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Abstract—Affected by the nondeterministic nature of 

flight trajectories, external environment, and airport 

operational conditions, the prediction of the Estimated 

Time of Arrival (ETA) is one of the most challenging tasks 

for air traffic control in terminal manoeuvring area (TMA). 

Previous studies lack adequate utilization of the spatial and 

temporal behaviors embedded in the continuous 

trajectories. We propose a novel spatial-temporal neural 

network model for estimating time of arrival (STNN-ETA), 

which consists of three components: (1) trajectory pattern 

recognition which classifies historical trajectories into 

several patterns/clusters; (2) trajectory prediction that 

predicts a target flight's subsequent positions based on 

trajectory pattern matching; and (3) the arrival time 

prediction in which nonlinear function and recurrent units 

are adopted to capture the spatial-temporal features for the 

prediction purpose. In the proposed model, we also utilize a 

spatial attention mechanism and a temporal attention 

mechanism to focus on important features from radar echo 

maps and trajectory series respectively, and suppress 

unnecessary ones for ETA prediction. To validate the 

effectiveness of the proposed method, we apply it to predict 

the ETA of flights within the Beijing TMA. Extensive 

experiments show that STNN-ETA outperforms the state-

of-the-art models in terms of the mean absolute error 

(MAE). 

 

Index Terms—Air Traffic Control, Terminal Manoeuvring 

Area, Estimated Time of Arrival, Deep Learning 

 

I. INTRODUCTION 

he Estimated Time of Arrival (ETA) is the time when the 

flight is expected to touch down on the runway, and is one 

of the key performance indicators defined by the International 
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Civil Aviation Organization (ICAO). Accurate prediction of 

ETA is of great importance to mitigate flight delays, providing 

aviation authorities with an index for flow management to 

minimize the deviation from the scheduled time of arrival. The 

economic losses caused by flight delays [1] also can be 

effectively reduced with an accurate prediction of ETA [2], [3]. 

Moreover, the accurate prediction of arrival time at the 

waypoint has a major impact on trajectory sequencing 

improvement and alleviation of traffic congestion [4], [5]. 

Additionally, the operational efficiency of airports and airlines 

can benefit from a more accurate ETA prediction [6]. A 

terminal manoeuvring area (TMA), which is also called 

terminal control area in the U.S. and Canada, is a designated 

area of controlled airspace surrounding one or more airports 

with high traffic volume [4]. The route structure in the TMA is 

complex with different entry points and flight procedures, 

traffic flows from different entry points converge and interact. 

In addition, the weather conditions in the TMA are variable and 

fickle [7]. Under convective conditions, the capacity and 

operation efficiency of the TMA decrease significantly [8]-[11], 

which prevents flights from arriving on time. Therefore, the 

prediction of the ETA for flights in TMA is a challenging 

problem, attracting many scientists from both academia and 

industry. 

In recent decades, researchers worldwide have paid extensive 

attention to ETA prediction. The existing research methods can 

be broadly classified into model-driven and data-driven 

methods. The model-driven methods generally calculate the 

ETA of flights based on aircraft performance models and 

parametric or physics-based trajectory models. Wang et al. 

combined a mathematical model for miles-in-trail metering 

with discrete event simulation to examine the anticipated miles-

in-trail delays for all the flights scheduled to arrive at any 

crossing point [12]. Roy et al. derived discrete-time hybrid 

models and applied the Interacting Multiple Model for target 
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tracking [13]. Moreover, they incorporated the Interacting 

Multiple Model algorithm with autonomous transitions in the 

discrete model estimation to predict the ETA of flights. Wei et 

al. abstracted the descent stage of flights into discrete modes, 

derived the nonlinear dynamics for each discrete mode and 

applied state-dependent-transition hybrid estimation method 

for the ETA prediction [14]. Bai et al. investigated two methods 

to predict ETA at a downstream point to better conduct interval 

management [15]. However, most of these models make ideal 

assumptions, which rarely consider the actual constraints. 

Moreover, these kinds of predictive models are ineffective 

when facing massive real-time data [16]. 

Recently, the data-driven methods have been widely used in 

the traffic field [17]-[22]. The trend of ETA prediction has 

gradually shifted to data-driven methods, which are capable of 

learning from historical data with weak or even without 

assumptions. In particular, machine learning algorithms have 

been commonly used for ETA prediction. Glina et al. applied 

Quantile Regression Forests to produce conditional probability 

distributions for the ETA of flights [23]. Takacs extracted 56 

features from the raw traffic dataset and proposed a 6-stage 

composed of successive ridge regressions and gradient boosting 

machines to predict the runway and gate arrival times of U.S. 

domestic flights [24]. Kern et al. employed random forests and 

took into account general information about the flight as well 

as weather and air traffic to enhance the accuracy of ETA 

prediction provided by the Federal Aviation Administration's 

Enhanced Traffic Management System, which is based on 

model-driven methods [25]. De Leege et al. used Generalized 

Linear Models to predict the time over the significant points 

along the standard arrival routes (STARs). In order to determine 

which regressors to include in the Generalized Linear Models, 

a stepwise regression approach is employed [26]. Zhu et al. 

carried out feature importance ranking, correlation analysis and 

applied two boosting tree algorithms, eXtreme Gradient 

Boosting (XGBoost) and Light Gradient Boosting Machine for 

route flight time prediction [27]. Ayhan et al. collected a richer 

set of features by pertinent 3D grid points. They also employed 

various regression models for ETA prediction of Commercial 

Flights and compared the prediction performance of these 

models. The results indicated that the boosting algorithms 

(Adaptive Boosting and Gradient Boosting) have better 

performance than the bagging algorithm (Random Forest 

Regressor) on all routes [28]. Wang et al. introduced Deep 

Neural Networks (DNNs) model with nested cross validation to 

predict the ETA of flights in Beijing TMA [16]. Their research 

indicates that the DNNs have better prediction performance 

than shallow neural networks.  

Clustering algorithms have been extensively used in many 

fields [29]-[32]. In the TMA, the trajectories can be clustered 

into diverse patterns because the aircraft are suggested to follow 

the published STARs and the standard instrument departure 

(SID) routes [33]. Trivedi et al. found that combining clustering 

with some machine learning models is of great significance to 

improving the prediction accuracy of ETA [34]. Based on these 

studies, models that combine clustering with machine learning 

predictors have been applied to ETA prediction in recent years 

to further improve accuracy. Hong and Lee used dynamic time 

warping (DTW) to identify major trajectory patterns and 

applied multiple linear regression (MLR) for each pattern to 

predict the ETA of flights from a specified entry point [35]. 

Wang et al. clustered the trajectories into several patterns by the 

density-based spatial clustering of applications with noise 

(DBSCAN) and then trained an individual neural network 

(NN)-based model for each cluster [33].  

Note that existing data-driven methods generally map the 

features of a single trajectory point of each flight to the ETA, 

without considering the spatial and temporal features embedded 

in the continuous trajectory. Spatial features are diverse, even 

complex. Continuous trajectory points describe the spatial 

location information and different flighting situations, such as 

heading change, descending, speed reduction. Moreover, these 

spatial features are time-varying, in other words, temporal 

features are embedded in the continuous trajectory points. For 

example, in non-rush hours, flights are frequently instructed to 

the optimal path to shorten the distance and time. During rush 

hours, due to the traffic congestion in the TMA, flights may line 

up or detour, which leads to arrival time changes. However, it 

is time-consuming and even infeasible to extract these features 

explicitly, due to the non-deterministic of external operational 

circumstances and traffic. We need to consider them implicitly 

in the model. 

To apply the spatial and temporal features to ETA prediction, 

we need to predict the future trajectory of the target flight from 

the current position to the touch down point on the runway. 

Although there are STARs in the TMA, deviations exist 

between the actual trajectories and STARs due to the influence 

of convective weather, the high density of aircrafts, the 

constrained airspace structure, etc. Therefore, the future 

trajectory of the target flight cannot be predicted by STARs 

directly. In light of the above, we propose a novel model, 

namely STNN-ETA, for ETA prediction in the TMA which 

consists of three main components: trajectory pattern 

recognition, trajectory prediction and arrival time prediction.  

The main contributions of this paper are summarized as 

follows: 

1)   We propose a novel model for ETA prediction, in which 

trajectories are regarded as time series. Comparing 

previous models, we first design a layer including Bi-

LSTM to effectively extract spatial and temporal features 

from trajectories. 

2)   We develop a multi-layer feature fusion component in 

which a spatial attention mechanism is designed to focus 

on important convective weather features and an additional 

factor layer is introduced to incorporate other features. The 

temporal attention mechanism is presented to integrate 

features. 
3) We evaluate our model based on Beijing TMA. Extensive 

experiments show our models outperformers all baselines 

in terms of the mean absolute error (MAE). 

 

The rest of this paper is as follows: Section II is the research 

problem and motivation, Section III introduces the model we 

propose, Section IV is the experimental description, and we 

conclude this paper in Section V. 
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II. RESEARCH PROBLEM AND MOTIVATION 

A. Problem Statement 

In the TMA, a flight moves from an entry point to the runway. 

The ETA prediction problem is defined as follows: for the 

target flight entering the TMA, we aim to design a frame to 

predict the estimated travel time between the current position to 

the touchdown point on the runway based on history trajectory 

series ℋ, environmental information ℮ and airport operational 

conditions ℂ. As the flight moves in the TMA, the predicted 

ETA should be updated, 

𝑦̂ =  𝑓(ℋ, ℮, ℂ), (1), 

where 𝑓 is the prediction function, which can be a deep neural 

network model. 𝑦̂ is the predicted value for ETA. 

 

B. Research Motivation 

To address the shortcoming of the above approach, we 

propose a spatial-temporal neural network model based on the 

continuous trajectory series for ETA prediction. Given the 

target flight in the TMA, the future trajectory of the target flight 

from the current position to the touch down point on the runway 

needs to be predicted. Subject to the traffic situation in the TMA, 

flights often deviate from STARS. Therefore, it is not good to 

predict the future trajectory of the target flight based on STARs. 

In this work, we apply a clustering algorithm to extract 

trajectory patterns from the historical trajectory set. Then, based 

on the patterns, the trajectory of the target flight from the 

current position to the touchdown point on the runway can be 

predicted. At last, the arrival time prediction component makes 

full use of trajectory series, environmental information, and 

airport operational conditions to predict the ETA of flights.  

We take the Beijing TMA as an example. Fig. 1 shows the 

range of the Beijing TMA according to the China Electronic 

Aeronautical Information Publication [36]. Beijing TMA 

contains six entry points, namely KM, JB, BOBAK, VYK, 

DOGAR, and GITUM [33]. The eight STARs and lateral 

trajectories of arrival between the entry points and 3 parallel 

runways (36L, 36R, 01) are shown in Fig. 1, which provide a 

good illustration of the air traffic complexity in the TMA. 

It is straightforward to do the ETA prediction by following 

the STARs and taking into account the aircraft performance 

models. However, such kind of idea is ineffective as we can 

clearly see from Fig. 1 that most flights do not follow the 

STARs. Although the trajectories shown in Fig. 1 look 

haphazard, they are resulted from a couple of factors which are 

often non-trivial to be characterized by mathematical models. 

As compared to model-driven methods for ETA prediction, a 

machine learning model can learn the underlying patterns from 

the massive historical data to do the ETA prediction in a purely 

data-driven manner. While some machine learning methods for 

ETA prediction are available in the literature, they failed to 

make full use of massive air traffic data. Motivated by all these 

reasons, in this study we propose a new method that not only 

makes full use of historical flight trajectory information but also 

considers the weather information as well as the TMA 

congestion degree to improve the prediction accuracy of ETA. 

III. METHODOLOGY 

A. Model Architecture 

As shown in Fig. 2, the proposed spatial-temporal neural 

network model for estimating the time of arrival (STNN-ETA) 

is comprised of three components. The trajectory pattern 

recognition component efficiently categorizes the historical 

trajectories into different clusters and noise using DBSCAN. 

The trajectories of each cluster share a similar pattern. The 

abnormal trajectories in special cases are regarded as noise. The 

trajectory prediction component is designed to predict the 

trajectory from the current position to the touchdown point on 

the runway of the targeted flight based on the patterns 

recognized and the trajectory already accomplished in the TMA. 

The arrival time prediction component aims to predict the 

estimated time of arrival of the target flight, which contains four 

layers: weather layer (WL), additional factor layer (AFL), 

spatial-temporal layer (STL), and prediction layer (PL). The 

weather layer is designed to capture convective weather 

features based on the spatial attention mechanism. The 

additional factor layer is used to integrate the additional factors 

to enhance the performance. The spatial-temporal layer aims to 

learn the spatial and temporal features from trajectories based 

on Bi-LSTM. The prediction layer applies the temporal 

attention mechanism and full connection method to predict the 

ETA of the flight. 

In order to illustrate STNN-ETA, we further define some 

notations used in this paper. 
Definition 1 (Trajectory Set) Trajectories of landing 

aircraft, only portions between the TMA entry points and 

runways are considered. We resample each trajectory with 

equal time intervals, as the flight speed is relatively slow in the 

TMA, it is sufficient to set 30s as the time intervals. After being 

resampled, each trajectory consists of a sequence of points. The 

𝑙𝑡ℎ trajectory is expressed as 𝑇𝑟𝑙 = {𝑃1, 𝑃2, ⋯ , 𝑃𝑛𝑙
}. Each point 

𝑃𝑖  contains the longitude, latitude, altitude, horizontal ground 

velocity and timestamp; therefore, the point can be formulated 

as 𝑃𝑖 = {𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖 , 𝑎𝑙𝑡𝑖 , 𝑣𝑖 , 𝑡𝑖}.  

Definition 2 (Trajectory of the target flight) We resample 

 
 

Fig. 1. Structure of Beijing TMA. nm represents nautical mile.  
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the already accomplished trajectory of the target flight in the  

TMA with equal time intervals of 30s and obtain 𝑇𝑟𝑎 =
{𝑃1, 𝑃2, ⋯ , 𝑃𝑛𝑎

}. 

Definition 3 (Radar echo map) A radar echo map is 

generated based on the reflectivity of the target radar wave. 

Radar echo maps describe the whole environmental area with a 

grid map, and at spatial scale the area is divided into different 

levels, which are represented by different tones. Different tones 

of the radar echo map indicate different radar echo intensities. 

In addition, the radar echo map is updated at a certain frequency 

in time. The controller can modify the flight path or adjust the 

interval between aircrafts according to the tones of the radar 

echo map. The original horizontal resolution of the radar echo 

map is 4000 by 7000. The longitude ranges from 70E to 140E, 

and the latitude ranges from 15N to 55N. We crop the original 

images and only keep space in the studied region. 

 

B. Trajectory Pattern Recognition 

The clustering algorithm is classified as unsupervised 

learning, which is designed to identify groups of similar 

observations in a dataset without prior knowledge [37]. The 

trajectory pattern recognition problem aims to find clusters of 

similar trajectories in the spatial dimension [37]. The 

trajectories in each cluster have a similar pattern. 

Density-based spatial clustering of applications with noise 

(DBSCAN), a commonly used density-based clustering 

algorithm [38], has some advantages that make it suitable for 

trajectory pattern recognition. First, due to the complexity of air 

traffic, patterns of trajectories are diverse and have various 

shapes in spatial scale, DBSCAN can find arbitrarily shaped 

patterns. Second, abnormal trajectories can occur in some 

special cases and can be considered noise [33]. DBSCAN is 

robust to the quality of datasets and can divide historical 

trajectories into several main patterns and noise. 

DBSCAN clusters the trajectories based on two input 

parameters: the distance threshold ε and the minimum number 

of points MinPts [37]. The core concept of DBSCAN is that the 

number of points in the ε-neighborhood is not less than MinPts. 

DBSCAN does not set the number of clusters in advance but 

starts with a randomly selected core point of the dataset. It finds 

all the density-reachable points in the ε-neighborhood; these 

density-reachable points and the core point are defined as a 

cluster. After that, the algorithm selects another core point and 

applies the same procedure until all the core points are 

processed. 

Since the primary purpose of trajectory clustering is to 

recognize the spatial pattern, the spatial shape of the trajectory 

is very important. Euclidean distance is inappropriate because 

a small misalignment in time would result in a large distance 

between the trajectories. To address this problem, DTW is 

applied to calculate the distance used in DBSCAN. The DTW 

algorithm finds the optimal alignment of two trajectories which 

minimizes the effects of shifting and distortion in time [39][40]. 

Then the distance can be calculated based on the alignment. The 

formulation is, 

𝐷𝑇𝑊(𝑖, 𝑗) =  𝑑𝑖𝑠𝑡(𝑝𝑖  , 𝑞𝑗) + 𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝑖, 𝑗 − 1)
𝐷𝑇𝑊(𝑖 − 1, 𝑗)

𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1)
    (2), 

where 𝑝𝑖  and 𝑞𝑗 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ points of trajectory 𝑇𝑟𝑝 and 

𝑇𝑟𝑞  and 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞𝑗) represents the Euclidean distance. 

After clustering, we calculate the average distance of each 

trajectory pair in the same pattern and select the one with the 

smallest average distance as the representative trajectory. 

 

C. Trajectory Prediction 

In practice, flights enter the TMA individually through 

different entry points and fly toward the runway by following 

the STAR with a possible deviation resulted from controllers' 

recommendations. Given the trajectory that the target flight has 

passed through the TMA, we need to predict the trajectory from 

the current position to the runway. To achieve this goal, 

trajectory pattern matching and trajectory prediction are utilized. 

Trajectory pattern matching aims to match the trajectory of 

the target flight with the identified trajectory pattern based on 

the representative trajectories of each pattern. We calculate the 

average distance between the given trajectory 𝑇𝑟𝑎  and the 

representative trajectory of each pattern. 𝑇𝑟𝑎  and the 

representative trajectory with the smallest average distance 

from 𝑇𝑟𝑎  belong to the same pattern. 

 The purpose of trajectory prediction is to predict the future 

trajectory of the targeted flight from the current position to 

landing. We assess the similarity between 𝑇𝑟𝑎  and the historical 

trajectories that are categorized as the same pattern, the 

 
Fig. 2. The framework of the proposed STNN-ETA 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

5 

formulation is, 

𝑠𝑖𝑚 = ∑ ((𝑙𝑜𝑛𝑖
𝑎 − 𝑙𝑜𝑛𝑖

𝑚)2 + (𝑙𝑎𝑡𝑖
𝑎 − 𝑙𝑎𝑡𝑖

𝑚)2 +
𝑛𝑎
𝑖=1

                  (𝑎𝑙𝑡𝑖
𝑎 − 𝑎𝑙𝑡𝑖

𝑚)2 + (𝑣𝑖
𝑎 − 𝑣𝑖

𝑚)2)1/2       (3),                          

where 𝑚 is the 𝑚𝑡ℎ historical trajectory belonging to the same 

pattern as 𝑇𝑟𝑎. 𝑙𝑜𝑛, 𝑙𝑎𝑡, 𝑎𝑙𝑡 and 𝑣 have been normalized. And 

the detailed process of normalization is, 

𝑥𝑛𝑜𝑟𝑚 =  
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 , (4), 

where longitude, latitude, altitude and velocity are substituted 

into 𝑥, and 𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛  represent the maximum and minimum 

values of the variable 𝑥, respectively. 

Resampling is then performed to transform each historical 

trajectory sequence after point 𝑃𝑛𝑎
 into a sequence with length 

L. Then, we calculate the mean of the attributes of the five 

trajectories at each time point, including the longitude 𝑙𝑜𝑛𝑖 , 

latitude 𝑙𝑎𝑡𝑖 , altitude 𝑎𝑙𝑡𝑖 , and horizontal ground velocity 𝑣𝑖 . 

Finally, we obtain the predicted trajectory of the targeted flight 

from the current position to landing, 𝑇𝑟𝑎
𝑝

= {𝑃1, 𝑃2, ⋯ , 𝑃𝐿}. 

 

D. Arrival time prediction 

The arrival time prediction component contains four layers: 

the spatial-temporal layer, weather layer, additional factor layer, 

and prediction layer. The structure is shown in Fig. 3. In the 

training phase, the arrival time prediction component learns 

from historical data. In the test phase, the predicted trajectory 

of the target flight, radar echo map, TMA congestion degree, 

time of day, day of the month, and the trajectory pattern are 

input to the trained model to generate the predicted ETA. 

1) Weather Layer 

The weather layer is designed to extract convective weather 

features from radar echo maps, which is shown in Fig. 4.  

Convolutional neural network (CNN) is a neural network that 

is used to extract image features in many fields. As the 

convective weather in different regions has different effects on 

the flight [41], we introduce a spatial attention mechanism to 

focus on important features and suppress unnecessary ones. 

The spatial attention mechanism mainly consists of channel 

attention and spatial attention modules. The essence of the 

channel attention module is to assign a weight to each channel 

and the weight represents the relevance of the features of each 

channel to the arrival time of flights. Given a radar echo map as 

input 𝐸, the formulation of the channel attention module is, 

𝑀𝑐(𝐸) = 𝜎 (𝑀𝐿𝑃(𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝐸)) + 𝑀𝐿𝑃(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐸)))  

(5), 

𝐸𝑐 = 𝑀𝑐(𝐸) ⊗ 𝐸   (6), 

where 𝜎  is the sigmoid function. For generating the channel 

attention of the radar echo map 𝐸, the spatial dimension needs 

to be squeezed. 𝑎𝑣𝑔𝑝𝑜𝑜𝑙  and 𝑚𝑎𝑥𝑝𝑜𝑜𝑙  are applied to 

aggregate spatial information by selecting the average and the 

maximum value of the feature map of each channel as the 

representative of the channel respectively and generate two 

different feature vectors. Then, two feature vectors are 

forwarded to multi-layer perceptron (𝑀𝐿𝑃) with a hidden layer 

to produce the channel map 𝑀𝑐. ⊗ is the Hadamard product, 

used for broadcasting channel attention along the spatial 

dimension. 

 
Fig. 3. The architecture of arrival time prediction component 
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Spatial attention module emphasizes spatial features by 

assigning weights to different positions of each channel. The 

output of the channel spatial attention module 𝐸𝑐 is taken as the 

input of spatial attention module and the formulation is, 

𝑀𝑠(𝐸𝑐) =  𝜎([𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝐸𝑐); 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐸𝑐)] ∗  𝑊𝑀)  (7), 

𝐸𝑠 = 𝑀𝑠(𝐸𝑐) ⊗ 𝐸𝑐  (8), 

where [∙;∙] denotes the concentration operation that combines 

different features, ∗ represents the convolutional operation, 𝜎 is 

the sigmoid function. 𝑎𝑣𝑔𝑝𝑜𝑜𝑙  and 𝑚𝑎𝑥𝑝𝑜𝑜𝑙  are used to 

aggregate channel features by selecting the average and the 

maximum values along the channel axis, and obtain two 

different feature vectors. After concatenating these two feature 

vectors, a convolution operation is utilized to generate a spatial 

attention map 𝑀𝑠. Then, the Hadamard product is adopted to 

broadcast spatial attention along the channel dimension. 𝐸𝑠 is 

the final output of the spatial attention mechanism. 

Then CNN is used to extract the convective weather features, 

which takes 𝐸𝑠  as input 𝐸0  and feeds it into 𝐾  conv + max 

layers. In each conv + max layer, there is a convolutional layer 

followed by a max-pooling layer. The formulation at each layer 

𝑘 is, 

𝐸𝑘 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑓(𝐸𝑘−1 ∗ 𝑊𝑘 + 𝑏𝑘)) (9), 

where ∗ is a convolutional operation. 𝑊𝑘 and 𝑏𝑘 are learnable 

parameters at the 𝑘𝑡ℎ layer. 𝑓(∙) is a ReLU activation function 

and 𝑓(𝑥) = 𝑚𝑎𝑥 (0, 𝑥) . 𝑚𝑎𝑥𝑝𝑜𝑜𝑙  is used to reduce the 

dimension of the representations after applying convolutions. 

After 𝐾 layers, we obtain the output 𝐸𝐾 . 

Then, a flatten layer is applied to transfer the output 𝐸𝐾  to a 

vector 𝐸̂, which is taken as the input of the following three fully 

connected layers (FC) to map the vector 𝐸̂ to a low dimension. 

Finally, we obtain the output of the weather layer  𝑉𝑤. 

 

2) Additional Factor Layer 

As we mentioned, the arrival time of flights is affected by 

many complex factors, such as the TMA congestion degree, 

time of day, day of the month, and trajectory patterns. An 

additional factor layer is designed to incorporate these factors 

into our model to improve the accuracy of prediction.  

We first incorporate the factors that include the TMA 

congestion degree, time of day, day of the month, and trajectory 

patterns. The embedding method [42] can reduce the 

dimensions of vectors and improve the training speed. The 

embedding method reduces the dimension 𝐷1 of each discrete 

variable and obtains a transformed space 𝑅𝐷2×1 by multiplying 

a parameter matrix 𝑊 ∈ 𝑅𝐷1×𝐷2 . 𝐷2  is the dimension of the 

transformed space. 

In addition to the embedded vectors, we incorporate the 

distance from the reference point. The center of the runway is 

used as the reference point, and the distance indicates flights 

toward the center of the TMA. Finally, the embedded vectors 

are concatenated with the distance as the output 𝑉𝑒𝑥𝑡  of the 

additional factor layer. We concatenate the weather features 

vector 𝑉𝑤  with the additional factor features vector 𝑉𝑒𝑥𝑡  to 

obtain a time-invariant feature vector 𝑉𝑓. 

The arrival time of flights is closely related to the TMA 

congestion degree [43], which can be measured by the number 

of flights that enter the TMA [44]. The increase in the number 

of flights that enter the TMA will lead to restrictions on flight 

entry procedures and fierce competition in airspace 

environment and runway occupation.  

 

3) Spatial-Temporal Layer 

We first capture the spatial features by a nonlinear function. 

The formulation is, 

𝑉𝑖
𝑠 = 𝑡𝑎𝑛ℎ(𝑊𝑠 ∙ [𝑙𝑎𝑡𝑖 ; 𝑙𝑜𝑛𝑖 ; 𝑎𝑙𝑡𝑖; 𝑣𝑖]) (10), 

where [∙;∙] is a concentration operation that connects different 

features, 𝑊𝑠  is a learnable parameter, 𝑡𝑎𝑛ℎ  is an activation 

function, the range of the output of the 𝑡𝑎𝑛ℎ function is [-1,1], 

and the mean is zero. The attributes of the 𝑖𝑡ℎ track point are 

mapped into a vector 𝑉𝑖
𝑠 ∈ 𝑅16. Finally, we obtain a sequence 

𝑉𝑠 ∈ 𝑅16×𝐿 , which represents the spatial features of the 

trajectories. 

Recurrent neural network (RNN) is a neural network that 

mainly processes time series. However, RNN has vanishing and 

exploding gradient problems due to back propagation. LSTM is 

a variant of RNN, and the structural design of LSTM can solve 

the vanishing gradient problem of RNN [45]. Compared with 

LSTM, Bi-LSTM utilizes an additional backward layer and thus 

enhances the memory capability [46]. We use Bi-LSTM to 

capture the temporal features from the historical trajectories in 

our model. 

We concatenate the spatial features vector with the time-

invariant features vector 𝑉𝑓 to get the vector 𝑋𝑖 = [𝑉𝑖
𝑠; 𝑉𝑓], [.;.] 

concatenates different features in one dimension. Then, we feed 

𝑋𝑖 to Bi-LSTM at each time step. At each time step, the LSTM 

contains a cell 𝐶𝑖, an input gate 𝐼𝑖 , a forget gate 𝐹𝑖 and an output 

gate 𝑂𝑖 .The forget gate 𝐹𝑖 takes [ℎ𝑖−1; 𝑋𝑖] as input and controls 

the extent to which the information of the previous cell state 

𝐶𝑖−1 will be kept to cell state 𝐶𝑖, and the formulation is, 

 
Fig. 4. The architecture of the weather layer 
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𝐹𝑖 = 𝜎(𝑊𝐹 ∙ [ℎ𝑖−1; 𝑋𝑖] + 𝑏𝐹) (11), 

where 𝑊𝐹 , 𝑏𝐹  are learnable parameters, 𝜎  is an activation 

function. 

The input gate 𝐼𝑖  determines the extent to which the input of 

the current networks 𝑋𝑖  flows into cell state 𝐶𝑖 , and the 

formulation is, 

𝐼𝑖 = 𝜎(𝑊𝐼 ∙ [ℎ𝑖−1; 𝑋𝑖] + 𝑏𝐼) (12), 

𝐶̃𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑖−1; 𝑋𝑖] + 𝑏𝐶) (13), 

where 𝑊𝐼 , 𝑏𝐼 , 𝑊𝐶 , 𝑏𝐶   are learnable parameters, 𝑡𝑎𝑛ℎ is an 

activation function.  

After the two steps, the cell state can be updated, and the 

process can be expressed as follow, 

𝐶𝑖 =  𝐹𝑖  ⊗  𝐶𝑖−1 +  𝐼𝑖  ⊗  𝐶̃𝑖 (14), 

where ⊗ is the Hadamard product. 

The output gate 𝑂𝑖  controls the extent to which the 

information of the cell state 𝐶𝑖 is used to compute the output ℎ𝑖, 

and the formulation is, 

 𝑂𝑖  =  𝜎 (𝑊𝑜 ∙ [ℎ𝑖−1; 𝑋𝑖]  + 𝑏𝑜)      (15), 

ℎ𝑖 =  𝑂𝑖 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑖) (16), 

where 𝑊𝑜  and 𝑏𝑜  are learnable parameters, ℎ𝑖  is the hidden 

state, which is the output of a cell unit of the LSTM. 

We get the 𝑖𝑡ℎ  hidden states ℎ𝑖
𝑓

 and ℎ𝑖
𝑏 of the forward and 

backward layer respectively. Two hidden states are 

concatenated to get the 𝑖𝑡ℎ hidden state ℎ𝑖 = [ℎ𝑖
𝑓

; ℎ𝑖
𝑏]. Finally, 

we obtain a hidden state sequence {ℎ𝑖}. 

 

4) Prediction Layer 

Flights may turn or accelerate in some areas. Paying more 

attention to these parts can improve the accuracy of the 

prediction. Therefore, we apply the temporal attention 

mechanism to learn the importance of trajectory features at 

different time steps in an adaptive way to predict ETA 

accurately. The essence of the temporal attention mechanism is 

to assign a weight to each input passed to it and then output the 

weighted sum of all inputs. In the prediction layer, the hidden 

state sequence {ℎ𝑖}  from recurrent units is taken into as the 

input. Then, the attention weights of hidden states are calculated 

as 

𝑢𝑖  = 𝑄 ∙ 𝑡𝑎𝑛ℎ(𝑊𝑢 ∙ ℎ𝑖 + 𝑏𝑢) (17), 

where 𝑄 , 𝑊𝑢  and 𝑏𝑢  are learnable parameters. 𝑢𝑖  is the 

attention weight, which represents the correlation between the 

𝑖𝑡ℎ  hidden state with the arrival time of the flight. Then, the 

softmax function is utilized to normalize all the 𝑢𝑖 , the 

formulation is, 

𝛽𝑖 =
𝑒𝑥𝑝(𝑢𝑖)

∑ 𝑒𝑥𝑝 (𝑢𝑖)𝐿
𝑖=1

 (18), 

where  0 ≤ 𝛽𝑖 ≤ 1  and ∑ 𝛽𝑖  
𝐿
𝑖=1 = 1 . Once we obtain the 

attention weights, the output vector 𝐻 of the temporal attention 

mechanism is computed with 

𝐻 =  ∑ 𝛽𝑖ℎ𝑖
𝐿
𝑖=1  (19). 

Finally, the vector 𝐻  is passed to several residual fully 

connected layers, which consist of fully connected layers and 

residual connections [47]. The residual connection adds the 

residual term to the fully connected layer. It has been shown 

that the introduction of the residual term can prevent network 

degradation. Finally, we obtain the estimated time of arrival. 

During the training phase, the mean absolute percentage error 

(MAPE) is applied as our loss function. 

IV. RESULTS AND DISCUSSION 

A.  Data Preparation 

To study this problem, the Beijing TMA is selected as the 

study case, which is one of the busiest TMAs in China. Beijing 

Capital International Airport (BCIA) is one of the busiest 

airports in the world and contains three parallel runways: 

18R/36L, 18L/36R, and 19/01 (Wang et al., 2018). We only 

take the arrival flights landing on runway 36R/36L/01 into 

account. The datasets in this study include Automatic 

Dependent Surveillance-Broadcast (ADS-B) data and radar 

echo maps from August 1st, 2019 to October 9th, 2019 over the 

TMA of Beijing Capital International Airport. 

Each record of the ADS-B data contains the aircraft ID, type 

of operation (departure/arrival), longitude, latitude, altitude, 

horizontal ground velocity, coordinated universal time (UTC) 

timestamp, heading, etc. After data filtering and cleaning, we 

extract 17,596 trajectories from the dataset. A total of 12,348 

trajectories are used for training, and 5,248 trajectories are used 

for testing. As only the flights in the Beijing TMA are 

considered, and we crop the original images and only keep the 

spatially nearby region part. The longitude and latitude of the 

four corners are (115.32E, 40.47N), (117.17E, 40.47N), 

(115.31E, 38.58N), and (117.17E, 38.58N), respectively. The 

horizontal resolution of images after cropping is 189 by 186. 

According to the experiment, the number of all landing flights 

within 2100s after the target flight enters the TMA is most 

related to the ETA, so we select this number as the TMA 

congestion.  

The distribution of the transit time from flights entering the 

Beijing TMA to landing is shown in Fig. 5. The time that most 

flights spend in the TMA ranges from 900 to 1500 seconds, with 

an average of 1229.4 seconds. 

 

B. Clustering Performance and Trajectory Prediction 

Performance 

 The parameters ε and MinPts have a great influence on the 

clustering performance of DBSCAN. The parameter grids used 

 
Fig. 5. Transit time probability distribution of flights in 

Beijing TMA 
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in DBSCAN are shown in Table I. In the clustering process, the 

distance threshold 𝜀 is set to 0.18, and the minimum number of 

points MinPts is set to 10, the noise accounts for a small 

proportion of datasets. DBSCAN clusters the historical 

trajectories into nine main patterns and noise. The noise is 

mainly composed of holding patterns and trajectories with large 

vectoring, which will have an interference for the ETA 

prediction training stage. Therefore, we delete the noise from 

                     
     (a) Representative trajectories                 (b) Distribution of trajectories by pattern 

 

 
(c) Trajectory patterns 

 

Fig. 6. Results of trajectory clustering. nm represents nautical mile. 
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the dataset. Fig. 6c is the 2D plot of the trajectories in the 

Beijing TMA, where different colors denote trajectories in 

different patterns. We find that the patterns of the trajectories 

are related to the entry points and runways.  The representative 

trajectories of the patterns in Fig. 6a show that more than one 

pattern exists for some entry points. As an example, the flights 

categorized as pattern 5, pattern 6, and pattern 9 enter the 

Beijing TMA at entry point VYK. Fig. 6b shows the 

distribution of the patterns. Pattern 1 is the dominant pattern and 

concentrates more than 25% of the trajectories. 

To evaluate the performance of trajectory prediction, we 

analyze the distribution of the prediction errors. Horizontal 

error represents the distance between the predicted 2D 

coordinate (latitude and longitude) and the actual one. Vertical 

error is the distance between the predicted altitude and the 

actual altitude. The horizontal errors of points are mostly in the 

range of 0 nm to 9 nm, with an average of 2 nm. The vertical 

errors of points are mostly in the range of 0 nm to 0.6nm. 

Moreover, the horizontal and vertical errors of trajectories have 

similar distribution with that of points. 

 

C. ETA Prediction Performance 

1) Methods for Comparison 

To evaluate the performance of our model, we compare our 

model with the following methods. 

Random Forest Regressor (RF) [25]: a tree-based algorithm. 

The ETA is formulated as a regression problem, and the input 

includes the features of a track point, the features extracted from 

the radar echo maps and additional factors.  

Extreme Gradient Boosting (XGBoost) [48]: one of the 

boosting algorithms. Regularization is introduced in the loss 

function, which can reduce overfitting during the training phase. 

XGBoost learns column subsampling from RF. The input of 

XGBoost is the same as that of RF. 

Adaptive Boosting (AdaBoost) [49]: an iterative algorithm. 

The core of AdaBoost is to find the weight of the present 

classifier and update the error of the samples. It is adaptive and 

very sensitive to noise and abnormal data. 

DBSCAN+MCNN [33]: a model that combines clustering 

with a machine learning predictor. The historical trajectories are 

identified as different clusters by DBSCAN, and each cluster 

has an individual NN-based predictor. 

RNN-ETA: a simplified model of STNN-ETA. We use RNN 

to capture temporal features instead of Bi-LSTM. 

LSTM-ETA: a simplified model of STNN-ETA. We use an 

LSTM to capture temporal features instead of Bi-LSTM. 

GRU-ETA: a simplified model of STNN-ETA. We use a 

GRU to capture temporal features instead of Bi-LSTM. 

 

2) Performance Evaluation 

We use the mean absolute percentage error (MAPE) and the 

mean absolute error (MAE) to evaluate the proposed methods, 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦̂𝑟−𝑦𝑟

𝑦𝑟
|𝑛

𝑟=1 × 100% (20), 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦̂𝑟 − 𝑦𝑟|𝑛

𝑟=1  (21), 

where 𝑦̂𝑟  is the 𝑟𝑡ℎ  predicted value of the ETA of the target 

flights and 𝑦𝑟 is the 𝑟𝑡ℎ observed value of ETA. 

For hyperparameters in the arrival time prediction 

component, the batch size of each epoch is 64 and the learning 

rate is 0.5. The hidden units in the Bi-LSTM, RNN, LSTM, 

GRU are set to 128. The model is trained by Adam. 

Considering that different time horizons of prediction may 

have different prediction errors, we compare the performance 

of these methods at different time horizons. The results are 

shown in Table II. t(s)=0 indicates that the flight is at the entry 

point of the TMA; t(s)=240 indicates that the flight has been 

flying in TMA for 240 seconds; t(s)=480 indicates that the 

flight has been flying in TMA for 480 seconds. As shown, 

STNN-ETA outperforms all the compared methods in each 

group. At the entry points, t(s)=0, STNN-ETA improves the 

MAPE by 3.45% and the MAE by 37.94 seconds in the dataset 

compared with those of the best performance of the existing 

methods. We also find that the MAE tends to be smaller when 

the flight is close to its destination. Another observation is that 

MAPE shows similar trends with MAE, and with less time to 

TABLE II 
PERFORMANCE COMPARISON 

Model 
t (s) = 0  t (s) = 240  t (s) = 480 

MAE(s) MAPE (%)  MAE (s) MAPE (%)  MAE (s) MAPE (%) 

DBSCAN+MCNN 127.33 10.51  98.24 9.98  70.12 9.06 

RF 134.96 11.37  97.59 9.79  69.87 8.98 

XGBoost 130.51 10.98  94.81 9.58  70.44 9.15 

AdaBoost 131.15 11.01  94.19 9.42  69.57 8.93 

RNN-ETA 99.94 7.90  87.39 8.93  61.10 8.04 

LSTM-ETA 91.53 7.29  73.29 7.52  54.58 7.26 

GRU-ETA 93.73 7.56  72.14 7.33  56.21 7.42 

STNN-ETA 89.39 7.06  70.06 6.91  51.42 6.87 

 

TABLE I 

THE GRIDS OF HYPERPARAMETERS 

Parameters Parameter grid 

ε {0.06, 0.12, 0.18, 0.24, 0.30, 0.36, 0.42, 0.48} 

MinPts {5, 10, 20, 30, 40, 50, 60} 
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the destination, the prediction performance of all methods 

continues to improve. When t(s)=240 and t(s)=480, the MAPE 

of STNN-ETA is 6.91%, 6.87% respectively. RNN-ETA, 

LSTM-ETA, GRU-ETA use RNN, LSTM, GRU respectively 

to capture the temporal features in the spatial-temporal layer 

instead of Bi-LSTM, which are much better than all existing 

methods. 

To analyze the effectiveness of the temporal attention 

mechanism, we replace the temporal attention mechanism with 

mean pooling, which equally treats the hidden state sequence. 

Then, the output vector of the mean pooling is passed to the 

residual fully connected layers to obtain the predicted time of 

arrival. The results are shown in Table III (t(s)=240). The 

MAPE increases to 7.84%. Thus, the temporal attention 

mechanism can enhance predictive performance. 

We eliminate the weather layer to further analyze the effect 

of convective weather, the results are shown in Table III. The 

MAPE under this setting is 7.47%, compared with the 6.91% of 

the original model (t(s)=240). Thus, the convective weather 

features extracted from the radar echo maps can improve the 

prediction performance. In order to analyze the impact of the 

spatial attention mechanism, we extract features from the radar 

echo maps only by CNN. The MAPE is 7.34%, which indicates 

that the spatial attention mechanism can improve the 

performance by 0.43%. 

We eliminate exactly one additional factor from the model to 

analyze its impact on the prediction performance. The results 

are shown in Table III (t(s)=240). We find that eliminating the 

distance to the center of the TMA, the TMA congestion degree, 

and the pattern affects the MAPE growth by 0.83%, 0.66%, and 

0.52% respectively. In addition, eliminating the day of month 

and time of day results in MAPE growth of 0.10%. Therefore, 

among all the additional factors, the distance to the center of the 

TMA, the TMA congestion degree, and the pattern are the 

dominant factors. 

 
In order to measure the performance of the model under 

different conditions, we divide the congestion degree into four 

group ： 1) < 25%𝐶𝑚𝑎𝑥 , 2) 25%𝐶𝑚𝑎𝑥 − 50%𝐶𝑚𝑎𝑥 , 3) 

50%𝐶𝑚𝑎𝑥 − 75%𝐶𝑚𝑎𝑥 , 4) > 75%𝐶𝑚𝑎𝑥, 𝐶𝑚𝑎𝑥 is the maximum 

of the congestion degree. The percentage of flights in the 

four groups are 7.7%, 23.1%, 61.0%, 8.2%. Fig. 7 shows that 

DBSCAN+MCNN, RF, XGBoost, AdaBoost have similar 

prediction performance under different conditions. However, 

the model we proposed can make a better prediction under the 

congested condition.  

 

V. CONCLUSION 

In this paper, we propose a spatial-temporal neural network 

model for estimating the time of arrival (STNN-ETA). Three 

components are discussed. In the trajectory pattern recognition 

component, DBSCAN is applied to cluster the historical 

trajectories into several main patterns. Given the target flight, 

the trajectory from the current position to the runway is 

predicted by the trajectory prediction component. In the arrival 

time prediction component, a nonlinear function and Bi-LSTM 

are proposed to extract the spatial and temporal features from 

trajectories. In addition, we employ a temporal attention 

mechanism to adaptively learn the weights for hidden state 

sequence output from the Bi-LSTM to predict the ETA. 

Moreover, STNN-ETA considers the effects of convective 

weather and additional factors. We evaluate our model on the 

Beijing TMA dataset, and the experimental results show that 

STNN-ETA significantly outperforms the existing models. We 

compare the performance of STNN-ETA at different time 

horizons and find that the mean absolute error tends to be 

smaller when the time to the destination is shorter. In addition, 

we analyze the effect of convective weather and additional 

factors. 

In the future, we will further optimize the approach for better 

prediction performance and model interpretability. Particularly, 

additional efforts will be made to improve the trajectory 

prediction. In addition, other important features, e.g., the 

aircraft types, and the sequencing of arrivals and departures at 

the airports have an effect on the arrival time of flights, we will 

incorporate these features into model to enhance the prediction 

accuracy. What’s more, this work focuses on presenting a new 

model for short-term ETA prediction, and we will extend our 

model to solve the long-term ETA prediction problem. 
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TABLE III 

PERFORMANCE OF STNN-ETA 

Model 
MAE 

(s) 

MAPE 

(%) 

STNN-ETA 70.06 6.91 

STNN-ETA with mean pooling 77.77 7.84 

STNN-ETA without spatial attention  73.58 7.34 

STNN-ETA without convective weather  73.96 7.47 

STNN-ETA without distance 76.25 7.74 

STNN-ETA without TMA congestion degree 74.92 7.57 

STNN-ETA without pattern  73.78 7.43 

 
 

 
Fig. 7. The MAPE under different congestion degree 
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