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Abstract— Sea-surface object detection is critical for navigation safety of autonomous ships. Electro-
optical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle 
sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and 
foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object 
detection technologies have been gradually applied to sea-surface object detection. This article dem-
onstrates a comprehensive overview of sea-surface object-detection approaches where the advantages 
and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image 
types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In 
particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and 
compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of 
these approaches. The article also proposes the direction of future research for sea-surface object detec-
tion based on EO sensors.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University College London. Downloaded on September 14,2022 at 14:50:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5602-7489
https://orcid.org/0000-0003-2637-8004
https://orcid.org/0000-0002-5503-9813
https://orcid.org/0000-0003-3273-7499


IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  3  •  MONTH 2022

S
tudies on navigation technology of autonomous ships 
have gradually increased in the past few decades 
due to the continuous development of technologies 
for computers, communication tools, and artificial 

intelligence approaches [1]. Fast and accurate perceptual 
information is the foundation of autonomous navigation 
decision making for autonomous ships. Marine radar is of-
ten used as a sensor to detect obstacles on the sea, but there 
are some obvious drawbacks to this technology. On the one 
hand, due to the existence of close blind spots, some sea-
surface objects close to the ship are not easy to capture. On 
the other hand, it is difficult for radar to extract low radar 
cross-section (RCS) objects in clutter environments such 
as rain, snow, wind, and waves.

Electro-optical (EO) sensors are further used as an ex-
cellent supplement to the shortcomings of radar because of 
the following reasons. First, the image and video informa-
tion generated using the EO sensor is intuitive and interpre-
table for the watching officers on board or the shore-based 
center. Second, EO sensors are more adaptable to new 
technologies and can apply image processing technology 
and computer vision to achieve more intelligence [2]. How-
ever, the use of EO sensors to detect sea-surface objects has 
several drawbacks [3], [4], including difficulty in detecting 
foreground objects under complex backgrounds [5], chang-
ing the appearance of the detected object due to distance 
and angle of observation [6], and sensitivity of EO sensors 
to weather changes (e.g., illumination and sea fog) [7].

Subsequently, several studies on improving EO sensor 
technology for object detection have been conducted to 
achieve faster and more accurate sea-surface object detec-
tion. In general, a traditional maritime object-detection 
system consists of three modules: horizon detection, static-
background subtraction, and foreground segmentation. 
Each of these phases is relatively challenging because of 
coastal interference and the dynamic of ocean waves. Re-
cently, deep learning using different convolutional neural 
network (CNN) models to extract features of maritime ob-
jects has been continuously developed and has produced 
significant detection results. However, comprehensive re-
views of sea-surface object-detection methods in the ex-
isting literature are still lacking. Subsequently, this study 
offers a comprehensive overview of traditional techniques 
and deep learning methods, including analyzing the ad-
vantages and limitations of each technique, presenting a 
comprehensive collection of public maritime datasets, and 
providing extensive guidance for the use and verification 
of sea-surface object-detection methods.

Related Works

Contents of Previous Research
Moreira et  al. [9] introduced several maritime vessel 
foreground segmentation methods. Chan [8] evaluated 

37 maritime background subtraction algorithms using an 
established dataset. Prasad et al. [2] performed a compre-
hensive review and evaluation of background subtraction 
methods based on object detection in a maritime environ-
ment. Currently, only a limited number of studies have 
investigated a deep learning-based sea-surface object-de-
tection technique. Schöller et al. [10] evaluated three deep 
learning maritime object-detection methods, and Wang 
et al. [11] proposed several classic deep learning architec-
tures and applications for sea-surface object detection.

Objectives of Previous Research
Existing investigations of sea-surface object detection us-
ing EO sensors have various objectives, with relatively 
few studies reporting the comprehensive collection and 
evaluation of sea-surface object-detection methods. Chan 
[8] investigated different sea-surface object-detection al-
gorithms primarily to improve the performance of mari-
time background subtraction in the object-detection step. 
Schöller et al. [10] used three different deep learning meth-
ods to evaluate the algorithm’s detection performance and 
classification efficiency. In addition, Prasad et al. [2] and 
Moreira et al. [9] introduced object-detection steps in the 
maritime environment and presented a foundation for sub-
sequent research on sea-surface object tracking.

Limitations of Previous Research
Detecting sea-surface objects using computer vision 
technology, specifically deep learning methods, requires 
high-quality datasets as benchmarks. The relevant lit-
erature reviews have provided and organized datasets for 
the convenience of other researchers. For instance, Mittal 
et al. [14] collected and sorted out low-altitude drone da-
tasets to study the problem of detecting unmanned aerial 
vehicle (UAV) objects. Kanjir et  al. [12] and Li et  al. [13] 
conducted literature surveys on object-detection methods 
in ships based on optical remote sensing images. Among 
those studies, Li et al. [13] collected datasets that may be 
used as benchmarks to verify the object detection and clas-
sification methods in ships. Considering the sea-surface 
objects datasets based on visible and infrared, Wang et al. 
[11] collected some ship datasets. However, these datasets 
have not been comprehensively collected and organized for 
sea-surface object detection.

Therefore, our review will cover four essential aspects 
of using EO sensors for sea-surface object detection: EO 
sensors, traditional object-detection techniques, deep 
learning methods, and maritime datasets collection, as 
presented in Figure 1.

Our Contributions
This study reviews the latest EO sensors-based technologies 
for sea-surface object detection and evaluates the technolo-
gies, highlighting their potential to develop autonomous 
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navigation and maritime surveil-
lance systems for autonomous 
ships. The main contributions of 
this study, in comparison to the 
existing literature, are as follows 
(see Table 1):

■■ We present a comprehensive 
insight of traditional tech-
nologies for sea-surface ob-
ject detection by rigorously 
comparing the advantages and 
disadvantages of the three pro-
cesses of traditional sea-sur-
face object-detection methods 
(i.e., horizon detection, static-
background subtraction, and 
foreground segmentation).

■■ We define three key steps of the deep learning-based 
method of sea-surface object detection, (i.e., training 
dataset construction, object feature extraction, and 
model optimization) and make comprehensive analyza-
tion and further comparation of the characteristics of 
various techniques in these steps.

■■ We collect more comprehensive visible/infrared image 
datasets for sea-surface object detection and discuss the 
method for evaluating the performance of object-detec-
tion algorithms based on the benchmark dataset.

■■ We analyze and discuss the challenges and future de-
velopment of EO sensors-based sea-surface object-de-
tection methods.

Overview of Object Detection  
in the Maritime Environment

Comparison of Sensors Used in the Maritime  
Environment for Object Detection
An autonomous ship needs to perceive and obtain informa-
tion of the environment around the ship and ultimately to 
navigate reliably, autonomously, and safely. Ship-sensing 
systems rely on GPS, automatic identification system (AIS), 
sonar, marine radar, lidar, and EO sensors. Among those 
tools, GPS is mainly used for autonomous positioning of ships 
[15], while AIS systems are primarily used for ship-to-ship 
information sensing and are not suitable for detecting sea-
surface objects that are not equipped with AIS [16], [17]. The 
sensors commonly used for detecting obstacles in the sea 
include sonar, marine radar, lidar, and EO ones. Moreover, 
an EO sensor is divided into visible cameras and infrared 
optical ones. Table 2 summarizes the advantages and disad-
vantages of these types of sensors. Figure 2 shows the date 
and methods used for the first application of each sensor to 
the detection of sea-surface objects in the past 20 years in 
this survey. For infrared cameras, Toet [18] used a morphol-
ogy approach to segment maritime foreground objects. For 

marine radar, Panagopoulos and Soraghan [19] used signal 
averaging, time-frequency representation, and morphologi-
cal filtering for object detection. For visible cameras, Bouma 
et al. [20] used the change of object pixel intensity to estab-
lish a background model to detect marine targets. For sonar, 
Heidarsson and Sukhatme [21] processed the collected so-
nar data, followed by the processing and feature extraction 
of the overhead imagery, and then used a binary classifica-
tion framework to detect marine obstacles. For lidar, Gal 
and Zeitouni, [22] used probability density estimation and 
Bayesian filters to identify and track sea-surface objects.

Navigation radar, sonar, and lidar are commonly used 
detection sensors for autonomous ships. Sonar is frequently 
employed for detecting underwater objects, rather than for 
detecting objects on the water’s surface [23], [24]. At present, 
nautical radar is the most widely used detection equipment 
by large merchant ships, and it has great capability to detect 
and track objects at sea. It can well detect most objects, in-
cluding objects far away from ships. However, using radar 
at sea also has a series of shortcomings, chiefly as follows:

■■ Nautical radar has some drawbacks, including different 
accuracy among different directions. For example, due 
to the existence of blind spots, it often fails to detect ob-
jects that are too close to its own ship.

■■ Radar is not suitable for detecting such sea-surface ob-
jects (small wooden fishing boats, rafts, and so on) that 
are not equipped with radar reflectors and AIS.

■■ Radar is not effective in extracting targets with a low 
RCS. Pirate ships are often difficult to track by radar be-
cause they are very small and fast, using almost nonme-
tallic, rigid, inflatable boats [25], [26].

■■ In the presence of wind and waves, some tiny objects 
(e.g., buoys and pontoons; see Figure 3) [27], [28] may be 
shielded by radar clutter suppression.

■■ Radar-based systems are not suitable for object detec-
tion in densely populated areas offshore because of rela-
tively large electromagnetic emissions [29], [30].

Year References Key Contents 1 2 3 4

2014 Moreira et al. [9] Maritime vessels detection and tacking algorithms √ √ # #

2017 Prasad et al. [2] Maritime objects detection and tracking methods √ √ # #

2018 Kanjir et al. [12] Ship detection and classification # √ √ #

2019 Schöller et al. [10] Sea-surface object-detection methods √ # √ #

2020 Wang et al. [11] Architectures and algorithms for marine object recognition √ # √ √

2021 Chan [8] Marine background subtraction algorithms √ √ # #

2021 Li et al. [13] Ship detection and classification # √ √ √

2022 This article Sea-surface object-detection methods √ √ √ √

1: visible/infrared image; 2: background subtraction/foreground segmentation; 3: deep learning methods; 4: dataset collection; √: considered; 
#: not considered.

Table 1. A comparison of related research and the proposed work.
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Moreover, lidar is accurate and reliable 
in detecting objects close to the ship; how-
ever, its cost is relatively high. In addition, 
the characteristic information of the ob-
tained objects is short of intuitiveness and 
richness compared with the objects cap-
tured by EO sensors [27], [31], [32], [33], [34].

As presented in Table 2, EO sensors can 
detect sea-surface objects essential to au-
tonomous ships. The sea-surface objects 
missed by radar can be detected by the im-
ages and video data acquired from the EO 
sensors. Such images and video data have 
rich feature information, intuitiveness and 
effectiveness, and intense immersion [25], 
[35], [36], [37], [38]. EO sensors can adapt 
to the latest image processing, computer 
vision, and other new technologies. In ad-
dition, EO sensors have great potential as 
an auxiliary observation method and have 
important practical significance and broad 
application prospects for autonomous ships 
[39], [40], [41], [42], [43]. Subsequently, it is 
necessary to introduce EO sensors into 
the autonomous ship-sensing system even 
though such sensors have some disadvan-
tages, e.g., they are affected by illumina-
tion, weather conditions, and relatively 
complex calculations. Based on this, in this 

Probability Density Estimation
and Bayesian Filters

2013

2011

2004

Marine Radar

2008

Lidar

Sonar

2002

Infrared Cameras

Single-Image Statistics
Method

A Binary Classification
Framework

Signal Averaging, Time-
Frequency Representation, and

Morphological Filtering

Morphology Approach

Visible Cameras

FIG 2 Sensor usage graphic milestones. 

Sensor Distance Advantages/Characteristics Disadvantages/Limitations

Sonar ~1 m to 
several 
100 m

➀ Close detection distance on the sea
➁ Mainly used for underwater detection
➂ Able to detect objects with acoustic characteristics

➀ Needs separate systems for small-range detections
➁ Requires specialized user training
➂ Performs poorly for objects with weak acoustic features

Nautical 
radar

~40 m to 
72 nmi

➀ Far detection distance
➁ Detects objects with high RCSs (mostly metallic)
➂ Large onboard power supply requirement
➃ Adapts to severe weather and sea conditions
➄ Provides nearly all-weather and broad-area imagery

➀ There is a radar blind spot at close range
➁ Insufficient ability to detect small objects
➂ Requires specialized user training
➃ Not suitable for detecting in populated areas offshore
➄ Susceptible to high waves and water reflectivity
➅ Cannot detect objects with a small RCS
➆ Cannot penetrate water

Lidar ~1 m to 
200 m

➀ Good at near-range obstacle detection
➁ Good in real time
➂ Less affected by rain and fog than EO sensors

➀ The detection range is close
➁ Less information about object characteristics is obtained
➂ Relatively high cost
➃ Cannot penetrate water

Visible 
range EO

~1 m to 
several 
kilometers

➀ Processes color information
➁ High resolution
➂ �Adaptive to new computer vision and image processing algorithms
➃ Simple operation

➀ Sensitive to illumination and weather changes
➁ Relatively complicated calculation
➂ �Difficult to detect far objects and predict their size and distance
➃ A relatively short detection distance

Infrared 
range EO

~1 m to 
several 
kilometers

➀ Suitable for night detection
➁ Longer range than visible-range EO
➂ �Adaptive to new computer vision and image processing algorithms
➃ Simple operation

➀ Indoor or evening use only
➁ Relatively complicated calculation
➂ �Difficult to detect far objects and predict their size and distance
➃ A relatively short detection distance

Table 2. A comparison of sensors in sea-surface object detection.
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study, we investigated sea-surface object 
detection using EO sensors to provide a 
technical reference for the sensing module 
for the autonomous navigation of ships.

Sea-Surface Object Detection From EO 
Sensors
The overall framework of sea-surface ob-
ject detection from EO sensors is shown in 
Figure 4. Three phases are conducted to 
carry out such a work: image data input, 
sea-surface object detection, and detection 
result output. First, EO sensors are used 
to collect the image data of maritime ob-
stacles. An object-detection technology is 
further employed to detect the sea-surface 
object, and finally, the output is generated 
as information about the detected object, 
e.g., boats and buoys.

Using EO sensors to detect sea-surface 
objects depends on the object-detection 
technology employed. Most of the object-
detection technologies are not easy to use directly to de-
tect sea-surface objects due to complexity of the maritime 
environment. This study investigates various methods of 
sea-surface object detection divided into traditional and 
deep learning approaches. The traditional approach de-
tects maritime obstacles using background subtraction 
technology to obtain foreground objects after preprocess-
ing related object images (e.g., image denoising and image 
segmentation). The deep learning method designs a detec-
tion model for the target dataset and uses the trained model 
to detect the target in the image directly. The following two 
sections review the progress of both approaches.

Traditional Sea-Surface Object-Detection  
Methods Using EO Sensors
To detect sea-surface objects using traditional techniques, 
three essential steps are conducted, i.e., horizon detection, 

static-background subtraction, and foreground segmenta-
tion. This article discusses traditional sea-surface object-
detection methods from the perspective of the process 
(see Table 3).

Horizon Detection

Linear Fitting Approach
The linear fitting approach selects candidate points for 
linear fitting and then generates sea-skyline parameters. 
Jiang et al. [44] proposed a sea-skyline detection method 
based on linear fitting. First, the sea horizon information 
is determined by performing a histogram analysis, obtain-
ing pixel information from near the sea horizon, and then 
using the linear fitting technique to remove the irrelevant 
pixels. Moreover, Ma et al. [45] suggested a sea-skyline ex-
traction method based on a straight-line fitting. First, the 
line-segment detection method was adopted to locate the 

Fishing Boat Boat Raft Partisan Vessel Buoy_1 Buoy_2

FIG 3 Several sea-surface objects [2].

Traditional
Methods

Deep Learning
Methods

Maritime Object
Detection

Data Input

Result Output

FIG 4 The framework of EO-sensors-based sea-surface object detection.
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sea skyline roughly, and then the least squares approach 
was used to calculate the sea-skyline accurately.

The horizon-generation method based on linear fitting 
is less computationally intensive and has good real-time 
performance. Subsequently, such an approach is suitable 
for horizon detection in a simple sea and sky background.

Transform Domain Approach
The horizon-generation methods based on the transform 
domain include Hough transform, Radon transform, wave-
let, and so forth. This type of process first transforms the 
collected image data into the corresponding transform 
domain and then processes the image in the transform 
domain. Kong [46] proposed a horizon-detection method 
based on the wavelet transform. Mathematical equations 
were established to locate the horizon’s position by check-
ing the approximate image of Haar wavelet decomposition. 
Tang et al. [47] used Radon transform to extract horizons 
based on maritime infrared image data and fuzzy compre-
hensive evaluation to produce the detection results. More-
over, Wei et  al. [48] designed a vision-based sea-surface 
object-detection system in which a fast edge detection 
algorithm is used to generate a binary edge image of the 
scene. The Hough transform is further used to detect the 
horizon in the edge image.

Using the horizon-generation method based on the 
transform domain has the advantage of reliably and ac-
curately generating the horizon in a complex environment 
with better robustness. The disadvantages are that the 
number of calculations is relatively large, and it is chal-
lenging to meet real-time requirements. 

Gradient Saliency Approach
The gradient saliency approach adopts pixel characteristics 
of the horizon. On the other hand, the gradient amplitude 
of the horizon changes drastically in the vertical direction. 
Moreover, the pixel characteristics in the horizontal direc-
tion are the same. Wang et al. [49] proposed a gradient sa-
liency algorithm based on a red, green, blue color space. 
Such an approach effectively suppressed interference fac-

tors and realized identification of the horizon through a 
regional growth method based on gradient direction. Lin 
et  al. [50] used saliency of the gradient between the sea 
surface and the sky to enhance the image gradient through 
Gaussian low-pass filtering. They eliminated the influence 
of clouds and waves on the image gradient, determined the 
potential area of the horizon, and finally, used iterative 
polynomial fitting to generate the horizon.

The gradient-based saliency method can be carried out 
quickly, with a good real-time performance. However, for 
complex backgrounds, interference factors need to be sup-
pressed in algorithm processing, otherwise, it is easy to 
cause missed detection.

Image Segmentation Approach
The horizon is generated based on the principle of image 
segmentation. Generally, the dividing line of the water 
and sky area is defined as the horizon. Lu et al. [51] inte-
grated median filtering and Canny edge detection to de-
sign an adaptive threshold based on the characteristics of 
infrared images to segment the horizon. Liang et al. [52] 
used a gray-level co-occurrence matrix based on texture 
features to locate the sea-skyline region. It was carried out 
by obtaining an adaptive segmentation threshold using the 
maximum between-class variance method, adopting the 
clustering technique to select the appropriate points, and 
finally generating the horizon parameters by a straight-
line fitting.

The horizon-generation method based on image seg-
mentation has a small calculation and good real-time per-
formance in a simple background. However, determining 
the optimal segmentation threshold of the horizon in a 
complex background using this approach is difficult, and 
the ability to resist interference factors is poor.

Information Entropy Approach
The information entropy approach is also widely used for 
horizon detection. Yang et al. [53] proposed an information 
entropy method based on variance weighting to detect ho-
rizons in infrared images, and verified the effectiveness of 

Classification References Representative Methods 1 2 3 4

Linear fitting Jiang et al. [44] (2010); Ma et al. [45] (2016) Least squares method √ # # #

Transform domain Kong [46] (2016); Tang et al. [47] (2013); Wei et al. [48] (2019) Hough, wavelet, Radon transforms # √ — √

Gradient significance Wang et al. [49] (2016); Lin et al. [50] (2020) RGB color space √ — # #

Image segmentation Lu et al. [51] (2006); Liang et al. [52] (2015) OTSU, canny edge detection √ — # #

Information entropy Yang et al. [53] (2006) Edge phase encoding # — √ √

Based on the feature Jeong et al. [54] (2019); Zhan et al. [55] (2019) CNN √ — √ —

1: real time; 2: detection accuracy; 3: robust; 4: complex background adaptability; √: advantages; #: limitation; —: average. RGB: red, green, blue; OTSU: Otsu Nobuyuki.

Table 3. A comparison of horizon-detection methods.
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this approach through experiments. The information en-
tropy approach has good robustness and solid environmen-
tal adaptability, but the real-time performance is poor and 
the computational cost is too high.

Feature Approach
Feature-based techniques have gradually been applied 
to horizon detection in recent years. Jeong et  al. [54] 
used a combination of multiscale and CNNs to detect 
the horizon. Zhan et  al. [55] suggested a new water-
boundary-determination method. First, the input image 
pixels were clustered into different regions through an 
adaptive multilevel segmentation algorithm, and a la-
bel and confidence value were assigned to each pixel. 
Then the obtained label map and related confidence map 
were input as training samples into the CNN to train the 
network online. Finally, the online trained CNN was ad-
opted to segment the input image again. The experimen-
tal results show that this technique had higher accuracy 
and strong robustness.

Feature-based methods have a solid ability to extract 
targets. However, to implement such an approach, many 
images must be collected in advance for training and many 
unpredictable factors are involved in the actual scene, e.g., 
lousy weather and occlusion of ships.

Static-Background Subtraction
After the horizon is detected, the relevant detection area is 
obtained. However, due to the dynamics and complexity of 
the marine environment, detecting related targets in the 
detection area is still relatively complicated. Subsequently, 
first, it is necessary to remove the background of the image 
through background modeling to further segment the fore-
ground and output the target-detection result [3]. Through 

literature analysis, the following static-background sub-
traction methods used for sea-surface object detection are 
listed in Table 4: single-image statistics, Bayesian classi-
fier, difference operation, domain pixel, Gaussian mixture, 
feature based, and principal component analysis (PCA).

Single-Image Statistics Approach
The static-background-removal method based on single-
image statistics is often used for the detection of sea-sur-
face objects. Bouma et  al. [20] used the change of object 
pixel intensity to establish a background model to detect 
small boats, buoys and other targets. Ren et  al. [56] pro-
posed a saliency accumulation method to detect small tar-
gets on the sea. This technique combined characteristics of 
the space and frequency domains and accumulated the sa-
liency maps of consecutive frames by applying a threshold 
to obtain a binary saliency map. The experiment proved 
that the method was simple and effective. Zhou et al. [57] 
used a sequence-based top-hat filter model for small in-
frared targets at sea. Such an approach well suppressed 
background clutter and enhanced the detection accuracy 
of small infrared targets.

The method for single-image statistics is simple, does 
not require memory learning, and has a better effect on 
small-target detection. It cannot, however, solve the relat-
ed problems of multimodality.

Bayesian Classifier Approach
The Bayesian classifier is a method with a low probability 
of misclassification and strong classification ability. Cu-
librk et al. [58] used a neural network system to form an 
unsupervised Bayesian classifier. The constructed classi-
fier can effectively deal with complex backgrounds using 
motion and illumination changes. Socek et  al. [59] used 

Classification References Model 1 2 3 4

Single-image 
statistics

Bouma et al. [20] (2008); Ren et al. [56] (2012); Zhou et al. [57] 
(2014)

Spatial filtering, histogram # # — #

Bayes classifier Culibrk et al. [58] (2007); Socek et al. [59] (2015) Decision framework, evidence theory — — — #

Difference operation Razif et al. [60] (2015) Background difference, frames 
difference

√ # — #

Domain pixel Borghgraef et al. [61] (2010); Adiguzel et al. [62] (2018); Tran 
and Le [63] (2016)

ViBe, behavior subtraction — — √ —

Gaussian mixture Wang et al.[67] (2014); Zhang et al. [68] (2012); Frost et al. [69] 
(2013); Zhou et al. [70] (2020) 

Kernel density estimation, GMM — — √ √

Based on feature Zhu et al. [71] (2010); Nie et al. [72] (2020); Fiorini et al. [73] 
(2017)

Shape, texture, moment invariant √ — √ √

Principal component 
analysis

Biondi [74] (2016); Sobra et al. [75] (2015); Kajo et al. [76] 
(2021);

Singular value decomposition, 
RPCA

√ √ — √

1: real time; 2: detection accuracy; 3: robust; 4: complex background adaptability; √: advantages; #: limitation; —: average; ViBe: visual background extractor.

Table 4. A comparison of static-background subtraction methods for sea-surface object detection.
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the Bayesian classifier method to estimate and suppress 
the marine background and evaluated the technique’s 
applicability in a dataset of real ocean scenes. The back-
ground-removal method based on the Bayesian classifier 
has a simple classification, but the learning phase in this 
approach is relatively complicated and the training dataset 
is more sensitive.

Difference Operation Approach
The difference operation technique is divided into the 
background difference and interframe difference methods. 
Among them, the interframe difference method uses two 
consecutive frames of images in the image sequence to per-
form difference, and then binarizes the gray-scale difference 
image to extract motion information. Razif et al. [60] used the 
interframe difference method to remove the maritime back-
ground, which ensured a low computational complexity.

The advantage of the difference operation approach is 
that the algorithm is relatively simple and the operation 
speed is fast. However, this method does not adapt to com-
plex environmental changes, such as the chromaticity 
changes caused by illumination changes.

Domain Pixel Approach
Domain pixel-based methods are also often applied to 
maritime background removal by considering spatial and 
temporal correlations. Borghgraef et al. [61] evaluated the 
visual background extractor (ViBe) and behavior subtrac-
tion algorithms, and the experimental results show that 
the background-removal effect is better than that of the 
traditional parametric techniques. Using the improved 
ViBe algorithm, Adiguzel and Ozyilmaz [62] could better 
remove noise in the image and augment the effect of back-
ground subtraction in the marine environment. Tran and 
Le [63] used the ViBe algorithm, combined with saliency-
detection technology, to obtain a high detection rate on the 
maritime challenge dataset.

As a parameter-free method, the domain pixel tech-
nique has the advantage of less memory usage and timely 
initialization of the background model. The limitation is 
that the extraction of moving objects is incomplete in com-
plex and changeable scenes.

Gaussian Mixture Approach
The Gaussian mixture approach can better suppress noise 
interference in the complex background than the other 
background-removal approaches [64], [65], [66]. Wang et al. 
[67] faced the challenge of the complex environment on the 
water surface and used a method based on Gaussian mix-
ture (GMM) to remove the sea background for detecting 
floating objects on the sea. Zhang et al. [68] used a Gauss-
ian mixture model (GMM) to remove the sea background 
with different illumination and weather. Frost and Tapamo 
[69] used the kernel density estimation model to remove 

the maritime background and obtain a good target-detec-
tion effect. Zhou et al. [70] used the Gaussian distribution 
in the Fourier domain to model the marine background 
and extracted the targets by considering the maritime 
background dynamics and the Gaussian discriminant co-
efficient, obtaining relatively accurate results on multiple 
marine infrared video sequences. The Gaussian mixture 
method can effectively remove the complex background of 
the sea and has high detection accuracy under a complex 
background, yet the modeling is more complicated and the 
computational cost is high.

Feature Approach
The feature-based background classifier method uses 
training datasets (positive and negative samples) for su-
pervised feature learning for different target categories. 
Zhu et al. [71] considered ship shape and texture charac-
teristics and obtained candidate ship targets by eliminat-
ing the background of clouds, islands, and sea clutter. Nie 
et al. [72] combined shape, texture, and moment-invariant 
features to describe ship targets more effectively, and 
eliminated false alarms through support vector machine 
(SVM) training. Fiorini et al. [73] obtained high accuracy 
and real-time performance on the Maritime Detection, 
Classification, and Tracking (MARDCT) dataset by ex-
tracting marine vessel target features, combined with a 
decision tree classifier.

The feature-based background classifier method has 
good robustness to complex backgrounds (e.g., occlusion 
and rotation of the target) and has been applied to various 
case studies. Subsequently, this approach is relatively ma-
ture. However, it has high complexity of the algorithm and 
poor real-time performance.

PCA Approach
PCA can well restore the data containing Gaussian noise 
and is often used in the analysis of video foreground and 
background. Biondi [74] applied the robust PCA (RPCA) 
technique to maritime radar images, which can reduce 
a large amount of redundant data. Sobral et al. [75] used 
a double-constrained version of the RPCA to remove the 
ocean background. The experimental results show that 
the combination of confidence maps and shape con-
straints can improve the effect of foreground detection. 
Kajo et  al. [76] proposed a tensor-based singular value 
decomposition method for ocean background removal, 
which effectively handles the challenges brought by ma-
rine stationary foreground objects and ghosts by updat-
ing the separation component incremental operation and 
adopting a forgetting mechanism. The method based on 
PCA can accurately separate the foreground target in 
the complex image background, but the disadvantage is 
that it cannot maintain efficient separation continuously 
through the update mechanism.
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Foreground Segmentation
In traditional maritime data processing, after eliminat-
ing the static background, the foreground segmentation 
method is used to identify the contour of maritime objects. 
When such a contour is further detected, the morphology 
approach is the most crucial foreground segmentation ap-
proach [2]. A morphological method is a nonlinear filtering 
technique used to process binary images and is later ap-
plied to gray-scale image processing. Four basic operations 
need to be carried out in the morphology approach: corro-
sion, expansion, and open and close operations. Based on 
these basic operations, various morphological algorithms 
can be combined and improved upon. Table 5 lists several 
interesting morphological methods for foreground seg-
mentation of sea-surface objects.

Westall et al. [77] used basic morphological operations 
to segment the foreground of persons in distress at sea. 
Toet [18] used a morphological top-hat transform to iden-
tify kayaks and swimmers in complex ocean backgrounds 
and recommended adjusting the structural elements used 
in top-hat conversion to the size and shape of the target. 
Such an approach would significantly reduce false-de-
tection rates. Eum et al. [78] used the Sobel edge-detec-
tion method and morphological operations to segment 
foreground objects to separate the maritime foreground 
from the background. Genitha et  al. [79] offered an im-
proved watershed segmentation algorithm using label 
control to avoid oversegmentation of the algorithm. This 
method can accurately segment ship targets in maritime 
remote sensing images. Kushwaha et al. [80] used wave-
let transform to wavelet decomposition of images, used 
background modeling on approximate coefficient (LL 
subband), and finally, used closed-shape operators to seg-
ment marine objects.

The morphology approach extracts the corresponding 
shape in the image through certain structural elements, 
removes irrelevant structures, and finally, achieves the 
purpose of foreground object recognition. When using 
morphological methods to segment sea-surface objects, it 
is necessary to assume that the targets are not occluded 
and separated enough to ensure that the boundaries will 
not merge.

Sea-Surface Object-Detection Methods  
Based on Deep Learning
The sea-surface object-detec-
tion approach based on deep 
learning uses the provided sea-
surface objects dataset to train 
the network. The network then 
automatically learns the param-
eters to detect and recognize 
the sea-surface objects. The 
previous investigations mainly 

focused on improving the performance of sea-surface ob-
ject detection from three aspects: 1) dataset construction, 
2) object feature extraction, and 3) model optimization. An 
extensive literature review was further carried out to ana-
lyze those existing works and is presented in Table 6.

Training Dataset Construction
Sea-surface objects data based on visible and infrared, es-
pecially image data of small fishing boats and buoys, are 
not extensive. Subsequently, three approaches are general-
ly used to construct sea-surface objects training datasets: 
1) specific datasets based, 2) traditional image augmenta-
tion based, and 3) generative adversarial network (GAN) 
based (see Table 7). These approaches promote the re-
search of maritime obstacle object detection based on deep 
learning, increase the utilization rate of existing data, and 
further enrich the types of sea-surface objects datasets and 
the diversity of object shapes.

Specific Dataset Approach
CNNs can extract many distinguishable features through a 
series of convolution and pooling layers. However, object-
detection performance is closely related to large-scale, 
high-quality datasets because a CNN is a data-driven 
method. The detection performance of some objects can 
be significantly improved (e.g., fish image [81], vehicle 
image [82], and pedestrian detection image datasets [83], 
[84]) by making datasets of specific objects. In addition, 
related research has developed the maritime obstacle ob-
ject image dataset. Table 8 briefly introduces five classic 
maritime datasets for deep learning (the details of the 
published datasets are listed in the “Public Maritime Da-
tasets” section).

Shao et al. [85] established a new large-scale ship da-
taset called SeaShips, which accurately annotated the 
bounding boxes of six types of sea ships and described the 
detailed design of the dataset. Liu et al. [86] established a 
sea buoy dataset named SeaBuoys, which contains six dif-
ferent types of buoys. Ribeiro et al. [87] proposed SeaGull, 
a sea-surface objects image dataset captured by a small 
drone, and used different cameras to obtain video se-
quences from different heights and different perspectives. 
Zhang et al. [88] offered a publicly available maritime im-
age VAIS, a dataset for recognizing maritime imagery in 
the visible and infrared spectrums, which contains both 

References Morphological Method Foreground Object

Westall et al. [77] (2008)
Toet [18] (2002)
Eum et al. [78] (2015)
Genitha et al. [79] (2020)
Kushwaha and Srivastava [80] (2015)

Dilation, erosion, open and close operations
Top-hat transform
Sobel edge detection
Watershed segmentation
Close operations

Persons in distress at sea
Kayaks, swimmers 
Ship
Ship
Ship

Table 5. Morphology-based maritime foreground segmentation methods.
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infrared and visible images. Iancu et al. [89] built a dataset 
dominated by maritime vessels, containing multiple ves-
sel types as well as some buoys and floating objects at sea.

The specific dataset approach builds a dataset for spe-
cific environments and objects. The image quality is high 
and the resolution is uniform. It can provide test bench-
marks for various sea-surface object-detection algorithms. 
It does, however, consume considerable workforce and ma-
terial resources.

Traditional Image Augmentation Approach
At least five data processing methods using traditional im-
age augmentation technology have been developed (see 
Figure 5). The data source expansion approach adds more 
related images in the image dataset, directly supplement-
ing in quantity. The geometric transformation technique 
includes translation, flipping, scaling, and segmentation 
of the image. On the other hand, adding noise randomly 
adds Gaussian noise, salt-and-pepper noise, and so on to 
the image, whereas the optical transformation method 
converts image brightness, contrast, satura-
tion, and color space. In addition, using Unity 
and Unreal Engine 4 software to simulate the 
target object can also achieve expansion of the 
image dataset.

Aiming at the sea-surface target image, Shin 
et al. [90] proposed a method to expand the sea-
surface target image automatically. Gao et  al. 
[91] and He et al. [92] realized the expansion of 
data sources by increasing negative samples. 
Based on increasing the number of negative 
samples, Fu et al. [93] also increased the num-
ber of small targets at sea and proved, through 
experiments, that data source expansion could 
effectively enhance the detection capabilities 
of ships at sea. Qi et al. [94] performed a scale-
reduction operation on maritime images, Wang 
et  al. [95] adopted geometric transformations 
such as flipping and shearing on maritime im-
ages, and Chen et  al. [96] enhanced the data-
set by adding noise to the picture. Li et al. [97] 

Approaches Brief Description Advantages Limitation

Specific dataset Build a dataset for specific target objects in 
the maritime environment

þ �High image quality and uniform 
resolution; able to provide test 
benchmarks for related algorithms

x �Expensive; requires a lot of manpower 
and material resources

Traditional image 
data augmentation

Perform image processing operations such 
as geometric transformation and optical 
transformation on the data

þ Simple and convenient operation x �The original distribution of the data may 
be changed; some clutter information will 
be mixed in

GAN Learn the distribution and structure of the 
original dataset through the deep network 
model

þ �Able to automatically generate sea-surface 
objects and improve the image diversity 
of sea-surface objects

x �The generator and the discriminator need 
to be kept in sync; the interpretability is 
poor; the model is easy to collapse

Table 7. A comparison of training dataset construction methods.

References Datasets Dataset Construction

Shao et al. [85] 
(2018)

SeaShips Six types of ship targets (ore carrier, 
bulk cargo carrier, general cargo ship, 
container ship, fishing boat, and 
passenger ship)

Liu et al. [86] 
(2021)

SeaBuoys Six types of buoys (buoy_1, buoy_2, 
buoy_green, buoy_red, buoy_blue, and 
buoy_yellow)

Ribeiro et al. 
[87] (2019)

SeaGull Cargo ships, smaller boats (27 m long), 
sailing yachts, life rafts, dinghies, and a 
hydrocarbon slick

Zhang et al. 
[88] (2015)

VAIS Merchant ships, sailing ships, medium 
passenger ships, medium “other” ships, 
tugboats, and small boats

Iancu et al. [89] 
(2021)

ABOShips Contains 11 types of sea-surface objects, 
including nine types of vessels, seamarks 
and miscellaneous floaters

Table 8. The construction of a maritime dataset for deep 
learning.
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FIG 5 Traditional dataset-enhancement methods.
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enhanced the dataset by changing the brightness and rota-
tion of the picture. Huang et al. [98] used guided filtering 
to enhance the gray level of the picture to expand the data.

The image augmentation approach is convenient and 
straightforward to operate. However, the original distri-
bution of the data is changed while expanding the data, 
and the introduced clutter information result in specific 
false alarms.

GAN Approach
Data enhancement can also be achieved by simulating the 
visible/infrared image of the sea through the GAN to solve 
the problem of insufficient target image data of some ob-
stacles on the sea. A GAN uses a CNN to learn the internal 
statistical laws of sample data and obtains a probabil-
ity distribution model. Such a probability model generates 
fake samples that can deceive the discriminator and gener-
ate more sample datasets [99].

Schwegmann et  al. [100] proposed a generative con-
frontation network (InfoGAN) based on information maxi-
mization successfully extending a ship’s remote sensing 
images. Zou et al. [101] used multiscale Wasserstein dis-
tance and gradient loss to improve the original GAN. The 
augmented network (auxiliary classifier GAN) can con-
stantly generate high-resolution synthetic aperture radar 
ship images. For visible and infrared images, Chen et al. 
[102] used Wasserstein GAN with gradient penalty based 
on GAN improvement combined with GMM to expand the 
image data of small ships. Experimental results show that 
this method can generate many information-rich, small-
ship samples, which indirectly improve the detection abil-
ity of small objects on the water surface.

The GAN-based approach can enhance the diversity 
of sea-surface objects image data by understanding the 
related data distribution and its potential structure. How-
ever, the training is complex and the generator and the 
discriminator need to be synchronized. Moreover, the al-
gorithm results are not easy to converge in the image syn-
thesis process.

Object Feature Extraction
The object feature extraction mainly uses a CNN to extract 
the high-level semantic information, shallow information 
in the images, and the core of the deep learning algorithm. 
In recent years, CNNs have made many breakthroughs. In 
2012, Krizhevsky et al. [103] proposed the AlexNet model 
and won the ImageNet Large-Scale Visual Recognition 
Challenge, proving the effectiveness of CNNs under com-
plex models, thereby establishing the leading role of CNNs 
in the field of computer vision. The representative mod-
els of CNNs include LeNet [104], AlexNet [105], [106], [107], 
VGGNet [108], Google’s Inception series [109], [110], [111], 
ResNet [112], DenseNet [113], and so on. CNNs are com-
monly used for object detection and can be divided into 

two categories: 1) two-stage methods, e.g., region-based 
CNNs (R-CNNs) [114], fast R-CNNs [115], [116], and faster 
R-CNNs [117]; and 2) one-stage techniques, e.g., You Only 
Look Once (YOLO) [118], YOLOv2 [119], YOLOv3 [120], 
Retina-Net [121], single shot multiBox detector [122], and 
YOLOv4 [123].

For a target image in the complex ocean environment, fea-
ture extraction mainly solves the following three problems.

■■ How are object features in multimorphology, multiscale, 
and multiresolution situations. efficiently extracted?

■■ How are the feature extraction capabilities for small 
objects in maritime images improved? Incidentally, the 
international organization Society of Photo-Optical In-
strumentation Engineers defines the relative size of 
small objects as an object area of less than 80 pixels in a 
256 # 256 image. The COCO dataset defines the absolute 
size of small objects as objects with a size smaller than 
32 # 32 pixels.

■■ How are features reasonably extracted to reduce the 
impact of complex backgrounds, especially shore build-
ings, foggy weather, and so on?
Considering these three problems, researchers have 

widely used feature fusion and the method of inserting con-
volution modules to improve sea-surface object detection in 
the object feature extraction step, as depicted in Table 9.

Feature Fusion Approach
In the process of using CNNs to extract image features, 
shallow feature maps have high resolution but lack 
semantic information, and deep feature maps have low res-
olution but rich semantic information. Subsequently, fea-
ture fusion methods are often used in visible-image object 
detection to fuse information from different feature layers 
to improve target classification and detection due to the 
variable shapes of maritime obstacle objects and the sig-
nificant difference in object size. Among those approaches, 
ultradense connections and feature pyramids are repre-
sentative of this type of method.

Ultradense Network Approach
Under the premise of ensuring the transmission of infor-
mation between layers in the network, the ultradense net-
work can make more effective use of features by adding 
connections. Farahnakian and Heikkonen [124] compared 
several classic fusion systems for the problem of feature 
extraction of sea-surface objects and proved the superior-
ity of the feature fusion system. Li et al. [97] and Ma et al. 
[125] integrated DenseNet into the original network model 
and Li et  al. [126] used a spatial separation convolution 
instead of a standard convolution to improve the feature 
pyramid network (FPN) based on adding DenseNet. In ad-
dition to DenseNet, several feature fusion architectures 
have also been applied to feature extraction of marine 
objects, e.g., Zhao et  al. [127] combined two networks, 
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DNet and CNet; Huang et al [128] introduced a jump-con-
nection mechanism in the original network model to im-
prove the feature extraction performance of sea-surface 
objects. Moreover, adding maritime saliency features to 
the network model can also enhance the performance of 
sea-surface objects feature extraction. For example, Shao 
et al. [129] integrated horizon features into CNNs, which 
reduced the extraction image area and enhanced the fea-
ture extraction capabilities of ships at sea.

Feature Pyramid Approach
The FPN [130] transfers deep semantic information from 
top to bottom to the underlying feature map to enhance the 
semantic information of the underlying feature map. It is a 
feature fusion structure in target-detection models such as 
YOLOv3. Figure 6 shows the basic framework of the FPN. 
By improving the FPN, the problems of multiform and mul-
tiscale marine targets eliminated.

Liu et  al. [86] used an across-PANet fusion structure. 
PANet added a bottom-up feature fusion path based on the 
FPN, enhancing the semantic information and location in-
formation of the feature map. Huang et al. [98] proposed an 
enhanced network model regressive deep CNN based on the 
YOLO series to improve the FPN. The augmented feature lay-
er network can detect and predict the input sea-surface ob-
jects image on two scales. Guo et al. [131] further proposed a 
balanced pyramid method to solve different sizes and dense 
distribution of ships in an image. The ship’s rotation-angle 
position information is finally better predicted by balancing 
the three networks of feature, sample, and target levels.

The method, based on feature fusion, effectively unifies 
semantics and multiscale representation through interlayer 
fusion and improves the ability to detect small targets at sea. 
Its limitation lies in increasing complexity of the network and 
reducing the speed of object detection to a certain extent.

Convolution Module Approach
Many researchers improve performance of the object-
detection model by inserting a convolutional attention 
module [132]. This method draws on the human visual 
mechanism and obtains deeper semantic information by 

paying attention to the local information of the target. It 
also plays an essential role in the image detection of small 
sea-surface objects with few pixels.

Pan et  al. [133] proposed a fine-grained root-mean 
square classification model classifying and recognizing 
different navigation marks on the water surface and us-
ing the attention mechanism to obtain deeper semantic 
information of the target. Xu et al. [134] replaced the APN 
attention mechanism model in the network with multi-fea-
ture-APN, effectively improving the accuracy of sea-sur-
face objects recognition. Fu et al. [135] used the YOLOv4 
model to detect sea-surface objects and improved the accu-
racy of object detection by adding an attention mechanism 
module, convolutional block attention module (CBAM), to 
the network. Liu et al. [136] also used the YOLOv4-based 
network framework and proposed the reverse depthwise 
separable convolution (RDSC) module. By using RDSC at 
the correct network layer, accuracy of the sea-surface tar-
get-detection model was improved as was real-time perfor-
mance, to a certain extent.

The attention mechanism approach obtains deep se-
mantic information of the sea-surface object’s image and 
increases complexity of the network model. Maintaining 
the balance between the amount of calculation and accu-
racy is a problem with this approach.

Model Optimization
To replace the feature network connection layer and in-
sert the convolution module, the complex network design 

Classification Approaches Description Advantages Limitations

Feature fusion ➀ Ultradense network
➁ Feature pyramid network

Strengthen feature 
delivery by increasing 
network connections

þ �Able to effectively unify multiscale 
representation and semantic 
distribution; improve the detection 
ability of dense, small targets

x �Increased network 
complexity; affects 
the balance of model 
calculation and accuracy

Convolution 
module

➀ Attention mechanism By inserting the 
convolution module in 
the deep network

þ �It can effectively focus on the target, 
suppress other interference information 
in the image, and improve the accuracy 
of target detection

x �Increased network 
complexity; affects 
the balance of model 
calculation and accuracy

Table 9. A comparison of feature extraction methods for sea-surface objects

PredictionPredictio

FIG 6 The basic block diagram of an FPN [130].
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technique also includes optimizing the loss function, clas-
sifier, and anchor box, as presented in Table 10.

Anchor-Box Design Approach
Designing the anchor box is essential to selecting the can-
didate area in the two stages and generating a priori a box 
in one stage. Choosing a suitable anchor box can reduce 
the false-alarm rate and the missed-detection rate of the 
target. The anchor-box approach needs to assign a binary 
label to each anchor point.

Liu et al. [86] introduced in detail three deep learning-
based anchor-box design methods: 1) threshold, 2) aver-
age, and 3) select all. The experimental results proved 
that the average and select-all methods could effectively 
improve the average detection accuracy of sea-surface ob-
jects. Huang et al. [128] used the k-means++ algorithm to 
cluster the ship dataset. They found that clustering can 
accelerate convergence of the network and effectively up-
grade gradient descent during the training process com-
pared with artificially selecting anchor point values. In 
addition, Chen et al. [102] used a density-based clustering 
algorithm, density-based spatial clustering of applica-
tions with noise (DBSCAN), for poor recognition of irreg-
ular objects by the k-means algorithm and the problem 
of hyperparameter selection, improving the problem and 
saving the time of artificial adjustment.

Using anchor points in the detection model, an anchor 
box that is more suitable for the dataset is generated. Such 
a phase can effectively improve performance of the sea-
surface object-detection model.

Loss Function Design Approach
Loss function of the object-detection model is composed 
of three parts: 1) bounding-box loss, 2) category loss, and 
3)  confidence loss. The purpose of the loss function is to 
modify the prediction box so that it is closer to the actual 
box. Among those methods, intersection over union (IoU) 
[137], improvement variants of generalized IoU (GIoU) [138], 

and distance IoU [139] are widely used to measure the sim-
ilarity of the proper and predicted boxes in the object-de-
tection task. The IoU calculates the intersection and union 
ratio of predicted box A and real box B, as shown in Figure 7.

The calculation formula can be expressed as

	 IoU A B
A B
,
+= � (1)

The loss is expressed as

	 Loss IoU1= - � (2)

Wang et al. [95] used the GioU to replace the IoU in the 
YOLOv3 model to solve the defect with no return gradient 
when two sea-surface objects do not intersect. Liu et  al. 
[86] also used the GioU to redesign the loss function and 
verified it through experiments. The experimental results 
showed that this approach could effectively improve the 
detection performance of maritime obstacle objects.

The loss function design approach further enhances re-
gression accuracy by considering geometric factors, e.g., 
the overlapping area of the bounding-box regression, and 
distance between the center points and aspect ratio, hence 
improving the performance of sea-surface object detection.

Classifier Design Approach
The use of classifiers is an essential step in sea-surface ob-
ject detection and classification. The most common classi-
fier methods include SoftMax, SVMs, k-nearest neighbors 
(KNNs), and extreme learning machines).

Gallego et al. [140] combined the neural network code 
extracted by CNNs with the KNN method to extract and 
classify features of ships at sea and compared the classi-
fication results obtained by KNNs with the results output 
by SoftMax. Kumar and Sherly [141] and Shi et al. [142] fur-
ther improved overall performance of the network model 
by attaching the pretrained CNN to the SVM. Fiorini et al. 
[143] used the SVM classifier to replace the last layer in 
the VGG16 network to classify different ship targets on the 

Classification Representative Method Brief Summary

Anchor-box 
design

k-means, average 
method, select-all 
method, DBSCAN

Through the design of anchor 
points, an anchor frame that is 
more suitable for the model is 
generated

Loss function IoU, GIoU, DIoU Optimize the detection model 
by considering bounding-box 
regression factors

Classifier 
design

SoftMax, SVM, KNN According to the characteristics 
of different datasets, select the 
appropriate classifier

IoU: intersection over union; GIoU: generalized intersection over union; DIoU: distance inter-
section over union.

Table 10. A comparison of model optimization methods.
A

A

A:B

B

B

A"B

FIG 7 An IoU diagram [137].
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sea and obtained high accuracy. Ji et  al. [144] compared 
the performance of KNNs, the Bayesian classifier, and a 
backpropagation neural network classifier and proposed 
a combination of SVM strategies. The suggested approach 
has been proved through experiments as a powerful ap-
proach in sea-surface object detection and classification. 
The classifier design approach improves the classification 
efficiency of sea-surface objects by selecting the appropri-
ate classifier and choosing different classifiers according 
to the characteristics of different datasets.

Public Maritime Datasets
Large-scale training datasets are the primary way to use 
deep learning methods for identifying sea-surface objects; 
they are also essential for research on the improvement of 
sea-surface object-detection technology. Most of the object-
detection algorithms based on deep learning have been 
trained on the PASCAL VOC dataset and utilized the trans-
fer learning method to use the PASCAL VOC dataset as the 
source domain dataset in the pretraining stage. The PAS-
CAL VOC dataset comprises four categories: people, indoor 
objects, animals, and vehicles as well as 20 corresponding 
subcategories. It can be determined from the aforemen-
tioned object categories that it does not include sea-surface 
obstacles such as buoys, islands, and reefs. Therefore, this 
dataset cannot effectively detect sea-surface obstacles. 
To achieve better detection accuracy, maritime datasets 
should be used effectively. In recent years, some research 
institutions have publicly published their maritime datas-
ets to promote sea-surface object-detection technology de-
velopment. These maritime datasets were developed based 
on visible and infrared images, providing researchers with 
test benchmarks to verify different sea-surface object-de-
tection algorithms. Ten image datasets can be used for sea-
surface object-detection research, as presented in Table 11.

VAIS (http://vcipl-okstate.org/pbvs/bench/) is the world’s 
first publicly available maritime dataset and was devel-
oped by pairing visible and infrared images. This dataset 
contains 2,865 ship images, including 1,623 visible and 
1,242 infrared ones. Moreover, 16 fine-grained categories 
are annotated in the dataset, which can classify different 
types of ships at sea.

MARVEL (https://github.com/avaapm/marveldataset2016) 
is the largest fine-grained ship identification dataset, contain-
ing 2 million visible images of ships obtained from the fore-
ground angle of view, which are divided into 26 categories that 
can be used to classify marine ship targets.

SeaShips (http://www.lmars.whu.edu.cn/prof_web/sha 
ozhenfeng/datasets/SeaShips%287000%29.zip) is a col-
lection of 31,455 visible images in the sea ship dataset, of 
which 7,000 are disclosed, including six ship types: ore car-
rier, bulk cargo carrier, general cargo ship, container ship, 
fishing boat, and passenger ship. These datasets are used 
for the detection and classification of sea-surface objects. Se
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ABOShips (https://www.fairdata.fi/en/), as opposed to 
the SeaShips dataset, contains more object classes. In ad-
dition to containing nine different types of ships, it also 
includes two types of targets: buoys and floating objects. 
Among them, 11 categories of objects in the dataset are ac-
curately annotated.

The Singapore Maritime Dataset [(SMD)—dilipprasad] 
(https://sites.google.com/site/dilipprasad/home/singa-
pore-maritime-dataset) consists of 11 onboard videos and 
70 onshore video sequences. It provides visual-optical (VIS) 
and near-infrared (NIR) video data for the verification of 
sea-surface object detection and tracking algorithms.

The marine obstacle detection dataset (MODD) 1 (http://
www.vicos.si/Downloads/MODD) is mainly composed of 
12  video sequences, providing a total of 4,454 fully an-
notated frames with a resolution of 640 # 480 pixels. The 
dataset and annotations and the MATLAB evaluation code 
are publicly available on the Internet. The video data are 
mostly taken on a 2.2 m small USV that can be used for ma-
rine semantic segmentation and the detection and tracking 
of maritime obstacles.

MODD2 (https://box.vicos.si/borja/viamaro/index.
html) consists of 28 video sequences with a total of 11,675 
images, and the image pixels are 1,278 # 958. The dataset 
is a multimodal marine obstacle detection dataset captured 
by a USV, which contains a variety of marine weather con-
ditions, extreme situations, and a large number of small 
sea-surface obstacles.

IPATCH (https://drive.google.com/drive/folders/1d8V 
cnLj-aizWCsg0-LB3QNpBoY14gfDM) uses small speed-
boats to simulate pirate attacks and evaluates how the 
ship-sensing system detects pirate ships to determine their 
threat levels. IPATCH contains video sequences captured 
by visible and infrared cameras and can be used for evalu-
ation and verification of maritime dynamic object detec-
tion and tracking algorithms.

SeaGull (http://vislab.isr.tecnico.ulisboa.pt/seagull-da-
taset) is a marine surveillance image dataset captured by a 
small UAV. It contains more than 150,000 images of marine 
obstacles and targets, including cargo ships, smaller boats 
(27-m long), sailing yachts, life rafts, dinghies, and a hy-
drocarbon slick. This dataset can be used for maritime tar-
get detection and classification based on low-altitude UAVs.

MARDCT (http://labrococo.dis.uniroma1.it/MAR/) pro-
vides data from intelligent surveillance systems in the 
maritime environment and fixed, mobile, and pan-tilt-
zoom cameras. These datasets are used to collect videos 
and images in different marine scenarios containing 24 
types of ship images sailing in Venice, and hence can be 
used for ship detection, classification, and tracking.

Relevant scholars evaluated the performance of the al-
gorithm based on the maritime dataset benchmark. Cane 
and Ferryman [145] evaluated various semantic segmenta-
tion networks on the MODD1, SMD, IPATCH, and SeaGull 

datasets to compare the recognition performance of differ-
ent network models. Zhang et  al. [88] used CNNs to clas-
sify and identify the 16 ship categories in the VAIS dataset. 
Leclerc et al. [146] also adopted CNNs to classify ship cat-
egories on the MARVEL dataset. Bloisi and Iocchi [147] and 
Bloisi et al. [148] evaluated a fast and effective background-
elimination independent multimodal background subtrac-
tion algorithm in the MARDCT dataset. This method is 
specially designed for marine scenes and can better sup-
press marine noise. Bloisi et al. [149] established the ARGOS 
classification benchmark on the MARDCT dataset used to 
classify ships. Prasad et al. [3], [4] verified a new horizon-
detection technique based on multiscale cross-modal linear 
features and 23 classic background subtraction algorithms 
on the SMD dataset. They pointed out that a specific back-
ground subtraction method is required for complex mari-
time environments. Ribeiro et al. [87] evaluated sea-surface 
object detection and tracking algorithms on the SeaGull 
dataset sequence and defined the baseline performance. 
Kristan et al. [150] adopted the Markov random field frame-
work in the MODD1 dataset and derived parameters of the 
optimization model. Bovcon et al. [151] derived equations for 
projecting the horizon into an image, proposed an efficient 
algorithm for maritime obstacle detection, and validated it 
on the MODD2 dataset. Chan [8] evaluated the performance 
of 37 background-elimination algorithms on the IPATCH 
dataset. The experimental results show that the multifea-
ture category background subtraction algorithm can better 
adapt to challenges of the complex maritime environment 
and achieve the best results. In addition, Chan [152] also 
developed an efficient filtering method that meets the re-
quirements of maritime vision applications. The proposed 
approach is based on the dark channel prior, which further 
improves overall performance of the background subtrac-
tion algorithm.

For deep learning object-detection algorithms, a few 
public maritime image benchmark datasets are evaluat-
ed. Table 12 lists several mainstream maritime object al-
gorithms based on deep learning, all of which are strong 
baselines on the corresponding dataset benchmarks. Shao 
et al. [85] obtained the best detection accuracy on the Sea-
Ship dataset using a faster R-CNN model with the backbone 
network ResNet101. Liu et  al. [136] selected 7,000 images 
in the SeaShip dataset and tested them with the YOLOv4 
model; the mean average precision (MAP) value reached 
0.928, and the real-time performance was 55 frames per 
second. Moosbauer et al. [153] relabeled and processed the 
SMD dataset and established a deep learning-based mari-
time image dataset benchmark. Among them, the mask R-
CNN algorithm shows great potential in detection accuracy, 
achieving scores of 0.875 and 0.877 on the VIS and NIR sub-
sets, respectively. In addition, Iancu et al. [89] also demon-
strated the superior performance of the faster R-CNN model 
in sea-surface object detection, and when the backbone 
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network used Inception ResNet V2, the recognition effect 
reached the best performance in the ABOShips dataset.

Open datasets are beneficial to promote the develop-
ment of related research and also provide benchmarks for 
the performance evaluation of different object-detection 
algorithms. The emergence of a series of maritime data-
sets, such as SeaShips and SMD, has effectively supported 
the development of maritime object-detection technology 
based on EO sensors and improved the comparability and 
reproducibility of maritime object-detection algorithms.

Summaries, Future Directions, and Conclusions

Summaries
Through the analysis of the large amount of literature 
mentioned previously, some developments of object de-
tection based on EO sensors in maritime research can be 
summarized as follows:

■■ A part of the research considers the extraction of salient 
features at sea to improve overall performance of the 
object detection, mainly reflected in the extraction of 
horizon features.

■■ The accuracy and speed of the sea-surface object-detec-
tion algorithm have been considered in many articles; 
however, the balance between accuracy and speed is not 
discussed extensively.

■■ Aiming at the problems of video instability and missed 
target detection caused by the EO sensor affected by 
ocean waves, the performance of the maritime object-
detection algorithms based on electronic image-stabili-
zation technology has been continuously improved.

■■ When designing the maritime object-detection algo-
rithm, some factors specific to the maritime environ-
ment have been considered, such as ship occlusion, 
coastal building interference, image blur caused by sea 
fog, changes in viewpoint, and illumination.

■■ A part of the research explored the attention mecha-
nism model to obtain deeper semantic information of 
maritime obstacle objects.

■■ Many studies have considered the detection of sea-sur-
face objects based on multiscales, however, for small 

sea-surface objects, good detection results have still not 
been achieved.

■■ Related research institutions have produced several 
maritime datasets to expand the image data of maritime 
obstacles and quantitatively compare object-detection 
algorithms based on the dataset.

■■ Given the small amount of data in some maritime ob-
stacle datasets, training methods based on weak super-
vision and unsupervised have been considered.
Meanwhile, there are some primary limitations and 

challenges for detecting sea-surface objects based on EO 
sensors, which are summarized into the following aspects 
described in the next sections (see Figure 8).

Accurate Detection of Small Objects at Sea
Compared with vehicles on land, ships take more time mak-
ing a maneuvering decision to executing it and achieving 
the final desired effect. Therefore, the precise identification 
of small objects on the sea can increase the ship’s response 
time, thereby improving navigation safety. Traditionally, the 
background-elimination method using denoising, segmen-
tation, and other preprocessing—combined with horizon ex-
traction—identifies small objects to obtain better robustness. 
In deep learning, several improvement algorithms with sig-
nificant effects are proposed and divided into two types: one 
type designs a multiscale neural network to extract features 
of different levels, adapting to different-size object-detection 
tasks. The other uses transposed convolution to expand the 
depth feature map. These methods better eliminate object-
scale change but still cannot detect small objects well.

EO Sensors Always Shake With the Waves
When an autonomous ship is sailing at sea, the EO sensor 
is not only affected by wind, waves, and currents but also 
by the vibration caused by operation of the main engine 
and other mechanical equipment. At the same time, due 
to the small field of view of the EO sensor, slight shaking 
will cause the collected video image to shake and become 
blurred, causing the target in the image to rotate and trans-
late on the plane, increasing the difficulty of detecting and 
tracking sea-surface objects.

Dataset Amount Studies Graphics Card Models Backbone Indicators MAP Frames Per Second F-Score

SeaShip 31,455 Shao et al. [85] (2018) Titan Xp#4 Faster R-CNN ResNet101 VOC 0.9240 7 —

SeaShip 7,000 Liu et al. [136] (2021) Geforce RTX 
2080TI

YOLOv4 CSPDarknet53 VOC 0.9280 55 —

SMD 31,653 Moosbauer [153] 
(2019)

— Mask R-CNN ResNet101 COCO — — VIS:0.875
NIR:0.877

ABOShips 9,880 Iancu[89] (2021) — Faster R-CNN Inception 
ResNet V2

COCO 0.3518 — —

—: not mentioned; MAP: mean average precision.

Table 12. A baseline of maritime object-detection algorithms based on deep learning.
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The Effect of Strong Light Reflection  
From Sea Surface on Imaging
Lighting conditions directly affect imaging of the EO sen-
sor. In addition to scenes with strong light exposure at sea, 
there will also be reflections on the sea surface. After the 
sunlight is reflected by the specular element on the water 
surface, it will produce a strong radiation signal. When the 
wind passes, the near-smooth water surface will form an 
inclination to produce flares or formation of flash points on 
top of the waves, which are all caused by specular reflec-
tion of the water body. For object detection in the maritime 
environment, the phenomenon of sea-surface flare is inev-
itable, and the radiation intensity is much greater than that 
of other marine objects, which easily causes saturation and 
distortion of the optical imaging sensor.

The Impact of Rain and Fog on Imaging
Rain and fog are common weather phenomena at sea. Au-
tonomous ships sail in coastal waters at low-visibility con-
ditions. Generally, information about surrounding targets 
is obtained through navigation aids such as radar and AIS, 
but the information obtained is less intuitive. Video images 
obtained by the EO sensor are rich in feature information, 
which can achieve the same effect as a visual lookout. How-
ever, the rain and sea fog that often appear at sea seriously 
affect performance of the autonomous ship’s vision system, 
as illustrated in Figure 7(d) and (e). Improving the clarity 
of images obtained in rainy and foggy environments is an 

important prerequisite for autonomous ships to achieve the 
goal of intelligently sensing sea-surface obstacles.

Different Degrees of Occlusion of Sea Targets
Near the offshore port, the background of coastal build-
ings is complex and ships are dense. The objects in marine 
images often appear occluded and overlapped. There are 
two common occlusion problems: inter- and intraclass. 
Interclass occlusion refers to the fact that the target is oc-
cluded by other classes of targets, such as marine buoys 
being occluded by ships. Intraclass occlusion means that 
the target object is occluded by the same class, such as 
a partial overlap between ship targets. In complex mari-
time environments, different degrees of occlusion be-
tween obstacles increase the difficulty of maritime object 
recognition. Occlusion of the target by different types of 
objects will lead to a partial loss of detection target infor-
mation, resulting in missed detection. Occlusion between 
the same type of targets often introduces a large amount 
of interference information, resulting in a false detection.

How to Fuse Different Sources of Information
Adverse weather and sea conditions can cause EO sen-
sors to have difficulty and error in identifying sea-surface 
objects. However, how to fuse the information among dif-
ferent sensors is a challenging problem in the maritime 
environment. In addition to hardware synchronization, 
sensors also need to achieve time synchronization, but the 

(a) (b) (c) (d) (e) (f)

FIG 8 The limitations and challenges of sea-surface object detection [2], [38], [85], [150], [151]. (a) Small objects, (b) wave influence, (c) water reflection, 
(d) sea fog, (e), rain, and (f) overlap occlusion. 
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acquisition time of each sensor is not the same. In addi-
tion, most of the existing fusion systems usually require 
the participation of external users to obtain satisfactory 
performance in the fusion process [29].

The Balance Between Model Accuracy and Speed
Considering the high requirements for real time and the 
accuracy of maritime obstacle object recognition in an in-
telligent ship-perception system, the sea-surface object-de-
tection model must achieve high targets in terms of accuracy 
and speed. Extensive literature reviews on sea-surface ob-
ject detection have shown that only a portion of the litera-
ture can balance accuracy and speed of the algorithm.

The Lack of Image Data of Some Sea-Surface Objects
Adopting the dataset is exceptionally essential in using EO 
sensors for sea-surface objects detection. More specifical-
ly, the deep learning method requires a large amount of 
image data to train a multilayer neural network. Most of 
the existing maritime datasets are not made available to 
the public due to project background. The published mari-
time datasets contain mostly ships. The target is relatively 
single and lacks everyday sea-surface objects image datas-
ets, e.g., buoys, islands, reefs, and lighthouses.

Trends and Future Directions
We have observed several trends and found topics that still 
need to be developed in the future, including feature ex-
traction technology from sea-surface small objects such as 
the following:

■■ Explore high-performance backbone networks: Com-
plex and intensive calculations of CNNs are extremely 
demanding for hardware, which makes them difficult 
to deploy on common hardware devices. In this case, 
lightweight network technology comes into being. How-
ever, the limitation of lightweight network technology 
is that it affects the accuracy of object detection. Main-
taining sufficient accuracy while making the backbone 
network lightweight is the core research direction in 
the future.

■■ Feature fusion at different scales: The feature maps of dif-
ferent stages in the network model have different recep-
tive fields and different levels of information abstraction. 
The FPN fuses the feature maps of different stages, which 
improves the performance of multiscale object detection 
and enhances the small-object-recognition effect to a 
certain extent [130]. In addition, exploring a new con-
text network module [154] to establish information links 
among objects is also an effective method to enhance the 
detection accuracy of small sea-surface objects.

■■ Explore an efficient attention mechanism model: In the 
detection of sea-surface objects, there are objects such 
as navigation marks and ships—especially navigation 
marks—that contain deep navigation information. Add-

ing a new attention mechanism model to the network 
model can learn image object information more effi-
ciently and in depth, hence obtaining more fine-grained 
image features and acquiring a deeper understanding 
of maritime obstacle images.

Sea Image Defogging Technology
Existing dehazing algorithms are generally used in land 
scenarios, such as monitoring of urban roads. Relatively 
few algorithms exist for fog removal in maritime traffic 
perception. Single-image dehazing techniques include im-
age-enhancement-based [155] and physical model-based 
methods [156]. The disadvantage of the approach based on 
image enhancement is that it does not consider the forma-
tion principle of fog, which leads to a lack of information 
in the recovered image. The method based on the physical 
model requires sufficient physical color information and is 
not suitable for dense fog scenes. He et al. [157] proposed 
an algorithm based on the dark channel prior, but the re-
covery of this method for bright regions that do not satisfy 
the dark channel prior theory would result in obvious dis-
tortion. As the sea image has a large area of the sky and 
other parts that do not conform to the dark channel prior 
principle, the restored image is often ineffective. By con-
sidering the characteristics of the sea fog environment and 
improving the computational efficiency while ensuring the 
quality of the restored image, the EO sensor can detect sea-
surface objects more efficiently.

Detection Technology of Occluded Objects
Compared with general object detection, occlusion is more 
common in maritime obstacle detection, which is also one 
of the most concerning issues in the field of maritime ob-
ject detection. Wang et al. [158] improved loss function for 
the first time to enable the network to continuously aug-
ment target localization performance during the automatic 
learning process. In the classic deep learning faster R-CNN 
network model, the target candidate box is divided into dif-
ferent parts to extract features respectively, which reduces 
the influence of occlusion position on the global features. 
According to the results shown in the existing research, 
the detection effect under occlusion is far worse than that 
under nonocclusion. A key reason is that obstacles occlude 
each other in dense scenes of maritime environment. In 
the case of limited training datasets, detectors based on su-
pervised training cannot learn various occlusions.

Data Expansion and Enhancement
The following areas of data expansion have been identified 
for future development:

■■ Maritime dataset expansion: The abundance and qual-
ity of prior knowledge directly affect the quality of 
CNN model training. In response to the complex ma-
rine environment, relevant research institutions have 
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established maritime datasets such as SMD, SeaGull, 
and SeaShips. Large-scale corpus labeling of datas-
ets through manual methods is still one of the current 
mainstream techniques. In the future, more marine ob-
stacle image datasets will be created.

■■ GAN-based data enhancement: Based on the supervised 
learning method, the cost of manual labeling is high, 
and hence, it is impossible to label all the scenes. On 
the other hand, the labeled data cannot adaptively and 
accurately recognize the new objects in the new scene. 
Subsequently, weak supervision [159], [160] or unsuper-
vised [161], [162] approaches have been proposed. Rai 
et  al. [163] proposed a semisupervised segmentation 
algorithm named SemiSegSAR, which need only label 
a small amount of data to obtain a satisfactory perfor-
mance on public ship datasets. Chen et al. [102] success-
fully augmented and enhanced the maritime dataset 
using an improved GAN. In the future, combining prior 
knowledge to achieve adaptive object recognition in dif-
ferent scenarios is a hot spot in the research of sea-sur-
face object detection.

Electronic Phase-Stabilization Technology  
for Shipborne Cameras
Object recognition of sea-surface obstacles in a static envi-
ronment is the basis of visual perception. In a dynamic en-
vironment, the ship’s six-degree-of-freedom motion (e.g., 
wind and waves) will have a huge impact on the EO sensor, 
making it difficult for the shipborne camera to obtain a sta-
ble video sequence. Shan et al. [164] proposed a new algo-
rithm for sea-surface object detection based on electronic 
image-stabilization technology by using point-line, point 
classification, and image classification models. The exper-
imental results show that the algorithm achieved high in-
dicators in terms of mean-square error, average precision, 
and peak signal-to-noise ratio and demonstrates certain 
potential in image stabilization and ship detection. In the 
future, the use of onboard electronic image-stabilization 
technology on unmanned ships in a dynamic environment 
to obtain stable image data is another challenge for the de-
velopment of sea-surface-detection technology.

Multisensor Fusion
A harsh maritime environment will have a more signifi-
cant impact on the camera. The data fusion of multiple 
sensors can reduce these effects, such as inertial measure-
ment units (IMUs), AISs, and lidar, complementing EO 
sensors. Bloisi et al. [29] integrate visual information into 
the traditional vessel traffic service system and combine 
radar and AIS information to obtain intuitive and higher-
precision maritime object-detection results. In addition, 
fusing the EO sensor with more sensors can enable bet-
ter maritime situational awareness, such as the use of IMU 
readings to estimate the location of the horizon in the im-

age, and program calibration to improve the efficiency of 
maritime obstacle recognition [165], [166].

Movement Analysis of Sea-Surface Targets
Sea-surface object detection is often accompanied by mo-
tion analysis, which is a very challenging kernel task. On-
line applications with batch algorithms are often memory 
intensive when using multiple hybrid sensors for target mo-
tion analysis (TMA). Liu and Guo [167] designed a recursive 
estimator of batch counters for multistatic TMA using a hy-
brid measure of angle of arrival, time difference of arrival, 
and frequency difference of arrival. The proposed method 
did not require additional batch estimators for initializa-
tion, which improves the convenience of applying the algo-
rithm. It is an interesting and promising direction to design 
an efficient and stable batch estimator for the analysis of 
moving objects in complex maritime environments.

Enhanced Localization of Ships
The use of sensors to accurately locate ships is also close-
ly related to sea-surface object detection. Positioning 
technology is the premise for ships to detect objects on 
the sea surface. Accurate positioning can make the detec-
tion of objects on the sea-surface more efficient. Guo and 
Liu [168] proposed a stochastic model-based fusion algo-
rithm, which considered the geometric transformation of 
the vehicle model of the roll and slip angles, and intro-
duced a stochastic model-based extended Kalman filter 
(EKF) by embedding random noise modulated by abso-
lute value to ensure localization accuracy of the method.

Seeing that the robustness to measurement noise is poor 
in complex driving environments, Liu and Guo [169] pro-
posed an adaptive mechanism based on improved EKF and 
deep learning theme for vehicles, which could obtain more 
reliable results during GPS outages. In the maritime envi-
ronment, moisture and salt spray damage the sensors quite 
seriously [170], so the positioning and navigation of autono-
mous ships at sea is full of challenges, and more intelligent 
positioning technology needs to be developed.

Test and Validation System Development
For object-detection requirements in maritime environ-
ments, methods such as selective parameter sharing [171], 
[172], data augmentation [173], and complementary feature 
fusion [174] have been proposed successively, and the rec-
ognition efficiency of maritime obstacles has been con-
tinuously improved. On the basis of theoretical research, 
R&D of the sea-surface object-detection algorithm testing 
and verification platform is urgent. Huang et al. [38] pro-
posed a USV test system for the validation of maritime opti-
cal recognition algorithms. Through experiments on the 
self-built RZ3MOD dataset, it is proved that the proposed 
technical system can effectively verify the advanced sea-
surface object recognition algorithm. By establishing the 
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USV algorithm test platform, hidden dangers can be found 
before the final project application, thereby effectively pro-
moting implementation of the algorithm while reducing 
cost consumption.

Conclusion
Using EO sensors to detect sea-surface objects has always 
been a challenging issue in the maritime field, especially 
for autonomous ships. This article offered a comprehensive 
overview of the EO sensors-based sea-surface object-de-
tection methods, providing a technical basis for subsequent 
object tracking and positioning. From the perspective of 
sea-surface object detection, the article comprehensively 
analyzed traditional methods, deep learning-based tech-
niques, and typical maritime datasets as well as their re-
search development, bottleneck, challenges, and future 
directions in this field. To the best of our knowledge, this 
is the first survey in the literature to focus on object detec-
tion using deep learning in maritime datasets. Compared 
with traditional sea-surface object-detection methods, 
deep learning technology has shown to be decisive in 
maritime object-detection accuracy and real-time perfor-
mance. However, it requires high-quality datasets to pro-
duce reliable results. The existing two types of sea-surface 
object-detection technology have their advantages and 
limitations, and we believe that they can complement each 
other to some extent.
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