests represented by B1, B2, 

…, BK. The utility that is derived from the bundle of attributes 

that describe alternative j⁡in nest Bk⁡as perceived and valued by 

a taxi driver n is denoted as Unj = Vnj +⁡εnj, where Vnj is a 

measurable conditioning component which is observed by the 

researcher and εnj is a random variable (error term) whole value 

is not observed by the researcher. It can then be shown that the 

probability of choosing alternative 𝑚 that belongs to nest 𝐵𝑘  is 

given by Equation (5): 
 

𝑃𝑚 =
𝑒𝑉𝑚 𝜆𝑘⁄ (∑ 𝑒𝑉𝑗 𝜆𝑘⁄

𝑗𝜖𝐵𝑘 )
𝜆𝑘−1

∑ (∑ 𝑒𝑉𝑗 𝜆𝑙⁄
𝑗𝜖𝐵𝑙

)
𝜆𝑙𝐾

𝑙=1

 

(5) 

  

The parameter 𝜆𝑘 is a measure of the degree of independence 

in unobserved utility among the alternatives in nest 𝑘.  

 

D. Data and case study area description  

1) Case study area 

 Our methods are applied to a case study using GPS data from 

the municipality of Lisbon. Lisbon is the capital of Portugal and 

the center of the Lisbon Metropolitan Area (LMA). The LMA 

has a population of 2.3 million and is comprised of 18 

municipalities (concelhos) that cover a total area of 2,958 km2. 

About 24.3% of the population of the LMA resides in the 

municipality of Lisbon [52].  

Fig. 4a shows the LMA. Fig. 4b shows the municipality of 

Lisbon, representing an area of around 100.05 km2 and a 

population of 552,700. The central business district (CBD) 

includes the oldest and smallest parishes with high population 

densities. This area has also a large concentration of office  



 6 

 
Fig. 4. Case study region showing (a) Lisbon Metropolitan Area, (b) 

Municipality of Lisbon with sample GPS records, (c) Cell/grid IDs, and (e) 

POIs 

 

buildings, touristic and commercial activities, and 

transportation hubs for bus, metro, and ferry. A sample of GPS  

data is also displayed on Fig. 4b.  

Defining passenger pick-up locations (destination zones) is 

one of the challenging tasks in the development of destination 

choice model. Modeling destination choices at a census block 

level is quite difficult because of the high number of alternatives 

(3712 census blocks in Lisbon). The choice of administrative 

districts in Lisbon such as freguesias (parish) results in large 

sized zones, and thus, the number of intra-zonal trips is 

substantial. This is especially important when a high share of 

vacant taxi trips is short and could result in a significant number 

of intra-zonal trips. To address this issue, we divided the 

municipality of Lisbon into a 1 km x 1 km grid/cell, shown in 

Fig. 4c. The aim is to generate reasonable number of passenger 

pick-up locations by boosting homogeneous land use within a 

zone. Some of the important POIs are listed in Fig. 4d.  

 

2) Dataset 

 The datasets used to understand taxi travel demand are 

grouped into five categories: 

GPS records: A taxi GPS record dataset covering a period of 

two months (September 2009 and October 2009) was obtained 

from a company called GeoTaxi, which holds around a 15% 

market share in Portugal [53]. The dataset consists of the taxi’s 

location (latitude, longitude), time, heading direction, and 

occupancy status (vacant, occupied). The GPS data were 

obtained from 253 taxis.  

Data on where and when people checked in (Foursquare 

check-in data): Foursquare collects data on where and when its 

users check into a place (check-in). The Foursquare API can be 

used to obtain that data. Depending on the search area and 

criteria, the API returns a list of venue records with the 

following information: venue name, venue category, 

georeferenced location, number of unique visitors, and number 

of total check-ins. This study uses Foursquare check-in data 

collected by Yang et al. [54] between April 2012 and September 

2013.  

Trip length and trip time matrix (Google Distance Matrix 

API): To calculate the travel time and distance between each 

origin (TAZ centroid) and each destination, an HTTP request 

interface was used to access the Google Distance Matrix API. 

These values were obtained for a matrix of origins and 

destinations (108 x 108 = 11,664), which is based on the 

recommended routes between the start and end locations [55].   

Point of interest (POI) data: POI data provides contextual 

information about a place and represents the location’s 

characteristics or activity. POI data were acquired from 

Servidor de Apontadores Portugueses (SAPO). There are a total 

of 5,471 points located within the municipality of Lisbon.  

Census data: The Instituto Nacional de Estatistica (INE) 

provided the census of demographic, economic, social, and 

housing information. The data was based on the 2011 

Portuguese census [52].   

IV. RESULTS AND DISCUSSION 

A. Results of exploratory data analysis  

Fig. 5 shows the variability of a normalized average of the 

number of occupied (Fig. 5a) and vacant (Fig. 5b) taxi trips 

throughout a week during the study period. Weekdays show 

similar patterns, with a high intensity of taxi activity during the 

day and a low intensity of taxi activity late at night and in the 

early morning hours. Saturdays and Sundays have different 

patterns that exhibit a peak in taxi service activities around 

12pm. The amount of weekend trips is higher than weekday 

trips between midnight and 5am but lower from 6am to 6pm. 

 
(a) Occupied Taxi O-D Trips  

 
(b) Vacant Taxi O-D Trips  

 
Fig. 5. Citywide occupied and vacant taxi O-D trip patterns throughout the 

week.  
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Fig. 6. Vacant and Occupied Taxi trip lengths for different passenger searching 

strategies. 

 

The vacant and occupied taxi trips are further examined to 

understand the effect of prior occupied taxi trip length on the 

succeeding vacant taxi trip time/length. This analysis can shed 

some light on the searching strategies of vacant taxi drivers after 

a drop-off event. We started our analysis by examining 

successive passenger pick-up locations. For each occupied taxi 

trip, the previous and the next passenger pickup locations are 

recorded.  

Fig. 6a shows the proportion of three customer searching 

strategies that was calculated for a range of prior occupied taxi 

trip lengths. After a passenger drop-off in a given location, 

17.98% of the taxi drivers circulated within or waited at the area 

of the preceding destination (Fig. 6a orange color); 20.45% of 

the taxi drivers returned to their previous pickup location (Fig. 

6a green color); and 61.57% of the taxi drivers traveled to a 

different location (Fig. 6a red color) to look for the next 

passenger. 

Fig. 6b shows the trip length frequency distributions for the 

occupied and vacant taxi trips. In this category, vacant taxi 

drivers have returned to their previous pickup location to find 

their next customer. The average succeeding vacant taxi trip 

length is 2.524km, which is slightly longer than the prior 

average occupied taxi trip length (2.439km). A similar analysis 

is shown in Fig. 6c for the taxi drivers that remained at the 

preceding destination to look for their next customer. The 

highest average prior occupied taxi trip length is recorded in 

this group (4.570km) as well as the shortest average succeeding 

vacant taxi trip length (0.999km). Fig. 6d shows the trip length 

frequency distributions for the occupied and vacant taxi trips of 

the taxi drivers who travelled to areas other than the 

aforementioned two pickup locations to find their next 

customer. The average occupied taxi trip length in this category 

is 4.456km.  The taxi drivers in this category faced the longest 

average vacant taxi trip length (3.410km) compared to the 

aforementioned customer searching strategies. In general, a 

large portion of taxi drivers tended to return to their previous 

pickup zone to find their next customer if the prior occupied trip 

length is short. 

The spatial-temporal distributions of taxi passenger drop-off 

and pick-up events are further examined using zonal data, as 

shown in Fig. 7. The average hourly rate of taxi passenger drop-

off and pick-up events are calculated for each TAZ over eight 

periods that represent morning/afternoon peak and 

evening/night off-peak times. In the daytime (8 am to 4 pm), a 

high number of taxi passenger drop-off and pick-up events are 

observed across the city, especially in the central part of the 

city. There are also a significant number of taxi activities 

outside the city center, especially at the Lisbon International 

airport, the Oriente train station and bus terminal, and the ferry 

dock located in cell #101 (see Fig. 4c, cell ID). The spatial-

temporal distribution of taxi passenger drop-off and pick-up 

events is further examined with an additional metric obtained 

by subtracting the number of pick-up events from the number 

 
Fig. 7. Citywide taxi passenger drop-off and pick-up intensities during eight-time intervals (weekday).  
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of drop-off events (DDP). The DDP metric reveals major taxi 

trip departure and arrival locations for various times of day. For 

example, the DDP metric shown in Fig. 7 reveals there are more 

taxi passenger arrivals at the airport during the day (5 am to 4 

pm) and more pick-up events in the evening and at night (5 pm 

to 4 am). Major trip departure and arrival locations are also 

more noticeable around the central business district during the 

morning and afternoon peak hours.  

Fig. 8 shows the paths for average vacant taxi trips between 

drop-off and pick-up locations on weekdays during eight 

different daily time windows. A similar pattern that can be seen 

throughout the day is the high intensity of taxi activity in the 

city center and at major transportation hubs. This is expected, 

as these locations have high human activity and people who are 

more likely to be using taxi services. We also developed a 

visualization that runs in a 2D map to display the vacant and 

occupied taxi Origin-destination flows. The visualization is 

generated based on week-long taxi GPS trajectory data from 

September 7, 2009 to September 13, 2009. The visualization is 

available on YouTube at: 

https://www.youtube.com/watch?v=gLvo6RvaaWg  

B. Destination choice model estimation results  

1) Variables definition  

 Two types of data that are relevant for the destination choice 

model were obtained:  

Observed choice data: 

Observed choice data describes vacant taxi trips between the 

drop-off and the pick-up zones. The choice is among passenger 

destination zones in the city of Lisbon. Out of a total of 109 

destinations, 108 are considered. One of the zones has no data 

and is not included as a choice. The destination choice models 

are created with a total of 29,053 observed choices on 

weekdays.  

 

TABLE I 

EXPLANATORY VARIABLES 

Variable Name Description  

Travel time (𝑡𝑡𝑖𝑗) Travel time (minutes) from origin zone to destination zone   

Travel distance (𝑡𝑑𝑖𝑗) Travel distance (km) from origin zone to destination zone 

Combined travel time (𝑡𝑡𝑐𝑖𝑗)  
For each driver, the average travel time from the centroids of all the other zones to the 

centroid of the driver’s preferred pick-up zone is calculated and multiplied by 𝑡𝑡𝑖𝑗.  

Combined travel distance (𝑡𝑑𝑐𝑖𝑗) 
For each driver, the average travel distance from the centroids of all the other zones to 

the centroid of the driver’s preferred pick-up zone is calculated and multiplied by 𝑡𝑑𝑖𝑗 .  

Waiting time (𝑤𝑡𝑗) 
Represents average waiting time in each zone a taxi driver faces before succeeding in 

finding the next passenger. 

# Employees Number of employees of the destination zone 

# POIs Number of Points of Interest of the destination zone 

# Hourly trip ends Hourly number of trip destination ends (# pickups) of the destination zone  

Hotspot Describes the passenger pick-up intensity of the destination zone (has three levels) 

Major transport hub A binary variable indicating destination zone is a major transportation hub 

Service location preference  A binary variable indicating the driver's preferred pick-up zone 
 

 

 

 
Fig. 8. Average weekday vacant taxi OD flow patterns (Origin: drop-off, and destination: pick-up). 
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 Explanatory data: 

The explanatory variables considered in the developed 

destination choice models are grouped into three classes 

(TABLE I): (i) impedance variables like travel time, and travel 

distance describe the connectivity between drop-off and pick-

up pairs; (ii) zonal variables like size variables regarding the 

number of employees, number of hourly trip ends, number of 

points of interests in the destination zone represent the number 

of opportunities available in the destination zone; and (iii) user 

variables like service location preference represent the user’s 

characteristics (in this case, a taxi driver). A more detailed 

discussion of the explanatory variables is available in the 

Appendix Section.     

TABLE III 

ESTIMATION RESULTS OF GROUP 2 MODELS 

 

TABLE II 

ESTIMATION RESULTS OF GROUP 1 MODELS 
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The model specification of the utility function containing all 

the variables discussed in TABLE I is shown in Equation (6): 

𝑉𝑖𝑗 = 𝛼1𝑡𝑡𝑖𝑗 + 𝛼2𝑡𝑑𝑖𝑗 + 𝛼3𝑡𝑡𝑐𝑖𝑗 + 𝛼4𝑡𝑑𝑐𝑖𝑗 + 𝛼5𝑤𝑡𝑗
+ 𝛽𝑆𝑗 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝛾1𝑑𝑢𝑚𝑚𝑦ℎ𝑖𝑔ℎ_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝛾2𝑑𝑢𝑚𝑚𝑦𝑚𝑒𝑑𝑖𝑢𝑚_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝛾3𝑑𝑢𝑚𝑚𝑦𝑚𝑎𝑗𝑜𝑟⁡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⁡ℎ𝑢𝑏  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡+𝛾4𝑑𝑢𝑚𝑚𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒⁡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⁡𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒⁡ 

 

 

 

(6) 

 

Where 𝛼,  𝛽,  𝛾 are coefficients for their corresponding 

explanatory variables.  

 

2) Estimation results   

 Taxi drivers use different passenger searching strategies in 

terms of zonal choices, in that they are reluctant to serve a 

specific area of the city during day time. They tended to 

circulate within the downtown area of Lisbon, which has very 

high taxi demand. They also tended to travel to high demand 

areas in the outskirts of the city during the evening and night 

periods (Fig. 7). We estimated destination choice models for 

five different periods of the day to explain the varying 

passenger searching behaviour of taxi drivers, which is strongly 

related to taxi passenger demand over time and space: Model 1 

(5AM to 7AM); Model 2 (8AM to 4PM); Model 3 (5PM to 

7PM); Model 4 (8PM to 10PM); and Model 5 (11PM to 4AM). 

Destination choice models were estimated using mlogit, a 

package for the R-programming environment.   

Our first step is to analyze correlation within the explanatory 

variables. We found a high positive correlation between the 

following explanatory variables: travel time, travel distance, 

combined travel time, and combined travel distance. For the 

purposes of the models we developed, a correlation coefficient 

greater than 0.4 is considered strong.   

A combination of different variables is examined to estimate 

the destination choice models for five different periods. A 

Bayesian Information Criterion (BIC) evaluation was 

performed to choose the appropriate utility function. The 

function with the lowest BIC value was applied for the 

estimation of the models for each period. First, we have 

estimated five models using MNL model structure (Group 1 

Models). Group 1 Models are estimated using a restricted set of 

zonal alternatives rather than a full set. The estimation results 

of Group 1 Models is presented in Table II, where only 

statistically significant estimates are retained (P-value < 0.05). 

Second, we have estimated ten models using nested logit model 

structure (Group 2 Models, and Group 3 Models). Using  nested 

logit structure, we tested how the different ways of defining 

driver’s service location preference would influence model fit. 

The estimation results of the models using combined travel time 

(ttcij) variable is presented in Table III (Group 2 Models). We 

test how the introduction of service location preference dummy 

variable would lead to different models estimates and results 

are presented in Table IV (Group 3 Models). 

The estimation results of Group 1 Models, which is based on 

MNL model structure with a restricted set of zonal alternatives, 

are presented in Table II. We used Rho-square (ρ2(0)) to 

evaluate the overall quality of fit of the estimated models: ρ2(0) 

= 1-(L(𝛽)/L(0)). The ρ2(0) value compares the fit of the model 

with the vector of parameters 𝛽 against the model with all 

parameters set to 0. The model fit measured in terms of ρ2(0) 
varied between 0.3722 (Model 1.5) and 0.5118 (Model 1.3), 

which is indicative of a very good fit for the models [17]. The 

models contain between four and eight parameters. All models 

contain at least an impedance variable and a size variable. The 

 

TABLE IV 

ESTIMATION RESULTS OF GROUP 3 MODELS 
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size variables (#Employees, #POIs, and #Hourly trip ends) are 

significant in all models. The parameter’s sign for #Employees 

and #Hourly trip ends is positive, indicating that taxi drivers are 

more willing to choose a destination with high human activity 

where more people are likely to be using taxi services. The 

negative and significant coefficients for the combined travel 

time indicated that the attractiveness of a destination decreases 

with longer travel time.  

Group 2 Models and Group 3 Models are estimated based on 

a full set of alternatives using nested logit model structure.  

Hypothesis tests on the correlations within the ten nested logit 

models are used to examine whether the correlations in 

unobserved factors over alternatives within each nest are zero. 

We perform hypothesis test that the dissimilarity parameter is 

1, which is the value that it takes for a standard logit model. 

Except for Model 2.2 and Model 3.2, we are not able to reject 

the hypothesis that the true model is a standard logit at 95% 

confidence. Thus, for the remaining eight models, the nested 

logit structure collapses to the multinomial logit model. 

The estimation results of Group 2 Models are presented in 

Table III. Except Model 2.2, the remaining four models are 

equivalent to their corresponding models in Table II (models 

estimated with a restricted set of zonal alternatives). However, 

compared to their corresponding models in Table II, Model 2.1, 

Model 2.3, Model 2.4 and Model 2.5 in Table III have high 

ρ2(0) values. The coefficient for the dissimilarity parameter 

(𝜆𝑘) in Model 2.2 is 0.88202, which is designed to be equal 

across nests and capture the general correlation between 

alternatives. The correlation is approximately 1- 0.88202 = 

0.11798, which is a small correlation. The nested logit model is 

compatible with the random utility maximization behaviour for 

all possible values of the explanatory variables if 𝜆𝑘∀⁡𝑘 is 

between zero and one [56]. 

We estimated Group 3 Models by adding a dummy variable 

to measure the influence of a driver’s preference of service area 

in their choice of passenger pick-up location. The estimation 

results of these models are presented in Table IV. Compared to 

their corresponding models in Table II and Table III, all the five 

estimated models in Table IV have fairly high ρ2(0) values, 

ranging from 0.4914 to 0.5898, which is an indication of better 

model fit to the data. The positive and significant service 

location preference dummy variable coefficient indicated a 

preference for destinations that the drivers are usually visiting 

for that purpose. It is also noted that the day time model (Model 

3.2) has smaller service location preference dummy variable 

coefficient relative to the night time and early morning models. 

This indicates that taxi drivers are reluctant to service only a 

specific part of the city during day time, which is consistent 

with what is observed from traditional taxi operational modes. 

Shapiro [6] noted that hailing can quickly result in a match in 

cities with high population densities. The stand and dispatching 

modes are more common when the demand for taxis is low, 

which in this case is the night time and early morning (Fig. 5). 

The travel time variable reflects the travel cost between the 

drop-off and pick-up zones. The travel time parameter’s sign is 

negative in all models, which means that taxi drivers are more 

willing to travel to the nearest zone than they are to travel to a 

farther zone to pick up their next passenger.  

The size variable (#POIs) parameter’s sign is negative and 

statistically significant for Group 3 (5pm to 7pm) and Group 4 

(8pm to 10pm) models, and negative and statistically 

insignificant for Group 5 models (11PM to 4AM). The size 

variable measures the number of opportunities for passenger 

pick-up at each destination, which suggests that the POIs 

variable should positively influence vacant taxi trips. Thus, the 

POIs variable is not included in the aforementioned models.  

POIs data are mainly composed of service, recreation, office, 

education, health, and shopping facilities. These facilities are 

deserted during the evening and night times especially in the 

downtown area, which has a large concentration of office 

buildings. This could be one of the reasons for the negative 

parameter sign. In this study, POIs classes are not analyzed 

explicitly because of lack of POIs labels. Future studies should 

explore the inclusion of different POIs classes in the models 

(e.g., predominantly “office building” POIs for day time model, 

and predominantly service POIs for evening time models).  

The positive signs for the ℎ𝑖𝑔ℎ_ℎ𝑜𝑡𝑠𝑝𝑜𝑡, 𝑚𝑒𝑑𝑖𝑢𝑚_ℎ𝑜𝑡𝑠𝑝𝑜𝑡, 
and 𝑚𝑎𝑗𝑜𝑟⁡𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡⁡ℎ𝑢𝑏 parameters indicate that when the 

transportation demand and supply is high, the corresponding 

zone’s utility will also be high. In other words, taxi drivers 

prefer a passenger pick-up destination in busy transportation 

cores. 

We estimated three destination choice models by adding a 

waiting time variable to measure the influence of intra-zonal 

waiting time on a driver’s choice of passenger pickup location. 

The intra-zonal waiting time is calculated by averaging all the 

waiting time the taxi drivers face before succeeding in finding 

the next passenger within the boundaries of each destination 

zone. There was lack of observations for some of the destination 

zones in four of the model estimation periods. To estimate the 

logit models, a complete waiting time variable for all the 

destination zones is required. Thus, we have only estimated 

three models (Model 1.2, Model 2.2, and Model 3.2) by adding 

the waiting time variable. 

We also performed the likelihood ratio (𝐿𝑅) test to examine 

whether the observed difference in model fit is statistically 

significant between the final model and the null model (model 

with no parameters). The 𝐿𝑅 test for each model shows that the 

final model fits significantly better than the model with no 

parameters. 

We also added the percent correct index, which is the 

percentage of observations where the model assigns the highest 

probability of choice to the alternative actually selected. While 

this has appeal because it is easily appreciated intuitively, it 

may be misleading. For example, compared to their 

corresponding models in Table II and Table III, Model 3.2 and 

Model 3.3 in Table IV have high Rho-squared values. Rho-

squared is very sensitive, even the differences in its value as 

small as 0.01 can be indicative that one model has a better fit 

than another. However, Model 1.2 and Model 1.3 in Table II; 

and Model 2.2 and Model 2.3 in Table III have high percent 

correct indexes. Percent correct index is often included for 

information purpose only and it should not be used to make 

decisions about the appropriateness of utility function 
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specification. In cases where many choices are at stake 

requiring a high percent correct index makes no sense since 

there are many competitive alternatives with similar estimated 

probabilities of being chosen. Naturally using the highest 

probability for estimating a choice is going to be misleading. In 

a context of a Monte Carlo process then the use of the estimated 

probabilities will be able to reproduce the aggregated number 

of visits of taxis to different areas of the city. 

One of the major benefits of the developed models is to 

explain the way in which taxi drivers choose among different 

passenger pickup zones. Modeling taxi driver’s passenger 

pickup location choice behaviour is important to the evaluation 

of taxi driver’s perceptions of pickup location characteristics. 

The developed models can also be used to forecast the taxi 

drivers behaviour under hypothetical scenarios. An example of 

such a scenario is the impact of new zonal attributes (e.g., a 

newly opened major transport hub) on vacant taxi traffic to the 

area. There has been a number of studies aimed at modeling 

occupied taxi trips. For instance, Liu et al. [57], Werabhat et al. 

[58], and Zhang et al. [59] estimated the O-D trips of occupied 

taxis using GPS data. Further improvements on the 

aforementioned studies were achieved through the development 

of trip distribution models [20][19]. However, the 

aforementioned models do not account for the traffic generated 

by vacant taxi movements. The developed destination choice 

models not only helping analyzing and understanding taxi 

drivers’ behaviour, but also constitute an essential part of trip 

distribution modeling methods [20]. 

 

3) Model evaluation    

The performances of the estimated models are evaluated 

using trip length (in minutes) frequency distribution and 

Coincidence Ratios (CR). Fig. 9 shows a comparison of the 

estimated and observed trip lengths for all the models. In 

general, all the models show good estimation results in terms of 

reproducing the observed vacant taxi trip lengths. Compared to 

the other models (models estimated without the waiting time 

variable), the day time models (8AM – 4PM) perform well in 

terms of reproducing the short vacant taxi trips (Fig. 9b). 

The CR is used to quantitatively measure how well the 

estimated trip length frequency distribution overlaps with the 

observed trip length frequency distribution. The CR can be 

calculated from Equation (7).  

 

𝐶𝑅 =
∑ min⁡(𝑜𝑏𝑠𝑡 , 𝑒𝑠𝑡𝑡)𝑡

∑ max⁡(𝑜𝑏𝑠𝑡𝑡 , 𝑒𝑠𝑡𝑡)
 

(7) 

 

Where, CR is the coincidence ratio; obst is the proportion of 

observed distribution in interval 𝑡; estt is the proportion of 

estimated distribution in interval 𝑡. 
Table V shows that the estimated models perform well, with 

an average CR value of 0.66, 0.67, and 0.70 for Group 1, Group 

2, and Group 3 Models, respectively. Although the Group 3 

Models perform well overall, a few of them apparently will 

need some calibration work. For instance, Model 3.1 and Model 

3.3 overestimate the short vacant taxi trips. Comparison of our 

CR values to the CR values of earlier studies reveals that the 

estimated destination choice models perform well [45]. In 

addition, the CR value for each model is well above the 

minimum threshold of 0.6 prescribed by the travel demand 

model report in [60].  

 

 
Fig. 9. Frequency distributions of observed and estimated vacant taxi trip 

lengths (in minutes).   

V. CONCLUSION 

This study attempts to understand taxi travel demand from the 

perspective of modeling vacant taxi trips that are made between 

passenger drop-off and passenger pick-up locations. Vacant 

taxi trips are the result of passenger searching attempts. Thus, a 

taxi driver’s next passenger pick-up location choice can be 

framed as destination choice problem. We explored the 

possibility of using vacant taxi trips extracted from taxi GPS 

trajectory data to develop destination choice models with the 

discrete choice model structure such as nested logit and 

multinomial logit. 

Modeling taxi driver’s passenger pickup location choice 

behaviour is important to explain the way in which taxi drivers 

choose among different passenger pickup zones. For example, 

 

TABLE V 
COINCIDENCE RATIOS 

 



 13 

several factors that are likely to influence a taxi driver’s next 

choice of passenger pick-up location are identified. Variables 

that positively influence vacant taxi trips include size 

(#Employees and #Hourly trip ends), hotspot locations for taxi 

pick-up, service location preference dummy variable, and major 

transport hubs. The behavior model shows us where taxi drivers 

would like to go next and not where exactly they should go 

given existing competition. A potential future improvement 

include developing an intelligent taxi management system 

based on model prediction information. 

The results of this study can also be used to support long-term 

strategic planning specially to model the pattern of trips 

generated by vacant taxis. Usually, the focus of a trip 

distribution model is to distribute occupied taxi trips (from a 

trip generation model) among destinations. The results of the 

destination choice models provide insights regarding the factors 

that explain the taxi driver’s probability to choose a certain zone 

within a set of passenger pick-up zones, contributing to a better 

understanding of taxi drivers travel behaviour. Hence, results of 

this study can be used to develop a trip distribution model to 

distribute vacant taxi trips in the City of Lisbon. 

Despite the relevance of our analysis, we should emphasize 

some limitations of the study. In our approach, we make an 

assumption that the observed passenger pick-up location is 

similar to where the driver intended to go right after he/she 
dropped off passengers. In reality, for example, a taxi driver 

could pick-up a passenger while traveling to a high demand area 

but then he/she finds someone on the way in a low demand area. 

In Fig. 3, we showed that it is difficult to explain some of the 

decisions that are made by a driver simply based on the GPS 

trajectory data. 

One of the main challenges of studies that merge data from 

multiple sources is the reconciliation of the spatial and the 

temporal dimensions of the data. One of the limitations of this 

study is the discrepancy in time between the taxi dataset and the 

Foursquare datasets. The benefits of using multiple data sources 

depend on what they add to a particular piece of research. For 

this study, despite the discrepancy in time between the taxi and 

the Foursquare datasets, we believe that the insights gained 

from the Foursquare dataset are informative and useful for the 

proposed modeling framework. In addition, the destination 

choice models were calibrated with taxi GPS data collected in 

the year 2009. However, a lot has changed in the last decade in 

terms of urban mobility such as the emergence of new 

transportation network companies (e.g., Uber), new urban 

mobility concepts like mobility as a service, etc. Areas of future 

improvement include exploring the inclusion of variables 

related to recent urban mobility trends and realities in the model 

to improve model’s explanatory power. 
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APPENDIX 

Explanatory Variables: 

Travel time (𝐭𝐭𝐢𝐣) and travel distance (𝐭𝐝𝐢𝐣) are used as 

impedance variables that are calculated based on the time and 

distance between the drop-off and pick-up locations of vacant 

taxi trips. There was lack of observations between some origin 

and destination pairs. To estimate the logit models, a complete 

impedance variable matrix is required. We address this problem 

by substituting the travel time and travel distance values with 

values obtained from the Google Distance API.  

Service location preference: three variables are developed 

to incorporate the effect of Service location preference variable 

on the location choice of taxi drivers for passenger pick-up. 

First, each driver’s preferred pick-up location is calculated 

based on their most frequently-visited locations for passenger 

pick-up service. The service location preference is an individual 

specific variable that does not vary across destinations. One of 

the common methods to represent the effect of the service 

location preference variable on destination choice is to interact 

it with the alternative specific variable. Then, a generic 

coefficient is estimated for each interacted variable.  

To start the process, we interact the service location 

preference variable with impedance variables to generate the 

first two variables, such as combined travel time, and combined 

travel distance, as shown in the following. To obtain these 

variables, each driver’s average travel time (attij) and average 

travel distance (atdij) from the centroids of all the other zones 

to the centroid of their preferred pick-up zone are calculated. 

These variables are used to represent a driver’s preferred pick-

up location or zone. The attij and atdij variables are specific to 

an individual. Thus, combined travel time (ttcij = ⁡ttij ⁡× ⁡attij) 

and combined travel distance (tdcij = ⁡tdij ⁡× ⁡atdij) variables 

are used to incorporate a driver’s preferred pick-up location for 

the model’s estimation purposes.  

The third variable is a dummy variable called 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒⁡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛⁡𝑝𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒. This dummy variable takes a 

value of 1 if the passenger pick-up zone is the driver’s preferred 
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service location and 0 otherwise.  

Size variable (𝐒𝐣) First, the sampled vacant taxi trip ends 

(pick-ups) are expanded to represent the mobility behavior of 

the total vacant taxi population. Then, for each time interval, 

the number of hourly vacant taxi trip ends per TAZ are 

calculated. Number of employees and number of POIs are the 

other size variables considered.  

Hotspot describes the passenger pick-up intensity of a zone. 

The busiest zones are labeled ℎ𝑖𝑔ℎ_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 and the rest are 

labeled as 𝑚𝑒𝑑𝑖𝑢𝑚_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 or 𝑙𝑜𝑤_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 based on the 

assigned cut-off points. In this study, a preliminary data 

analysis of the number of pick-up events shows that the 85th 

and 50th percentiles are reasonable threshold values to group 

the variables into three categories. The 𝑙𝑜𝑤_ℎ𝑜𝑡𝑠𝑝𝑜𝑡 variable 

is used as reference variable.  

Major transport hub is a dummy variable representing 

major transport hubs in the municipality of Lisbon. This 

dummy variable has two levels: 1 if a vacant taxi trip ends in a 

zone with a major transport hub and 0 otherwise. 
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