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Abstract— Sea-surface object detection is critical for navigation safety of autonomous ships. Electro-
optical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle
sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and
foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object
detection technologies have heen gradually applied to sea-surface object detection. This article dem-
onstrates a comprehensive overview of sea-surface object-detection approaches where the advantages
and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image
types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In
particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and
compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of
these approaches. The article also proposes the direction of future research for sea-surface object detec-
tion based on EO sensors.
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tudies on navigation technology of autonomous ships

have gradually increased in the past few decades

due to the continuous development of technologies

for computers, communication tools, and artificial
intelligence approaches [1]. Fast and accurate perceptual
information is the foundation of autonomous navigation
decision making for autonomous ships. Marine radar is of-
ten used as a sensor to detect obstacles on the sea, but there
are some obvious drawbacks to this technology. On the one
hand, due to the existence of close blind spots, some sea-
surface objects close to the ship are not easy to capture. On
the other hand, it is difficult for radar to extract low radar
cross-section (RCS) objects in clutter environments such
as rain, snow, wind, and waves.

Electro-optical (EO) sensors are further used as an ex-
cellent supplement to the shortcomings of radar because of
the following reasons. First, the image and video informa-
tion generated using the EO sensoris intuitive and interpre-
table for the watching officers on board or the shore-based
center. Second, EO sensors are more adaptable to new
technologies and can apply image processing technology
and computer vision to achieve more intelligence [2]. How-
ever, the use of EO sensors to detect sea-surface objects has
several drawbacks [3], [4], including difficulty in detecting
foreground objects under complex backgrounds [5], chang-
ing the appearance of the detected object due to distance
and angle of ohservation [6], and sensitivity of EO sensors
to weather changes (e.g., illumination and sea fog) [7].

Subsequently, several studies on improving EO sensor
technology for object detection have been conducted to
achieve faster and more accurate sea-surface object detec-
tion. In general, a traditional maritime object-detection
system consists of three modules: horizon detection, static-
background subtraction, and foreground segmentation.
Each of these phases is relatively challenging because of
coastal interference and the dynamic of ocean waves. Re-
cently, deep learning using different convolutional neural
network (CNN) models to extract features of maritime ob-
jects has been continuously developed and has produced
significant detection results. However, comprehensive re-
views of sea-surface object-detection methods in the ex-
isting literature are still lacking. Subsequently, this study
offers a comprehensive overview of traditional techniques
and deep learning methods, including analyzing the ad-
vantages and limitations of each technique, presenting a
comprehensive collection of public maritime datasets, and
providing extensive guidance for the use and verification
of sea-surface object-detection methods.

Related Works
Contents of Previous Research

Moreira et al. [9] introduced several maritime vessel
foreground segmentation methods. Chan [8] evaluated
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37 maritime background subtraction algorithms using an
established dataset. Prasad et al. [2] performed a compre-
hensive review and evaluation of background subtraction
methods based on object detection in a maritime environ-
ment. Currently, only a limited number of studies have
investigated a deep learning-based sea-surface object-de-
tection technique. Scholler et al. [10] evaluated three deep
learning maritime object-detection methods, and Wang
et al. [11] proposed several classic deep learning architec-
tures and applications for sea-surface object detection.

Objectives of Previous Research

Existing investigations of sea-surface object detection us-
ing EO sensors have various objectives, with relatively
few studies reporting the comprehensive collection and
evaluation of sea-surface object-detection methods. Chan
[8] investigated different sea-surface object-detection al-
gorithms primarily to improve the performance of mari-
time background subtraction in the object-detection step.
Scholler et al. [10] used three different deep learning meth-
ods to evaluate the algorithm’s detection performance and
classification efficiency. In addition, Prasad et al. 2] and
Moreira et al. [9] introduced object-detection steps in the
maritime environment and presented a foundation for sub-
sequent research on sea-surface object tracking.

Limitations of Previous Research

Detecting sea-surface objects using computer vision
technology, specifically deep learning methods, requires
high-quality datasets as benchmarks. The relevant lit-
erature reviews have provided and organized datasets for
the convenience of other researchers. For instance, Mittal
et al. [14] collected and sorted out low-altitude drone da-
tasets to study the problem of detecting unmanned aerial
vehicle (UAV) objects. Kanjir et al. [12] and Li et al. [13]
conducted literature surveys on object-detection methods
in ships based on optical remote sensing images. Among
those studies, Li et al. [13] collected datasets that may be
used as benchmarks to verify the object detection and clas-
sification methods in ships. Considering the sea-surface
objects datasets based on visible and infrared, Wang et al.
[11] collected some ship datasets. However, these datasets
have not been comprehensively collected and organized for
sea-surface object detection.

Therefore, our review will cover four essential aspects
of using EO sensors for sea-surface object detection: EO
sensors, traditional object-detection techniques, deep
learning methods, and maritime datasets collection, as
presented in Figure 1.

Our Contributions

This study reviews the latest EO sensors-based technologies
for sea-surface object detection and evaluates the technolo-
gies, highlighting their potential to develop autonomous
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navigation and maritime surveil-
lance systems for autonomous

Table 1. A comparison of related research and the proposed work.

ships. The main contributions of Year References Key Contents 1 2 3 4

this study, in comparison to the 9514 \oreira et al. (9] Maritime vessels detection and tacking algorithms VY x %

existing literature, are as follows o . . .

(see Table 1): 2017 Prasad et al. [2] Maritime objects detection and tracking methods y \ % %

m We present a comprehensive 2018 Kanjiretal. [12] Ship detection and classification x Vv 1 x
insight of traditional tech- 9919  Sehglleretal. [10]  Sea-surface object-detection methods Vx4V x
nologies for sea-surface ob- 2000 Wangetal. (1] AT dalooritms ine obiect . J J J
ject detection by rigorously ang et al. rehitectures and algorithms for marine object recognition X
comparing the advantages and 2021 Chan [8] Marine background subtraction algorithms V V X X
disadvantages of the three pro- 2021 Ljgtal. [13] Ship detection and classification x 4 A o
cesses of traditional sea-sur- 2022 Thisarticle Sea-surface object-detection methods v oy oy

face object-detection methods
(i.e., horizon detection, static-
background subtraction, and
foreground segmentation).

m We define three key steps of the deep learning-based
method of sea-surface object detection, (i.e., training
dataset construction, object feature extraction, and
model optimization) and make comprehensive analyza-
tion and further comparation of the characteristics of
various techniques in these steps.

m We collect more comprehensive visible/infrared image
datasets for sea-surface object detection and discuss the
method for evaluating the performance of ohject-detec-
tion algorithms based on the benchmark dataset.

m We analyze and discuss the challenges and future de-
velopment of EO sensors-based sea-surface object-de-
tection methods.

x: not considered.

Overview of Object Detection
in the Maritime Environment

Comparison of Sensors Used in the Maritime

Environment for Object Detection

An autonomous ship needs to perceive and obtain informa-
tion of the environment around the ship and ultimately to
navigate reliably, autonomously, and safely. Ship-sensing
systems rely on GPS, automatic identification system (AIS),
sonar, marine radar, lidar, and EO sensors. Among those
tools, GPS is mainly used for autonomous positioning of ships
[15], while AIS systems are primarily used for ship-to-ship
information sensing and are not suitable for detecting sea-
surface objects that are not equipped with AIS [16], [17]. The
sensors commonly used for detecting obstacles in the sea
include sonar, marine radar, lidar, and EO ones. Moreover,
an EO sensor is divided into visible cameras and infrared
optical ones. Table 2 summarizes the advantages and disad-
vantages of these types of sensors. Figure 2 shows the date
and methods used for the first application of each sensor to
the detection of sea-surface objects in the past 20 years in
this survey. For infrared cameras, Toet [18] used a morphol-
ogy approach to segment maritime foreground objects. For
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1: visible/infrared image; 2: background subtraction/foreground segmentation; 3: deep learning methods; 4: dataset collection; v: considered;

marine radar, Panagopoulos and Soraghan [19] used signal

averaging, time-frequency representation, and morphologi-

cal filtering for object detection. For visible cameras, Bouma
et al. [20] used the change of object pixel intensity to estah-
lish a background model to detect marine targets. For sonar,

Heidarsson and Sukhatme [21] processed the collected so-

nar data, followed by the processing and feature extraction

of the overhead imagery, and then used a binary classifica-
tion framework to detect marine obstacles. For lidar, Gal
and Zeitouni, [22] used probability density estimation and

Bayesian filters to identify and track sea-surface objects.
Navigation radar, sonar, and lidar are commonly used

detection sensors for autonomous ships. Sonar is frequently
employed for detecting underwater ohjects, rather than for
detecting objects on the water’s surface [23], [24]. At present,
nautical radar is the most widely used detection equipment
by large merchant ships, and it has great capability to detect
and track objects at sea. It can well detect most objects, in-
cluding objects far away from ships. However, using radar
at sea also has a series of shortcomings, chiefly as follows:

m Nautical radar has some drawbacks, including different
accuracy among different directions. For example, due
to the existence of blind spots, it often fails to detect ob-
jects that are too close to its own ship.

m Radar is not suitable for detecting such sea-surface ob-
jects (small wooden fishing boats, rafts, and so on) that
are not equipped with radar reflectors and AIS.

m Radar is not effective in extracting targets with a low
RCS. Pirate ships are often difficult to track by radar he-
cause they are very small and fast, using almost nonme-
tallic, rigid, inflatable boats [25], [26].

m In the presence of wind and waves, some tiny objects
(e.g., buoys and pontoons; see Figure 3) [27], [28] may be
shielded by radar clutter suppression.

m Radar-based systems are not suitable for object detec-
tion in densely populated areas offshore because of rela-
tively large electromagnetic emissions [29], [30].
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Table 2. A comparison of sensors in sea-surface object detection.

Sensor Distance Advantages/Characteristics Disadvantages/Limitations
Sonar ~1mto @ Close detection distance on the sea @ Needs separate systems for small-range detections
several @ Mainly used for underwater detection @ Requires specialized user training
100 m ® Able to detect objects with acoustic characteristics ® Performs poorly for objects with weak acoustic features
Nautical ~40mto @ Far detection distance @ There is a radar blind spot at close range
radar 72 nmi @ Detects objects with high RCSs (mostly metallic) @ Insufficient ability to detect small objects
® Large onboard power supply requirement ® Requires specialized user training
@ Adapts to severe weather and sea conditions @ Not suitable for detecting in populated areas offshore
® Provides nearly all-weather and broad-area imagery ® Susceptible to high waves and water reflectivity
® Cannot detect objects with a small RCS
@ Cannot penetrate water
Lidar ~1mto @ Good at near-range obstacle detection @ The detection range is close
200m @ Good in real time @ Less information about object characteristics is obtained
® Less affected by rain and fog than EQ sensors ® Relatively high cost
@ Cannot penetrate water
Visible ~1mto @ Processes color information @ Sensitive to illumination and weather changes
range EQ several @ High resolution @ Relatively complicated calculation
kilometers ® Adaptive to new computer vision and image processing algorithms ® Difficult to detect far objects and predict their size and distance
@ Simple operation @ A relatively short detection distance
Infrared ~1mto @ Suitable for night detection @ Indoor or evening use only
range EQ several @ Longer range than visible-range EQ @ Relatively complicated calculation
kilometers ® Adaptive to new computer vision and image processing algorithms ® Difficult to detect far objects and predict their size and distance

@ Simple operation @ A relatively short detection distance

Moreover, lidar is accurate and reliable
in detecting objects close to the ship; how-
ever, its cost is relatively high. In addition,
the characteristic information of the ob-
tained objects is short of intuitiveness and
richness compared with the objects cap-
tured by EO sensors [27], [31], [32], [33], [34]-

As presented in Tabhle 2, EO sensors can
detect sea-surface objects essential to au-
tonomous ships. The sea-surface objects
missed by radar can be detected by the im-
ages and video data acquired from the EO
sensors. Such images and video data have
rich feature information, intuitiveness and
effectiveness, and intense immersion [25],
[35], [36], [37], [38]. EO sensors can adapt
to the latest image processing, computer
vision, and other new technologies. In ad-
dition, EO sensors have great potential as
an auxiliary observation method and have
important practical significance and broad
application prospects for autonomous ships
[39], [40], [41], [42], [43]. Subsequently, it is
necessary to introduce EO sensors into
the autonomous ship-sensing system even
though such sensors have some disadvan-
tages, e.g., they are affected by illumina-
tion, weather conditions, and relatively
complex calculations. Based on this, in this

2013
Lidar

Probability Density Estimation

and Bayesian Filters 2ﬂ1
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A Binary Classification
Framework
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Single-Image Statistics
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FIG 2 Sensor usage graphic milestones.
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FIG 3 Several sea-surface objects [2].

study, we investigated sea-surface object
detection using EO sensors to provide a
technical reference for the sensing module
for the autonomous navigation of ships.

Sea-Surface Object Detection From EQ
Sensors

The overall framework of sea-surface ob-
ject detection from EO sensors is shown in
Figure 4. Three phases are conducted to
carry out such a work: image data input,

sea-surface object detection, and detection
result output. First, EO sensors are used
to collect the image data of maritime ob-
stacles. An object-detection technology is
further employed to detect the sea-surface
object, and finally, the output is generated
as information about the detected object,
e.g., boats and buoys.

\

4 - )
4

(" Traditional Maritime Object) _(Deep Learning)]

Methods Detection Methods J
e -
( esult Outpu

J

Using EO sensors to detect sea-surface
objects depends on the object-detection
technology employed. Most of the object-
detection technologies are not easy to use directly to de-
tect sea-surface objects due to complexity of the maritime
environment. This study investigates various methods of
sea-surface object detection divided into traditional and
deep learning approaches. The traditional approach de-
tects maritime obstacles using background subtraction
technology to obtain foreground objects after preprocess-
ing related object images (e.g., image denoising and image
segmentation). The deep learning method designs a detec-
tion model for the target dataset and uses the trained model
to detect the target in the image directly. The following two
sections review the progress of both approaches.

Traditional Sea-Surface Object-Detection

Methods Using EO Sensors

To detect sea-surface objects using traditional techniques,
three essential steps are conducted, i.e., horizon detection,

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

FIG 4 The framework of EO-sensors-based sea-surface object detection.

static-background subtraction, and foreground segmenta-
tion. This article discusses traditional sea-surface object-
detection methods from the perspective of the process
(see Table 3).

Horizon Detection

Linear Fitting Approach

The linear fitting approach selects candidate points for
linear fitting and then generates sea-skyline parameters.
Jiang et al. [44] proposed a sea-skyline detection method
based on linear fitting. First, the sea horizon information
is determined by performing a histogram analysis, obtain-
ing pixel information from near the sea horizon, and then
using the linear fitting technique to remove the irrelevant
pixels. Moreover, Ma et al. [45] suggested a sea-skyline ex-
traction method based on a straight-line fitting. First, the
line-segment detection method was adopted to locate the
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sea skyline roughly, and then the least squares approach
was used to calculate the sea-skyline accurately.

The horizon-generation method based on linear fitting
is less computationally intensive and has good real-time
performance. Subsequently, such an approach is suitable
for horizon detection in a simple sea and sky background.

Transform Domain Approach

The horizon-generation methods based on the transform
domain include Hough transform, Radon transform, wave-
let, and so forth. This type of process first transforms the
collected image data into the corresponding transform
domain and then processes the image in the transform
domain. Kong [46] proposed a horizon-detection method
based on the wavelet transform. Mathematical equations
were established to locate the horizon’s position by check-
ing the approximate image of Haar wavelet decomposition.
Tang et al. [47] used Radon transform to extract horizons
based on maritime infrared image data and fuzzy compre-
hensive evaluation to produce the detection results. More-
over, Wei et al. [48] designed a vision-based sea-surface
object-detection system in which a fast edge detection
algorithm is used to generate a binary edge image of the
scene. The Hough transform is further used to detect the
horizon in the edge image.

Using the horizon-generation method based on the
transform domain has the advantage of reliably and ac-
curately generating the horizon in a complex environment
with better robustness. The disadvantages are that the
number of calculations is relatively large, and it is chal-
lenging to meet real-time requirements.

Gradient Saliency Approach

The gradient saliency approach adopts pixel characteristics
of the horizon. On the other hand, the gradient amplitude
of the horizon changes drastically in the vertical direction.
Moreover, the pixel characteristics in the horizontal direc-
tion are the same. Wang et al. [49] proposed a gradient sa-
liency algorithm hased on a red, green, blue color space.
Such an approach effectively suppressed interference fac-

Table 3. A comparison of horizon-detection methods.

tors and realized identification of the horizon through a
regional growth method based on gradient direction. Lin
et al. [50] used saliency of the gradient between the sea
surface and the sky to enhance the image gradient through
Gaussian low-pass filtering. They eliminated the influence
of clouds and waves on the image gradient, determined the
potential area of the horizon, and finally, used iterative
polynomial fitting to generate the horizon.

The gradient-based saliency method can be carried out
quickly, with a good real-time performance. However, for
complex backgrounds, interference factors need to he sup-
pressed in algorithm processing, otherwise, it is easy to
cause missed detection.

Image Segmentation Approach

The horizon is generated based on the principle of image
segmentation. Generally, the dividing line of the water
and sky area is defined as the horizon. Lu et al. [51] inte-
grated median filtering and Canny edge detection to de-
sign an adaptive threshold based on the characteristics of
infrared images to segment the horizon. Liang et al. [52]
used a gray-level co-occurrence matrix based on texture
features to locate the sea-skyline region. It was carried out
by obtaining an adaptive segmentation threshold using the
maximum between-class variance method, adopting the
clustering technique to select the appropriate points, and
finally generating the horizon parameters by a straight-
line fitting.

The horizon-generation method based on image seg-
mentation has a small calculation and good real-time per-
formance in a simple background. However, determining
the optimal segmentation threshold of the horizon in a
complex background using this approach is difficult, and
the ability to resist interference factors is poor.

Information Entropy Approach

The information entropy approach is also widely used for
horizon detection. Yang et al. [53] proposed an information
entropy method based on variance weighting to detect ho-
rizons in infrared images, and verified the effectiveness of

References
Jiang et al. [44] (2010); Ma et al. [45] (2016)

Classification
Linear fitting
Transform domain
Gradient significance Wang et al. [49] (2016); Lin et al. [50] (2020)
Luetal. [51] (2006); Liang et al. [52] (2015)
Yang et al. [53] (2006)

Jeong et al. [54] (2019); Zhan et al. [55] (2019)

Image segmentation
Information entropy

Based on the feature

Kong [46] (2016); Tang et al. [47] (2013); Wei et al. [48] (2019)

Representative Methods 1 2 3 4
Least squares method v X

Hough, wavelet, Radon transforms x —
RGB color space v - x x
0TSU, canny edge detection V — X X
Edge phase encoding x — A
CNN v — —

1: real time; 2: detection accuracy; 3: robust; 4: complex background adaptability; : advantages; x: limitation; —: average. RGB: red, green, blue; OTSU: Otsu Nobuyuki.
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this approach through experiments. The information en-
tropy approach has good robustness and solid environmen-
tal adaptability, but the real-time performance is poor and
the computational cost is too high.

Feature Approach

Feature-hased techniques have gradually been applied
to horizon detection in recent years. Jeong et al. [54]
used a combination of multiscale and CNNs to detect
the horizon. Zhan et al. [55] suggested a new water-
boundary-determination method. First, the input image
pixels were clustered into different regions through an
adaptive multilevel segmentation algorithm, and a la-
bel and confidence value were assigned to each pixel.
Then the obtained label map and related confidence map
were input as training samples into the CNN to train the
network online. Finally, the online trained CNN was ad-
opted to segment the input image again. The experimen-
tal results show that this technique had higher accuracy
and strong robustness.

Feature-based methods have a solid ability to extract
targets. However, to implement such an approach, many
images must be collected in advance for training and many
unpredictable factors are involved in the actual scene, e.g.,
lousy weather and occlusion of ships.

Static-Background Subtraction

After the horizon is detected, the relevant detection area is
obtained. However, due to the dynamics and complexity of
the marine environment, detecting related targets in the
detection area is still relatively complicated. Subsequently,
first, itis necessary to remove the background of the image
through background modeling to further segment the fore-
ground and output the target-detection result [3]. Through

literature analysis, the following static-background sub-
traction methods used for sea-surface object detection are
listed in Table 4: single-image statistics, Bayesian classi-
fier, difference operation, domain pixel, Gaussian mixture,
feature based, and principal component analysis (PCA).

Single-Image Statistics Approach

The static-background-removal method based on single-
image statistics is often used for the detection of sea-sur-
face objects. Bouma et al. [20] used the change of object
pixel intensity to establish a background model to detect
small boats, buoys and other targets. Ren et al. [56] pro-
posed a saliency accumulation method to detect small tar-
gets on the sea. This technique combined characteristics of
the space and frequency domains and accumulated the sa-
liency maps of consecutive frames by applying a threshold
to obtain a binary saliency map. The experiment proved
that the method was simple and effective. Zhou et al. [57]
used a sequence-hased top-hat filter model for small in-
frared targets at sea. Such an approach well suppressed
background clutter and enhanced the detection accuracy
of small infrared targets.

The method for single-image statistics is simple, does
not require memory learning, and has a better effect on
small-target detection. It cannot, however, solve the relat-
ed problems of multimodality.

Bayesian Classifier Approach

The Bayesian classifier is a method with a low probability
of misclassification and strong classification ability. Cu-
librk et al. [58] used a neural network system to form an
unsupervised Bayesian classifier. The constructed classi-
fier can effectively deal with complex backgrounds using
motion and illumination changes. Socek et al. [59] used

Table 4. A comparison of static-background subtraction methods for sea-surface object detection.

Classification References Model 1 2 3 4

Single-image Bouma et al. [20] (2008); Ren et al. [56] (2012); Zhou et al. [57] Spatial filtering, histogram X X — X

statistics (2014)

Bayes classifier Culibrk et al. [58] (2007); Socek et al. [59] (2015) Decision framework, evidence theery — — —  x

Difference operation Razif et al. [60] (2015) Background difference, frames Vv X = %

difference

Domain pixel Borghgraef et al. [61] (2010); Adiguzel et al. [62] (2018); Tran ViBe, behavior subtraction —  — —
and Le [63] (2016)

Gaussian mixture Wang et al.[67] (2014); Zhang et al. [68] (2012); Frost et al. [69] Kernel density estimation, GMM - — \
(2013); Zhou et al. [70] (2020)

Based on feature Zhu et al. [71] (2010); Nie et al. [72] (2020); Fiorini et al. [73] Shape, texture, moment invariant \ — \
(2017)

Principal component Biondi [74] (2016); Sobra et al. [75] (2015); Kajo et al. [76] Singular value decomposition, V V —

analysis (2021); RPCA

1: real time; 2: detection accuracy; 3: robust; 4: complex background adaptability; : advantages; x: limitation; —: average; ViBe: visual background extractor.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

9 - MONTH 2022

Authorized licensed use limited to: University College London. Downloaded on September 14,2022 at 14:50:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

the Bayesian classifier method to estimate and suppress
the marine background and evaluated the technique’s
applicability in a dataset of real ocean scenes. The back-
ground-removal method based on the Bayesian classifier
has a simple classification, but the learning phase in this
approach is relatively complicated and the training dataset
is more sensitive.

Difference Operation Approach
The difference operation technique is divided into the
background difference and interframe difference methods.
Among them, the interframe difference method uses two
consecutive frames of images in the image sequence to per-
form difference, and then binarizes the gray-scale difference
image to extract motion information. Razif et al. [60] used the
interframe difference method to remove the maritime back-
ground, which ensured a low computational complexity.
The advantage of the difference operation approach is
that the algorithm is relatively simple and the operation
speed is fast. However, this method does not adapt to com-
plex environmental changes, such as the chromaticity
changes caused by illumination changes.

Domain Pixel Approach

Domain pixel-based methods are also often applied to
maritime background removal by considering spatial and
temporal correlations. Borghgraef et al. [61] evaluated the
visual background extractor (ViBe) and behavior subtrac-
tion algorithms, and the experimental results show that
the background-removal effect is better than that of the
traditional parametric techniques. Using the improved
ViBe algorithm, Adiguzel and Ozyilmaz [62] could better
remove noise in the image and augment the effect of back-
ground subtraction in the marine environment. Tran and
Le [63] used the ViBe algorithm, combined with saliency-
detection technology, to obtain a high detection rate on the
maritime challenge dataset.

As a parameter-free method, the domain pixel tech-
nique has the advantage of less memory usage and timely
initialization of the background model. The limitation is
that the extraction of moving objects is incomplete in com-
plex and changeable scenes.

Gaussian Mixture Approach

The Gaussian mixture approach can better suppress noise
interference in the complex background than the other
background-removal approaches [64], [65], [66]. Wang et al.
[67] faced the challenge of the complex environment on the
water surface and used a method based on Gaussian mix-
ture (GMM) to remove the sea background for detecting
floating objects on the sea. Zhang et al. [68] used a Gauss-
ian mixture model (GMM) to remove the sea background
with different illumination and weather. Frost and Tapamo
[69] used the kernel density estimation model to remove
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the maritime background and obtain a good target-detec-
tion effect. Zhou et al. [70] used the Gaussian distribution
in the Fourier domain to model the marine background
and extracted the targets by considering the maritime
background dynamics and the Gaussian discriminant co-
efficient, obtaining relatively accurate results on multiple
marine infrared video sequences. The Gaussian mixture
method can effectively remove the complex background of
the sea and has high detection accuracy under a complex
background, yet the modeling is more complicated and the
computational cost is high.

Feature Approach

The feature-based background classifier method uses
training datasets (positive and negative samples) for su-
pervised feature learning for different target categories.
Zhu et al. [71] considered ship shape and texture charac-
teristics and obtained candidate ship targets by eliminat-
ing the background of clouds, islands, and sea clutter. Nie
et al. [72] combined shape, texture, and moment-invariant
features to describe ship targets more effectively, and
eliminated false alarms through support vector machine
(SVM) training. Fiorini et al. [73] obtained high accuracy
and real-time performance on the Maritime Detection,
Classification, and Tracking (MARDCT) dataset by ex-
tracting marine vessel target features, combined with a
decision tree classifier.

The feature-based background classifier method has
good robustness to complex backgrounds (e.g., occlusion
and rotation of the target) and has been applied to various
case studies. Subsequently, this approach is relatively ma-
ture. However, it has high complexity of the algorithm and
poor real-time performance.

PCA Approach

PCA can well restore the data containing Gaussian noise
and is often used in the analysis of video foreground and
background. Biondi [74] applied the robust PCA (RPCA)
technique to maritime radar images, which can reduce
a large amount of redundant data. Sobral et al. [75] used
a double-constrained version of the RPCA to remove the
ocean background. The experimental results show that
the combination of confidence maps and shape con-
straints can improve the effect of foreground detection.
Kajo et al. [76] proposed a tensor-based singular value
decomposition method for ocean background removal,
which effectively handles the challenges hrought by ma-
rine stationary foreground objects and ghosts by updat-
ing the separation component incremental operation and
adopting a forgetting mechanism. The method bhased on
PCA can accurately separate the foreground target in
the complex image background, but the disadvantage is
that it cannot maintain efficient separation continuously
through the update mechanism.
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Foreground Segmentation

In traditional maritime data processing, after eliminat-
ing the static background, the foreground segmentation
method is used to identify the contour of maritime objects.
When such a contour is further detected, the morphology
approach is the most crucial foreground segmentation ap-
proach [2]. A morphological method is a nonlinear filtering
technique used to process binary images and is later ap-
plied to gray-scale image processing. Four basic operations
need to be carried out in the morphology approach: corro-
sion, expansion, and open and close operations. Based on
these basic operations, various morphological algorithms
can be combined and improved upon. Table 5 lists several
interesting morphological methods for foreground seg-
mentation of sea-surface objects.

Westall et al. [77] used basic morphological operations
to segment the foreground of persons in distress at sea.
Toet [18] used a morphological top-hat transform to iden-
tify kayaks and swimmers in complex ocean backgrounds
and recommended adjusting the structural elements used
in top-hat conversion to the size and shape of the target.
Such an approach would significantly reduce false-de-
tection rates. Eum et al. [78] used the Sobel edge-detec-
tion method and morphological operations to segment
foreground objects to separate the maritime foreground
from the background. Genitha et al. [79] offered an im-
proved watershed segmentation algorithm using label
control to avoid oversegmentation of the algorithm. This
method can accurately segment ship targets in maritime
remote sensing images. Kushwaha et al. [80] used wave-
let transform to wavelet decomposition of images, used
background modeling on approximate coefficient (LL
subband), and finally, used closed-shape operators to seg-
ment marine objects.

The morphology approach extracts the corresponding
shape in the image through certain structural elements,
removes irrelevant structures, and finally, achieves the
purpose of foreground object recognition. When using
morphological methods to segment sea-surface objects, it
is necessary to assume that the targets are not occluded
and separated enough to ensure that the boundaries will
not merge.

Sea-Surface Object-Detection Methods
Based on Deep Learning

The sea-surface object-detec-
tion approach based on deep
learning uses the provided sea-
surface objects dataset to train
the network. The network then
automatically learns the param-
eters to detect and recognize
the sea-surface objects. The
previous investigations mainly

References

Westall et al. [77] (2008)
Toet [18] (2002)

Eum et al. [78] (2015)
Genitha et al. [79] (2020)
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Kushwaha and Srivastava [80] (2015)

focused on improving the performance of sea-surface ob-
ject detection from three aspects: 1) dataset construction,
2) object feature extraction, and 3) model optimization. An
extensive literature review was further carried out to ana-
lyze those existing works and is presented in Table 6.

Training Dataset Construction

Sea-surface objects data based on visible and infrared, es-
pecially image data of small fishing hoats and buoys, are
not extensive. Subsequently, three approaches are general-
ly used to construct sea-surface objects training datasets:
1) specific datasets based, 2) traditional image augmenta-
tion based, and 3) generative adversarial network (GAN)
based (see Table 7). These approaches promote the re-
search of maritime ohstacle object detection hased on deep
learning, increase the utilization rate of existing data, and
further enrich the types of sea-surface objects datasets and
the diversity of object shapes.

Specific Dataset Approach

CNNs can extract many distinguishable features through a
series of convolution and pooling layers. However, object-
detection performance is closely related to large-scale,
high-quality datasets hecause a CNN is a data-driven
method. The detection performance of some objects can
be significantly improved (e.g., fish image [81], vehicle
image [82], and pedestrian detection image datasets [83],
[84]) by making datasets of specific objects. In addition,
related research has developed the maritime obstacle ob-
ject image dataset. Table 8 briefly introduces five classic
maritime datasets for deep learning (the details of the
published datasets are listed in the “Public Maritime Da-
tasets” section).

Shao et al. [85] established a new large-scale ship da-
taset called SeaShips, which accurately annotated the
bounding boxes of six types of sea ships and described the
detailed design of the dataset. Liu et al. [86] established a
sea buoy dataset named SeaBuoys, which contains six dif-
ferent types of buoys. Ribeiro et al. [87] proposed SeaGull,
a sea-surface objects image dataset captured by a small
drone, and used different cameras to obtain video se-
quences from different heights and different perspectives.
Zhang et al. [88] offered a publicly available maritime im-
age VAIS, a dataset for recognizing maritime imagery in
the visible and infrared spectrums, which contains both

Table 5. Morphology-based maritime foreground segmentation methods.

Morphological Method Foreground Object

Persons in distress at sea
Kayaks, swimmers

Dilation, erosion, open and close operations
Top-hat transform

Sobel edge detection Ship
Watershed segmentation Ship
Close operations Ship
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Table 7. A comparison of training dataset construction methods.

Approaches Brief Description Advantages

Limitation

Specific dataset Build a dataset for specific target objects in

the maritime environment

M High image quality and uniform
resolution; able to provide test
benchmarks for related algorithms

Traditional image Perform image processing operations such ™ Simple and convenient operation

data augmentation as geometric transformation and optical
transformation on the data
GAN Learn the distribution and structure of the M Able to automatically generate sea-surface

original dataset through the deep network
model

objects and improve the image diversity
of sea-surface objects

infrared and visible images. lancu et al. [89] built a dataset
dominated by maritime vessels, containing multiple ves-
sel types as well as some buoys and floating objects at sea.

The specific dataset approach builds a dataset for spe-

learning.

cific environments and objects. The image quality is high References Datasets

and the resolution is uniform. It can provide test bench- Shao etal. [85]  SeaShips

marks for various sea-surface object-detection algorithms. e

It does, however, consume considerable workforce and ma-

terial resources. Liu etal. [86] SeaBuoys
(2021)

Traditional Image Augmentation Approach

At least five data processing methods using traditional im- Ribsiro et al. SeaGull

age augmentation technology have been developed (see 1871 (2019)

Figure 5). The data source expansion approach adds more

related images in the image dataset, directly supplement- Zhang et al. VAIS

ing in quantity. The geometric transformation technique (88] (2015)

includes translation, flipping, scaling, and segmentation

of the image. On the other hand, adding noise randomly lancu etal. [89]  ABOShips

adds Gaussian noise, salt-and-pepper noise, and so on to (2021)

the image, whereas the optical transformation method
converts image brightness, contrast, satura-

Expensive; requires a lot of manpower

and material resources

The original distribution of the data may

be changed; some clutter information will
be mixed in

The generator and the discriminator need

to be kept in sync; the interpretability is
poor; the model is easy to collapse

Table 8. The construction of a maritime dataset for deep

Dataset Construction

Six types of ship targets (ore carrier,
bulk cargo carrier, general cargo ship,
container ship, fishing boat, and
passenger ship)

Six types of buoys (buoy_1, buoy_2,
buoy_green, buoy_red, buoy_blue, and
buoy_yellow)

Cargo ships, smaller boats (27 m long),
sailing yachts, life rafts, dinghies, and a
hydrocarbon slick

Merchant ships, sailing ships, medium
passenger ships, medium “other” ships,
tugboats, and small boats

Contains 11 types of sea-surface objects,
including nine types of vessels, seamarks
and miscellaneous floaters

tion, and color space. In addition, using Unity
and Unreal Engine 4 software to simulate the
target object can also achieve expansion of the
image dataset.

Aiming at the sea-surface target image, Shin
et al. [90] proposed a method to expand the sea-
surface target image automatically. Gao et al.
[91] and He et al. [92] realized the expansion of
data sources by increasing negative samples.
Based on increasing the number of negative
samples, Fu et al. [93] also increased the num-
ber of small targets at sea and proved, through
experiments, that data source expansion could
effectively enhance the detection capabhilities
of ships at sea. Qi et al. [94] performed a scale-
reduction operation on maritime images, Wang
et al. [95] adopted geometric transformations
such as flipping and shearing on maritime im-
ages, and Chen et al. [96] enhanced the data-

r

Traditional Image

Data Augmentation

\_

Geometric
Transformation
Add Noise
Data Source
Expansion
Optical
Transformation

~

Pan

Flip

Zoom
Segmentation

Gaussian Noise

... Salt-and-Pepper
Noise

Unit
UE4

Brightness

Contrast
Saturation

Color Space

_J

set by adding noise to the picture. Li et al. [97]  FIG 5 Traditional dataset-enhancement methods.
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enhanced the dataset by changing the brightness and rota-
tion of the picture. Huang et al. [98] used guided filtering
to enhance the gray level of the picture to expand the data.

The image augmentation approach is convenient and
straightforward to operate. However, the original distri-
bution of the data is changed while expanding the data,
and the introduced clutter information result in specific
false alarms.

GAN Approach

Data enhancement can also be achieved by simulating the
visible/infrared image of the sea through the GAN to solve
the problem of insufficient target image data of some ob-
stacles on the sea. A GAN uses a CNN to learn the internal
statistical laws of sample data and obtains a probabil-
ity distribution model. Such a probability model generates
fake samples that can deceive the discriminator and gener-
ate more sample datasets [99].

Schwegmann et al. [100] proposed a generative con-
frontation network (InfoGAN) based on information maxi-
mization successfully extending a ship’s remote sensing
images. Zou et al. [101] used multiscale Wasserstein dis-
tance and gradient loss to improve the original GAN. The
augmented network (auxiliary classifier GAN) can con-
stantly generate high-resolution synthetic aperture radar
ship images. For visible and infrared images, Chen et al.
[102] used Wasserstein GAN with gradient penalty based
on GAN improvement combined with GMM to expand the
image data of small ships. Experimental results show that
this method can generate many information-rich, small-
ship samples, which indirectly improve the detection abil-
ity of small objects on the water surface.

The GAN-based approach can enhance the diversity
of sea-surface objects image data by understanding the
related data distribution and its potential structure. How-
ever, the training is complex and the generator and the
discriminator need to he synchronized. Moreover, the al-
gorithm results are not easy to converge in the image syn-
thesis process.

Object Feature Extraction

The object feature extraction mainly uses a CNN to extract
the high-level semantic information, shallow information
in the images, and the core of the deep learning algorithm.
In recent years, CNNs have made many breakthroughs. In
2012, Krizhevsky et al. [103] proposed the AlexNet model
and won the ImageNet Large-Scale Visual Recognition
Challenge, proving the effectiveness of CNNs under com-
plex models, thereby establishing the leading role of CNNs
in the field of computer vision. The representative mod-
els of CNNs include LeNet [104], AlexNet [105], [106], [107],
VGGNet [108], Google’s Inception series [109], [110], [111],
ResNet [112], DenseNet [113], and so on. CNNs are com-
monly used for object detection and can be divided into

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE

two categories: 1) two-stage methods, e.g., region-based

CNNs (R-CNNs) [114], fast R-CNNs [115], [116], and faster

R-CNNs [117]; and 2) one-stage techniques, e.g., You Only

Look Once (YOLO) [118], YOLOv2 [119], YOLOv3 [120],

Retina-Net [121], single shot multiBox detector [122], and

YOLOV4 [123].

For a targetimage in the complex ocean environment, fea-
ture extraction mainly solves the following three prohlems.
m How are object features in multimorphology, multiscale,

and multiresolution situations. efficiently extracted?

m How are the feature extraction capabilities for small
objects in maritime images improved? Incidentally, the
international organization Society of Photo-Optical In-
strumentation Engineers defines the relative size of
small objects as an object area of less than 80 pixels in a
256 x 256 image. The COCO dataset defines the absolute
size of small objects as objects with a size smaller than
32 x 32 pixels.

m How are features reasonably extracted to reduce the
impact of complex backgrounds, especially shore build-
ings, foggy weather, and so on?

Considering these three problems, researchers have
widely used feature fusion and the method of inserting con-
volution modules to improve sea-surface object detection in
the object feature extraction step, as depicted in Table 9.

Feature Fusion Approach

In the process of using CNNs to extract image features,
shallow feature maps have high resolution but lack
semantic information, and deep feature maps have low res-
olution but rich semantic information. Subsequently, fea-
ture fusion methods are often used in visible-image object
detection to fuse information from different feature layers
to improve target classification and detection due to the
variable shapes of maritime obstacle objects and the sig-
nificant difference in object size. Among those approaches,
ultradense connections and feature pyramids are repre-
sentative of this type of method.

Ultradense Network Approach

Under the premise of ensuring the transmission of infor-
mation between layers in the network, the ultradense net-
work can make more effective use of features by adding
connections. Farahnakian and Heikkonen [124] compared
several classic fusion systems for the problem of feature
extraction of sea-surface objects and proved the superior-
ity of the feature fusion system. Li et al. [97] and Ma et al.
[125] integrated DenseNet into the original network model
and Li et al. [126] used a spatial separation convolution
instead of a standard convolution to improve the feature
pyramid network (FPN) based on adding DenseNet. In ad-
dition to DenseNet, several feature fusion architectures
have also been applied to feature extraction of marine
objects, e.g., Zhao et al. [127] combined two networks,
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Table 9. A comparison of feature extraction methods for sea-surface objects

Classification Approaches Description

Advantages Limitations

@ Ultradense network
@ Feature pyramid network

Feature fusion Strengthen feature

delivery by increasing

network connections
Convolution @ Attention mechanism By inserting the
module convolution module in

the deep network

DNet and CNet; Huang et al [128] introduced a jump-con-
nection mechanism in the original network model to im-
prove the feature extraction performance of sea-surface
objects. Moreover, adding maritime saliency features to
the network model can also enhance the performance of
sea-surface objects feature extraction. For example, Shao
et al. [129] integrated horizon features into CNNs, which
reduced the extraction image area and enhanced the fea-
ture extraction capabilities of ships at sea.

Feature Pyramid Approach

The FPN [130] transfers deep semantic information from
top to bottom to the underlying feature map to enhance the
semantic information of the underlying feature map. It is a
feature fusion structure in target-detection models such as
YOLOvV3. Figure 6 shows the hasic framework of the FPN.
By improving the FPN, the problems of multiform and mul-
tiscale marine targets eliminated.

Liu et al. [86] used an across-PANet fusion structure.
PANet added a bottom-up feature fusion path based on the
FPN, enhancing the semantic information and location in-
formation of the feature map. Huang et al. [98] proposed an
enhanced network model regressive deep CNN based on the
YOLO series to improve the FPN. The augmented feature lay-
er network can detect and predict the input sea-surface ob-
jects image on two scales. Guo et al. [131] further proposed a
balanced pyramid method to solve different sizes and dense
distribution of ships in an image. The ship’s rotation-angle
position information is finally better predicted by balancing
the three networks of feature, sample, and target levels.

The method, based on feature fusion, effectively unifies
semantics and multiscale representation through interlayer
fusion and improves the ability to detect small targets at sea.
Its limitation lies in increasing complexity of the network and
reducing the speed of object detection to a certain extent.

Convolution Module Approach

Many researchers improve performance of the object-
detection model by inserting a convolutional attention
module [132]. This method draws on the human visual
mechanism and obtains deeper semantic information by
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Increased network
complexity; affects
the balance of model
calculation and accuracy

M Able to effectively unify multiscale
representation and semantic
distribution; improve the detection
ability of dense, small targets

Increased network
complexity; affects
the balance of model
calculation and accuracy

M It can effectively focus on the target,
suppress other interference information
in the image, and improve the accuracy
of target detection

~

—~ Prediction

J

FIG 6 The basic block diagram of an FPN [130].

paying attention to the local information of the target. It
also plays an essential role in the image detection of small
sea-surface objects with few pixels.

Pan et al. [133] proposed a fine-grained root-mean
square classification model classifying and recognizing
different navigation marks on the water surface and us-
ing the attention mechanism to obtain deeper semantic
information of the target. Xu et al. [134] replaced the APN
attention mechanism model in the network with multi-fea-
ture-APN, effectively improving the accuracy of sea-sur-
face objects recognition. Fu et al. [135] used the YOLOv4
model to detect sea-surface objects and improved the accu-
racy of object detection by adding an attention mechanism
module, convolutional block attention module (CBAM), to
the network. Liu et al. [136] also used the YOLOv4-based
network framework and proposed the reverse depthwise
separable convolution (RDSC) module. By using RDSC at
the correct network layer, accuracy of the sea-surface tar-
get-detection model was improved as was real-time perfor-
mance, to a certain extent.

The attention mechanism approach obtains deep se-
mantic information of the sea-surface object’s image and
increases complexity of the network model. Maintaining
the balance between the amount of calculation and accu-
racy is a problem with this approach.

Model Optimization

To replace the feature network connection layer and in-
sert the convolution module, the complex network design
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technique also includes optimizing the loss function, clas-
sifier, and anchor box, as presented in Table 10.

Anchor-Box Design Approach

Designing the anchor box is essential to selecting the can-
didate area in the two stages and generating a priori a hox
in one stage. Choosing a suitabhle anchor hox can reduce
the false-alarm rate and the missed-detection rate of the
target. The anchor-box approach needs to assign a binary
label to each anchor point.

Liu et al. [86] introduced in detail three deep learning-
based anchor-box design methods: 1) threshold, 2) aver-
age, and 3) select all. The experimental results proved
that the average and select-all methods could effectively
improve the average detection accuracy of sea-surface ob-
jects. Huang et al. [128] used the k-means++ algorithm to
cluster the ship dataset. They found that clustering can
accelerate convergence of the network and effectively up-
grade gradient descent during the training process com-
pared with artificially selecting anchor point values. In
addition, Chen et al. [102] used a density-based clustering
algorithm, density-based spatial clustering of applica-
tions with noise (DBSCAN), for poor recognition of irreg-
ular objects by the k-means algorithm and the problem
of hyperparameter selection, improving the problem and
saving the time of artificial adjustment.

Using anchor points in the detection model, an anchor
box that is more suitable for the dataset is generated. Such
a phase can effectively improve performance of the sea-
surface object-detection model.

Loss Function Design Approach

Loss function of the object-detection model is composed
of three parts: 1) bounding-box loss, 2) category loss, and
3) confidence loss. The purpose of the loss function is to
modify the prediction box so that it is closer to the actual
box. Among those methods, intersection over union (IoU)
[137], improvement variants of generalized loU (GloU) [138],

Table 10. A comparison of model optimization methods.

Classification ~ Representative Method ~ Brief Summary

Anchor-box k-means, average Through the design of anchor

design method, select-all points, an anchor frame that is

method, DBSCAN more suitable for the model is

generated

Loss function loU, GloU, DloU Optimize the detection model
by considering bounding-box
regression factors

Classifier SoftMax, SVM, KNN According to the characteristics

design of different datasets, select the

appropriate classifier

loU: intersection over union; GloU: generalized intersection over union; DloU: distance inter-
section over union.
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and distance IoU [139] are widely used to measure the sim-

ilarity of the proper and predicted boxes in the object-de-

tection task. The IoU calculates the intersection and union

ratio of predicted box A and real box B, as shown in Figure 7.
The calculation formula can be expressed as

ANB
rou =408 0

The loss is expressed as
Loss=1-1oU ©)

Wang et al. [95] used the GioU to replace the IoU in the
YOLOv3 model to solve the defect with no return gradient
when two sea-surface objects do not intersect. Liu et al.
[86] also used the GioU to redesign the loss function and
verified it through experiments. The experimental results
showed that this approach could effectively improve the
detection performance of maritime obstacle objects.

The loss function design approach further enhances re-
gression accuracy by considering geometric factors, e.g.,
the overlapping area of the bounding-box regression, and
distance hetween the center points and aspect ratio, hence
improving the performance of sea-surface object detection.

Classifier Design Approach

The use of classifiers is an essential step in sea-surface ob-
ject detection and classification. The most common classi-
fier methods include SoftMax, SVMs, k-nearest neighhors
(KNNs), and extreme learning machines).

Gallego et al. [140] combined the neural network code
extracted by CNNs with the KNN method to extract and
classify features of ships at sea and compared the classi-
fication results obtained by KNNs with the results output
by SoftMax. Kumar and Sherly [141] and Shi et al. [142] fur-
ther improved overall performance of the network model
by attaching the pretrained CNN to the SVM. Fiorini et al.
[143] used the SVM classifier to replace the last layer in
the VGG16 network to classify different ship targets on the

(" )

A
ANB
B
A
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B

\_ _J

FIG 7 An loU diagram [137].

16 - MONTH 2022

Authorized licensed use limited to: University College London. Downloaded on September 14,2022 at 14:50:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

sea and obtained high accuracy. Ji et al. [144] compared
the performance of KNNs, the Bayesian classifier, and a
backpropagation neural network classifier and proposed
a combination of SVM strategies. The suggested approach
has been proved through experiments as a powerful ap-
proach in sea-surface object detection and classification.
The classifier design approach improves the classification
efficiency of sea-surface objects by selecting the appropri-
ate classifier and choosing different classifiers according
to the characteristics of different datasets.

Public Maritime Datasets

Large-scale training datasets are the primary way to use
deep learning methods for identifying sea-surface objects;
they are also essential for research on the improvement of
sea-surface object-detection technology. Most of the object-
detection algorithms based on deep learning have been
trained on the PASCAL VOC dataset and utilized the trans-
fer learning method to use the PASCAL VOC dataset as the
source domain dataset in the pretraining stage. The PAS-
CAL VOC dataset comprises four categories: people, indoor
objects, animals, and vehicles as well as 20 corresponding
subcategories. It can be determined from the aforemen-
tioned object categories that it does not include sea-surface
obstacles such as buoys, islands, and reefs. Therefore, this
dataset cannot effectively detect sea-surface obstacles.
To achieve better detection accuracy, maritime datasets
should be used effectively. In recent years, some research
institutions have publicly published their maritime datas-
ets to promote sea-surface object-detection technology de-
velopment. These maritime datasets were developed based
on visible and infrared images, providing researchers with
test benchmarks to verify different sea-surface object-de-
tection algorithms. Ten image datasets can be used for sea-
surface object-detection research, as presented in Table 11.

VAIS (http://vcipl-okstate.org/pbvs/bench/) is the world’s
first publicly available maritime dataset and was devel-
oped by pairing visible and infrared images. This dataset
contains 2,865 ship images, including 1,623 visible and
1,242 infrared ones. Moreover, 16 fine-grained categories
are annotated in the dataset, which can classify different
types of ships at sea.

MARVEL (https://github.com/avaapm/marveldataset2016)
is the largest fine-grained ship identification dataset, contain-
ing 2 million visible images of ships obtained from the fore-
ground angle of view, which are divided into 26 categories that
can be used to classify marine ship targets.

SeaShips (http://www.Imars.whu.edu.cn/prof_web/sha
ozhenfeng/datasets/SeaShips%287000%29.zip) is a col-
lection of 31,455 visible images in the sea ship dataset, of
which 7,000 are disclosed, including six ship types: ore car-
rier, bulk cargo carrier, general cargo ship, container ship,
fishing boat, and passenger ship. These datasets are used
for the detection and classification of sea-surface objects.
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Brief Description

Resolution

Format

Camera Type
Visible/infrared

References

Dataset
VAIS

Sequence

Classification

Contains 2,865 ship images (1,623 visible/1,242 infrared),

divided into 16 categories

Random

Image

Zhang et al. [88] (2015)

Classification

Contains 2 million ship images, divided into 26 categories

Image 1,024 x 768

Visible

Leclerc et al. [146] (2018)

Shao et al. [85] (2018)
lancu et al. [89] (2021)

MARVEL

2

Classification/detection

Contains 31,455 ship images (7,000 images publicly available)

1,920 x 1,080
1,920 x 720

Image

Visible

SeaShips

Classification/detection

Contains 9,880 images, including nine types of vessels, seamarks,

and miscellaneous floaters

Image

Visible

ABOShips

4
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Detection/tracking

Includes 11 videos on board and 70 videos on shore

Video 1,920 x 1,080
640 x 480

Visible/infrared

Visible

Prasad et al. [2] (2017)

SMD

Detection/tracking

Composed of 12 video sequences, providing a total of 4,454 fully

annotated frames

Video/image

Kristan et al. [150] (2016)

MODD{

DETECTION/TRACKING

Consists of 28 video sequences, providing a total of 11,675 stero

frames

1,278 x 958

Bovcon et al. [151] (2018) Visible Video/image

MODD2

Classification/detection/tracking
Classification/detection/tracking

Detection/tracking

Contains 59 video sequences of anomalous activities in the sea
Contains more than 150,000 object images of maritime obstacles

where pirates attacked merchant ships
Multiple sources (fixed, moving, and pan-tilt-zoom cameras)

1,024 x 768

Random
Random

Video/image
Video/image

Video

Visible/infrared
Visible/infrared

Visible/infrared
SMD: Singapore Maritime Dataset; MODD1: maritime obstacle detection dataset 1.

Bloisi and locchi [147] (2009)

Ribeiro et al. [87] (2019)

IPATCH  Chan [8] (2021)
SeaGull
MARDCT

8
9
10
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ABOShips (https://www.lairdata.fi/en/), as opposed to
the SeaShips dataset, contains more object classes. In ad-
dition to containing nine different types of ships, it also
includes two types of targets: buoys and floating objects.
Among them, 11 categories of objects in the dataset are ac-
curately annotated.

The Singapore Maritime Dataset [(SMD)—dilipprasad]
(https://sites.google.com/site/dilipprasad/home/singa-
pore-maritime-dataset) consists of 11 onboard videos and
70 onshore video sequences. It provides visual-optical (VIS)
and near-infrared (NIR) video data for the verification of
sea-surface object detection and tracking algorithms.

The marine obstacle detection dataset (MODD) 1 (http://
www.vicos.si/Downloads/MODD) is mainly composed of
12 video sequences, providing a total of 4,454 fully an-
notated frames with a resolution of 640 x 480 pixels. The
dataset and annotations and the MATLAB evaluation code
are publicly available on the Internet. The video data are
mostly taken on a 2.2 m small USV that can be used for ma-
rine semantic segmentation and the detection and tracking
of maritime obstacles.

MODD2 (https://box.vicos.si/borja/viamaro/index.
html) consists of 28 video sequences with a total of 11,675
images, and the image pixels are 1,278 x 958. The dataset
isamultimodal marine obstacle detection dataset captured
by a USV, which contains a variety of marine weather con-
ditions, extreme situations, and a large number of small
sea-surface obstacles.

IPATCH (https://drive.google.com/drive/folders/1d8V
cnlj-aizWCsg0-LB3QNpBoY14gfDM) uses small speed-
boats to simulate pirate attacks and evaluates how the
ship-sensing system detects pirate ships to determine their
threat levels. IPATCH contains video sequences captured
by visible and infrared cameras and can be used for evalu-
ation and verification of maritime dynamic object detec-
tion and tracking algorithms.

SeaGull (http://vislab.isr.tecnico.ulisboa.pt/seagull-da-
taset) is a marine surveillance image dataset captured hy a
small UAV. It contains more than 150,000 images of marine
obstacles and targets, including cargo ships, smaller boats
(27-m long), sailing yachts, life rafts, dinghies, and a hy-
drocarbon slick. This dataset can be used for maritime tar-
get detection and classification based on low-altitude UAVs.

MARDCT (http://labrococo.dis.uniromal.it/MAR/) pro-
vides data from intelligent surveillance systems in the
maritime environment and fixed, mobile, and pan-tilt-
zoom cameras. These datasets are used to collect videos
and images in different marine scenarios containing 24
types of ship images sailing in Venice, and hence can be
used for ship detection, classification, and tracking.

Relevant scholars evaluated the performance of the al-
gorithm based on the maritime dataset benchmark. Cane
and Ferryman [145] evaluated various semantic segmenta-
tion networks on the MODD1, SMD, IPATCH, and SeaGull
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datasets to compare the recognition performance of differ-
ent network models. Zhang et al. [88] used CNNs to clas-
sify and identify the 16 ship categories in the VAIS dataset.
Leclerc et al. [146] also adopted CNNs to classify ship cat-
egories on the MARVEL dataset. Bloisi and locchi [147] and
Bloisi et al. [148] evaluated a fast and effective background-
elimination independent multimodal background subtrac-
tion algorithm in the MARDCT dataset. This method is
specially designed for marine scenes and can better sup-
press marine noise. Bloisi et al. [149] established the ARGOS
classification benchmark on the MARDCT dataset used to
classify ships. Prasad et al. [3], [4] verified a new horizon-
detection technique based on multiscale cross-modal linear
features and 23 classic background subtraction algorithms
on the SMD dataset. They pointed out that a specific back-
ground subtraction method is required for complex mari-
time environments. Ribeiro et al. [87] evaluated sea-surface
object detection and tracking algorithms on the SeaGull
dataset sequence and defined the haseline performance.
Kristan et al. [150] adopted the Markov random field frame-
work in the MODD1 dataset and derived parameters of the
optimization model. Bovcon et al. [151] derived equations for
projecting the horizon into an image, proposed an efficient
algorithm for maritime obstacle detection, and validated it
on the MODD2 dataset. Chan [8] evaluated the performance
of 37 background-elimination algorithms on the IPATCH
dataset. The experimental results show that the multifea-
ture category background subtraction algorithm can better
adapt to challenges of the complex maritime environment
and achieve the best results. In addition, Chan [152] also
developed an efficient filtering method that meets the re-
quirements of maritime vision applications. The proposed
approach is based on the dark channel prior, which further
improves overall performance of the background subtrac-
tion algorithm.

For deep learning object-detection algorithms, a few
public maritime image benchmark datasets are evaluat-
ed. Table 12 lists several mainstream maritime object al-
gorithms based on deep learning, all of which are strong
baselines on the corresponding dataset benchmarks. Shao
et al. [85] obtained the best detection accuracy on the Sea-
Ship dataset using a faster R-CNN model with the backbone
network ResNet101. Liu et al. [136] selected 7,000 images
in the SeaShip dataset and tested them with the YOLOv4
model; the mean average precision (MAP) value reached
0.928, and the real-time performance was 55 frames per
second. Moosbauer et al. [153] relabeled and processed the
SMD dataset and established a deep learning-hased mari-
time image dataset benchmark. Among them, the mask R-
CNN algorithm shows great potential in detection accuracy,
achieving scores of 0.875 and 0.877 on the VIS and NIR sub-
sets, respectively. In addition, lancu et al. [89] also demon-
strated the superior performance of the faster R-CNN model
in sea-surface object detection, and when the backbone
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network used Inception ResNet V2, the recognition effect
reached the best performance in the ABOShips dataset.
Open datasets are beneficial to promote the develop-
ment of related research and also provide benchmarks for
the performance evaluation of different object-detection
algorithms. The emergence of a series of maritime data-
sets, such as SeaShips and SMD, has effectively supported
the development of maritime object-detection technology
based on EO sensors and improved the comparability and
reproducibility of maritime object-detection algorithms.

Summaries, Future Directions, and Conclusions

Summaries

Through the analysis of the large amount of literature

mentioned previously, some developments of object de-

tection based on EO sensors in maritime research can he
summarized as follows:

m A partofthe research considers the extraction of salient
features at sea to improve overall performance of the
object detection, mainly reflected in the extraction of
horizon features.

m The accuracy and speed of the sea-surface object-detec-
tion algorithm have been considered in many articles;
however, the halance between accuracy and speed is not
discussed extensively.

® Aiming at the problems of video instability and missed
target detection caused by the EO sensor affected by
ocean waves, the performance of the maritime object-
detection algorithms based on electronic image-stabili-
zaltion technology has heen continuously improved.

m When designing the maritime object-detection algo-
rithm, some factors specific to the maritime environ-
ment have been considered, such as ship occlusion,
coastal building interference, image blur caused by sea
fog, changes in viewpoint, and illumination.

m A part of the research explored the attention mecha-
nism model to obtain deeper semantic information of
maritime obstacle objects.

m Many studies have considered the detection of sea-sur-
face objects based on multiscales, however, for small

sea-surface objects, good detection results have still not
been achieved.

m Related research institutions have produced several
maritime datasets to expand the image data of maritime
obstacles and quantitatively compare object-detection
algorithms based on the dataset.

m Given the small amount of data in some maritime ob-
stacle datasets, training methods based on weak super-
vision and unsupervised have been considered.
Meanwhile, there are some primary limitations and

challenges for detecting sea-surface objects hased on EO

sensors, which are summarized into the following aspects

described in the next sections (see Figure 8).

Accurate Detection of Small Objects at Sea

Compared with vehicles on land, ships take more time mak-
ing a maneuvering decision to executing it and achieving
the final desired effect. Therefore, the precise identification
of small objects on the sea can increase the ship’s response
time, thereby improving navigation safety. Traditionally, the
background-elimination method using denoising, segmen-
tation, and other preprocessing—combined with horizon ex-
traction—identifies small objects to obtain better robustness.
In deep learning, several improvement algorithms with sig-
nificant effects are proposed and divided into two types: one
type designs a multiscale neural network to extract features
of different levels, adapting to different-size object-detection
tasks. The other uses transposed convolution to expand the
depth feature map. These methods hetter eliminate object-
scale change but still cannot detect small objects well.

EQ Sensors Always Shake With the Waves

When an autonomous ship is sailing at sea, the EO sensor
is not only affected by wind, waves, and currents but also
by the vibration caused by operation of the main engine
and other mechanical equipment. At the same time, due
to the small field of view of the EO sensor, slight shaking
will cause the collected video image to shake and become
blurred, causing the target in the image to rotate and trans-
late on the plane, increasing the difficulty of detecting and
tracking sea-surface objects.

Table 12. A baseline of maritime object-detection algorithms based on deep learning.

Dataset Amount  Studies Graphics Card ~ Models Backbone Indicators  MAP Frames Per Second  F-Score

SeaShip 31,455 Shao etal. [85] (2018)  Titan Xpx4 Faster R-CNN  ResNet101 \VOC 0.9240 7 —

SeaShip 7,000 Liuetal. [136] (2021)  Geforce RTX YOLOv4 CSPDarknets3  VOC 0.9280 55 =

2080TI

SMD 31,653 Moosbauer [153] — Mask R-CNN ResNet101 (0[0] — — VIS:0.875
(2019) NIR:0.877

ABQOShips 9,880 lancu[89] (2021) — Faster R-CNN  Inception (0[0] 03518 — —

ResNet V2

—: not mentioned; MAP: mean average precision.
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The Effect of Strong Light Reflection

From Sea Surface on Imaging

Lighting conditions directly affect imaging of the EO sen-
sor. In addition to scenes with strong light exposure at sea,
there will also be reflections on the sea surface. After the
sunlight is reflected by the specular element on the water
surface, it will produce a strong radiation signal. When the
wind passes, the near-smooth water surface will form an
inclination to produce flares or formation of flash points on
top of the waves, which are all caused by specular reflec-
tion of the water hody. For object detection in the maritime
environment, the phenomenon of sea-surface flare is inev-
itable, and the radiation intensity is much greater than that
of other marine objects, which easily causes saturation and
distortion of the optical imaging sensor.

The Impact of Rain and Fog on Imaging

Rain and fog are common weather phenomena at sea. Au-
tonomous ships sail in coastal waters at low-visibility con-
ditions. Generally, information about surrounding targets
is obtained through navigation aids such as radar and AIS,
but the information obtained is less intuitive. Video images
obtained by the EO sensor are rich in feature information,
which can achieve the same effect as a visual lookout. How-
ever, the rain and sea fog that often appear at sea seriously
affect performance of the autonomous ship’s vision system,
as illustrated in Figure 7(d) and (e). Improving the clarity
of images obtained in rainy and foggy environments is an

important prerequisite for autonomous ships to achieve the
goal of intelligently sensing sea-surface obstacles.

Different Degrees of Occlusion of Sea Targets

Near the offshore port, the background of coastal build-
ingsis complex and ships are dense. The objects in marine
images often appear occluded and overlapped. There are
two common occlusion problems: inter- and intraclass.
Interclass occlusion refers to the fact that the target is oc-
cluded by other classes of targets, such as marine huoys
being occluded by ships. Intraclass occlusion means that
the target object is occluded by the same class, such as
a partial overlap between ship targets. In complex mari-
time environments, different degrees of occlusion be-
tween obstacles increase the difficulty of maritime object
recognition. Occlusion of the target by different types of
ohjects will lead to a partial loss of detection target infor-
mation, resulting in missed detection. Occlusion between
the same type of targets often introduces a large amount
of interference information, resulting in a false detection.

How to Fuse Different Sources of Information

Adverse weather and sea conditions can cause EO sen-
sors to have difficulty and error in identifying sea-surface
objects. However, how to fuse the information among dif-
ferent sensors is a challenging problem in the maritime
environment. In addition to hardware synchronization,
sensors also need to achieve time synchronization, but the

(f)

J

FIG 8 The limitations and challenges of sea-surface object detection [2], [38], [85], [150], [151]. (a) Small objects, (b) wave influence, (c) water reflection,

(d) sea fog, (e), rain, and (f) overlap occlusion.
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acquisition time of each sensor is not the same. In addi-
tion, most of the existing fusion systems usually require
the participation of external users to obtain satisfactory
performance in the fusion process [29].

The Balance Between Model Accuracy and Speed

Considering the high requirements for real time and the
accuracy of maritime obstacle object recognition in an in-
telligent ship-perception system, the sea-surface object-de-
tection model must achieve high targets in terms of accuracy
and speed. Extensive literature reviews on sea-surface ob-
ject detection have shown that only a portion of the litera-
ture can balance accuracy and speed of the algorithm.

The Lack of Image Data of Some Sea-Surface Objects

Adopting the dataset is exceptionally essential in using EO
sensors for sea-surface objects detection. More specifical-
ly, the deep learning method requires a large amount of
image data to train a multilayer neural network. Most of
the existing maritime datasets are not made available to
the public due to project background. The published mari-
time datasets contain mostly ships. The target is relatively
single and lacks everyday sea-surface objects image datas-
ets, e.g., buoys, islands, reefs, and lighthouses.

Trends and Future Directions

We have observed several trends and found topics that still

need to be developed in the future, including feature ex-

traction technology from sea-surface small objects such as
the following:

m Explore high-performance backbone networks: Com-
plex and intensive calculations of CNNs are extremely
demanding for hardware, which makes them difficult
to deploy on common hardware devices. In this case,
lightweight network technology comes into being. How-
ever, the limitation of lightweight network technology
is that it affects the accuracy of object detection. Main-
taining sufficient accuracy while making the backbone
network lightweight is the core research direction in
the future.

m Feature fusion at different scales: The feature maps of dif-
ferent stages in the network model have different recep-
tive fields and different levels of information abstraction.
The FPN fuses the feature maps of different stages, which
improves the performance of multiscale object detection
and enhances the small-object-recognition effect to a
certain extent [130]. In addition, exploring a new con-
text network module [154] to establish information links
among objects is also an effective method to enhance the
detection accuracy of small sea-surface ohjects.

m Explore an efficient attention mechanism model: In the
detection of sea-surface objects, there are objects such
as navigation marks and ships—especially navigation
marks—that contain deep navigation information. Add-

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE - 21

ing a new attention mechanism model to the network
model can learn image object information more effi-
ciently and in depth, hence obtaining more fine-grained
image features and acquiring a deeper understanding
of maritime obstacle images.

Sea Image Defogging Technology

Existing dehazing algorithms are generally used in land
scenarios, such as monitoring of urban roads. Relatively
few algorithms exist for fog removal in maritime traffic
perception. Single-image dehazing techniques include im-
age-enhancement-based [155] and physical model-based
methods [156]. The disadvantage of the approach based on
image enhancement is that it does not consider the forma-
tion principle of fog, which leads to a lack of information
in the recovered image. The method hased on the physical
model requires sufficient physical color information and is
not suitable for dense fog scenes. He et al. [157] proposed
an algorithm based on the dark channel prior, but the re-
covery of this method for bright regions that do not satisfy
the dark channel prior theory would result in obvious dis-
tortion. As the sea image has a large area of the sky and
other parts that do not conform to the dark channel prior
principle, the restored image is often ineffective. By con-
sidering the characteristics of the sea fog environment and
improving the computational efficiency while ensuring the
quality of the restored image, the EO sensor can detect sea-
surface objects more efficiently.

Detection Technology of Occluded Objects

Compared with general object detection, occlusion is more
common in maritime obstacle detection, which is also one
of the most concerning issues in the field of maritime ob-
ject detection. Wang et al. [158] improved loss function for
the first time to enable the network to continuously aug-
ment target localization performance during the automatic
learning process. In the classic deep learning faster R-CNN
network model, the target candidate box is divided into dif-
ferent parts to extract features respectively, which reduces
the influence of occlusion position on the global features.
According to the results shown in the existing research,
the detection effect under occlusion is far worse than that
under nonocclusion. A key reason is that obstacles occlude
each other in dense scenes of maritime environment. In
the case of limited training datasets, detectors based on su-
pervised training cannot learn various occlusions.

Data Expansion and Enhancement

The following areas of data expansion have been identified

for future development:

u Maritime dataset expansion: The abundance and qual-
ity of prior knowledge directly affect the quality of
CNN model training. In response to the complex ma-
rine environment, relevant research institutions have

MONTH 2022

Authorized licensed use limited to: University College London. Downloaded on September 14,2022 at 14:50:52 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

established maritime datasets such as SMD, SeaGull,
and SeaShips. Large-scale corpus labeling of datas-
ets through manual methods is still one of the current
mainstream techniques. In the future, more marine ob-
stacle image datasets will be created.

u GAN-based data enhancement: Based on the supervised
learning method, the cost of manual labeling is high,
and hence, it is impossible to label all the scenes. On
the other hand, the labeled data cannot adaptively and
accurately recognize the new objects in the new scene.
Subsequently, weak supervision [159], [160] or unsuper-
vised [161], [162] approaches have been proposed. Rai
et al. [163] proposed a semisupervised segmentation
algorithm named SemiSegSAR, which need only label
a small amount of data to obtain a satisfactory perfor-
mance on public ship datasets. Chen et al. [102] success-
fully augmented and enhanced the maritime dataset
using an improved GAN. In the future, combining prior
knowledge to achieve adaptive object recognition in dif-
ferent scenarios is a hot spot in the research of sea-sur-
face object detection.

Electronic Phase-Stabilization Technology

for Shipborne Cameras

Object recognition of sea-surface ohstacles in a static envi-
ronment is the basis of visual perception. In a dynamic en-
vironment, the ship’s six-degree-of-freedom motion (e.g.,
wind and waves) will have a huge impact on the EO sensor,
making it difficult for the shipborne camera to ohtain a sta-
ble video sequence. Shan et al. [164] proposed a new algo-
rithm for sea-surface object detection based on electronic
image-stabilization technology by using point-line, point
classification, and image classification models. The exper-
imental results show that the algorithm achieved high in-
dicators in terms of mean-square error, average precision,
and peak signal-to-noise ratio and demonstrates certain
potential in image stabilization and ship detection. In the
future, the use of onboard electronic image-stabilization
technology on unmanned ships in a dynamic environment
to obtain stable image data is another challenge for the de-
velopment of sea-surface-detection technology.

Multisensor Fusion

A harsh maritime environment will have a more signifi-
cant impact on the camera. The data fusion of multiple
sensors can reduce these effects, such as inertial measure-
ment units (IMUs), AlSs, and lidar, complementing EO
sensors. Bloisi et al. [29] integrate visual information into
the traditional vessel traffic service system and combine
radar and AIS information to obtain intuitive and higher-
precision maritime object-detection results. In addition,
fusing the EO sensor with more sensors can enable bet-
ter maritime situational awareness, such as the use of IMU
readings to estimate the location of the horizon in the im-
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age, and program calibration to improve the efficiency of
maritime obstacle recognition [165], [166].

Movement Analysis of Sea-Surface Targets

Sea-surface object detection is often accompanied by mo-
tion analysis, which is a very challenging kernel task. On-
line applications with batch algorithms are often memory
intensive when using multiple hybrid sensors for target mo-
tion analysis (TMA). Liu and Guo [167] designed a recursive
estimator of batch counters for multistatic TMA using a hy-
brid measure of angle of arrival, time difference of arrival,
and frequency difference of arrival. The proposed method
did not require additional batch estimators for initializa-
tion, which improves the convenience of applying the algo-
rithm. Itis an interesting and promising direction to design
an efficient and stable hatch estimator for the analysis of
moving objects in complex maritime environments.

Enhanced Localization of Ships
The use of sensors to accurately locate ships is also close-
ly related to sea-surface object detection. Positioning
technology is the premise for ships to detect objects on
the sea surface. Accurate positioning can make the detec-
tion of objects on the sea-surface more efficient. Guo and
Liu [168] proposed a stochastic model-based fusion algo-
rithm, which considered the geometric transformation of
the vehicle model of the roll and slip angles, and intro-
duced a stochastic model-based extended Kalman filter
(EKF) by embedding random noise modulated by abso-
lute value to ensure localization accuracy of the method.
Seeing that the robustness to measurement noise is poor
in complex driving environments, Liu and Guo [169] pro-
posed an adaptive mechanism based on improved EKF and
deep learning theme for vehicles, which could obtain more
reliable results during GPS outages. In the maritime envi-
ronment, moisture and salt spray damage the sensors quite
seriously [170], so the positioning and navigation of autono-
mous ships at sea is full of challenges, and more intelligent
positioning technology needs to be developed.

Test and Validation System Development

For object-detection requirements in maritime environ-
ments, methods such as selective parameter sharing [171],
[172], data augmentation [173], and complementary feature
fusion [174] have been proposed successively, and the rec-
ognition efficiency of maritime obstacles has been con-
tinuously improved. On the basis of theoretical research,
R&D of the sea-surface object-detection algorithm testing
and verification platform is urgent. Huang et al. [38] pro-
posed a USV test system for the validation of maritime opti-
cal recognition algorithms. Through experiments on the
self-built RZ3MOD dataset, it is proved that the proposed
technical system can effectively verify the advanced sea-
surface object recognition algorithm. By establishing the
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USV algorithm test platform, hidden dangers can be found
before the final project application, thereby effectively pro-
moting implementation of the algorithm while reducing
cost consumption.

Conclusion

Using EO sensors to detect sea-surface objects has always
been a challenging issue in the maritime field, especially
for autonomous ships. This article offered a comprehensive
overview of the EO sensors-based sea-surface object-de-
tection methods, providing a technical basis for subsequent
object tracking and positioning. From the perspective of
sea-surface object detection, the article comprehensively
analyzed traditional methods, deep learning-based tech-
niques, and typical maritime datasets as well as their re-
search development, hottleneck, challenges, and future
directions in this field. To the best of our knowledge, this
is the first survey in the literature to focus on object detec-
tion using deep learning in maritime datasets. Compared
with traditional sea-surface object-detection methods,
deep learning technology has shown to be decisive in
maritime object-detection accuracy and real-time perfor-
mance. However, it requires high-quality datasets to pro-
duce reliable results. The existing two types of sea-surface
object-detection technology have their advantages and
limitations, and we helieve that they can complement each
other to some extent.
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