
Is Disaggregation possible for HPC Cognitive
Simulation?

Michael R. Wyatt II∗, Valen Yamamoto∗, Zoë Tosi∗, Ian Karlin†, Brian Van Essen∗

∗Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

{wyatt5, yamamoto6, tosi1, vanessen1}@llnl.gov
†Intel Corporation
{ian.karlin}@intel.com

Abstract—Cognitive simulation (CogSim) is an important and
emerging workflow for HPC scientific exploration and scientific
machine learning (SciML). One challenging workload for CogSim
is the replacement of one component in a complex physical
simulation with a fast, learned, surrogate model that is “inside”
of the computational loop. The execution of this in-the-loop
inference is particularly challenging because it requires frequent
inference across multiple possible target models, can be on the
simulation’s critical path (latency bound), is subject to requests
from multiple MPI ranks, and typically contains a small number
of samples per request. In this paper we explore the use of large,
dedicated Deep Learning / AI accelerators that are disaggregated
from compute nodes for this CogSim workload. We compare the
trade-offs of using these accelerators versus the node-local GPU
accelerators on leadership-class HPC systems.

Index Terms—deep learning, cognitive simulation, surrogate
models, accelerator performance

I. INTRODUCTION

Recent advances in deep learning are leading to a resur-
gence of interest in the use of surrogate or reduced-order
models to replace complex, first-principle physics packages
in scientific simulations. Rather than expecting data-driven
models to provide end-to-end predictions that replace entire
multi-physics simulations, we explore new hybrid workflows
that intertwine data-driven, learned models with traditional
scientific simulation, a pattern in the community called Cog-
nitive Simulation (CogSim). In this work, we explore the use
of discrete, disaggregated accelerator hardware coupled with
leadership class HPC resources to accelerate these workflows.

CogSim applications leverage AI for surrogate modeling
of costly physics calculations [1]–[4], and are being de-
veloped to improve searching in multi-dimensional spaces
and to automate manual processes. While the AI portion of
the workflow is important and consumes significant compute
resources, traditional scientific simulation CogSim workflows
still require significant HPC compute capabilities – often at
higher numerical precision.

Most of today’s leadership-class HPC systems use GPU
accelerators for both the HPC and AI portions of CogSim
workflows. While many research efforts are looking into other
accelerators for HPC compute, no leading contenders have
emerged. However, a large number of startup companies and

traditional chip vendors are producing AI optimized accel-
erators, up to and including dedicated self-hosted machines.
These machines show promising speedups for a variety of
machine learning workloads [5].

With different processor architectures optimal for different
pieces of a CogSim workload, an opportunity exists to build
more cost efficient machines through the addition of another
accelerator type. Accelerators could be integrated into every
node or they can be treated as a disaggregated resource by
being placed on the high-speed network of a supercomputer.
Each approach has different cost and performance character-
istics and the best approach may be workload dependent.

Using the newly installed SambaNova DataScale® system
at Lawrence Livermore National Laboratory (LLNL) as moti-
vation, we explore the question of whether the disaggregated
design approach is viable for two test applications: a non-
local thermodynamic equilibrium (NLTE) collisional-radiative
atomic physics package [1] and a materials interface recon-
struction task. We look at high-frequency machine learning
inference of surrogate models due to the challenges this use
case presents in time to solution and data transfer needs, and
we aim to identify the most effective methods for performing
it on each system. We aim to answer the question of should
Deep Learning (DL) inference be performed on the GPUs,
competing with the primary calculations, or could they be of-
floaded to dedicated AI accelerators, where the DL calculation
could occur simultaneously as the physics progresses on the
GPU.

In this paper we make the following novel contributions:
• We describe a first of its kind Disaggregated CogSim

system and how it was built. We also discuss how CogSim
applications can use the disaggregated system and the
relative challenges and costs.

• We show the trade-offs in terms of latency and through-
put for processing inference samples on GPUs and AI
accelerators for two independent surrogate models.

Our initial experimentation shows that disaggregated AI
accelerators are viable from a technical perspective to speed-up
surrogate inference calculations that occur in the Hydra multi-
physics code used for simulating experiments on the National
Ignition Facility at LLNL. Furthermore, our experimentation

ar
X

iv
:2

11
2.

05
21

6v
1

 [
cs

.D
C

]
 9

 D
ec

 2
02

1

with a material interface reconstruction surrogate demonstrates
some of the challenges with both developing these models and
mapping them to emerging accelerators.

II. DISAGGREGATED HETEROGENEOUS SYSTEM
ARCHITECTURES FOR COGSIM

CogSim is an emerging field that is generating new work-
flows and system requirements. Combining traditional HPC
with ML to solve scientific problems, CogSim applications
have unique requirements from traditional HPC applications.
In this section, we describe one disaggregated system we have
built for CogSim workloads and discuss how various CogSim
use cases can benefit.

A. CogSim Disaggregated System Architectures

Disaggregated system architectures with heterogeneous
node types have multiple advantages. By offering disparate
node types, different parts of a calculation can execute on
the most efficient compute resource. In addition, these archi-
tectures allow each application to run on the right mix of
node types for its compute needs. This solves the stranded
resource problem that arises when a system is built with a
single heterogeneous node type with fixed ratios and multiple
accelerators, where accelerator or CPU resources may be
wasted. Disaggregation comes with costs though as network
attached resources are connected with lower bandwidth and
higher latency than node-local accelerators.

CogSim is a natural place to test whether disaggregated
heterogeneous system architectures could work in practice.
New accelerators show significant performance gains for ML
applications. In addition, neural network training and inference
calculations have small input and output requirements relative
to their compute needs. Therefore, the impact of reduced band-
width and additional latency from network attached resources
should be minimal with this workload.

Using the DataScale AI accelerator from SambaNova Sys-
tems purchased by LLNL, we tested its ability to serve as a
disaggregated CogSim system. This accelerator was integrated
into the high speed network of the Corona supercomputer,
which has a theoretical peak of over 11 PF. The DataScale
node is attached to a top of the rack (TOR) switch that con-
nects into the Corona core switches. Communication between
Corona compute nodes and the DataScale system happens
across a Mellanox Infiniband ConnectX-6 with up to 100Gb/s
bandwidth and less than 1µs latency.

The DataScale system houses 8 SambaNova Reconfig-
urable Dataflow Units (RDU)™ that utilize the SambaNova
Reconfigurable Dataflow Architecture (RDA)™. DL models
are compiled and run on the system using the SambaNova
SambaFlow™ software stack. Scheduling on the DataScale
system is done with the SLURM job manager.

B. CogSim Workloads on Disaggregated Machines

Within the field of CogSim there are multiple ways that AI
is incorporated into scientific computations. Figure 1 shows
examples of three “classes” of possible use cases and how

they are embedded within the simulation: in-the-loop,
on-the-loop, and around-the-loop. Starting from the
center, in-the-loop represent some of the most challeng-
ing tasks for integration because AI models are part of the
inner most loop and thus typically on the critical path. Tasks
can range from inference calculations of surrogate models
that replace physics computations that occur on every sim-
ulated zone for every timestep, to inference calculations that
help reconstruct mesh zones on material boundaries. These
in-the-loop problems typically work with small batch
sizes and should be tuned to minimize inference latency.
Additionally, it is quite possible to have multiple models for
in-the-loop inference that are used in different physics
regimes, and thus should support concurrent execution.

Active learning or intelligent sampling

Smart ALE

ML inference
every time
step:
in the loop

ML training or
inference every 1k
time steps:
on the loop

ML training or
inference every
simulation:
around the loop

Physics simulation

Experimental data

Transfer learning every 10k
Simulations: outside the loop

Elevated predictive model

Fig. 1: Various uses of CogSim within a scientific simulation.

The around-the-loop training problem presents the
easiest case for adapting to a disaggregated system. Outer
loop training takes inputs from one or more simulations.
Since all of the data needs to be aggregated in one place for
training and training is more compute intensive than inference,
the relative network bandwidth and latency requirements are
relaxed compared to the other use cases that we present. The
main challenge for outer loop training is balancing resource
types and making sure models are retrained fast enough to
improve the quality of the workflow as new data are produced.

Presenting more of a challenge is training/retraining during
a simulation or inference that occurs on-the-loop every x
timesteps. While more tightly coupled, updating these models
is not urgent and retraining of the model will often include
old data that is best stored elsewhere and not on the memory-
constrained HPC compute nodes. On-the-loop inference
problems often permit significant time for the computation to
occur before an inference result is needed.

The two outermost use cases result in system balance and
allocation challenges to avoid stranded resources due to bursty
use. They also present bandwidth and latency requirements,
but those are not the strictest requirements. Of the three use
cases, the most tightly coupled physics surrogate models that
run in-the-loop present the largest challenge to using a
disaggregated system. This use case sends significant data per
simulated zone to the accelerator, and it has low latency toler-
ance for a response. Due to these challenges we focus on such
in-the-loop calculations in this paper. We believe that if
performing these calculations are viable using a disaggregated
accelerator, then it follows that the other two use cases will
be as well.

III. RELATED WORK

In this paper, we focus on many new and emerging technolo-
gies and techniques, like CogSim and dataflow architectures.
There are a small number of prior publications we can look to
for context of our work. For example, in [5] the SambaNova
Reconfigurable DataFlow is compared to an Nvidia V100
GPU. The authors focus on the ability to train larger models
on the DataScale that would typically not fit on GPU. They
demonstrate how larger networks and input data sizes on
dataflow architectures generate more accurate models than the
GPU in the same number of epochs. This work is largely
focused on typical ML workloads, such as image classification
and NLP tasks.

A number of publications demonstrate the use of surro-
gate modeling in physics applications [2]–[4]. These works
introduce the use of surrogate models for in-the-loop
inference with physics applications like inertial confinement
fusion [2, 3] and fluid simulation [4]. While these publications
focus on how the physics applications can be performance
optimized through CogSim, they do not explore how different
architectures and configurations (e.g., remote vs local infer-
ence) can be adapted to the CogSim workload. In this paper,
we extend the current scope of the literature by focusing
on how traditional GPU architectures and newer dataflow
architectures perform with CogSim workloads.

In extending the CogSim and dataflow architecture litera-
ture, we also look to many publications related to Deep Learn-
ing GPU performance. For example, in [6] the authors survey
the scope of recent publications that demonstrate optimizing
DL tasks on GPUs. Similar to publications outlined in [6],
we test different APIs, toolkits, software, mini-batch sizes,
and hardware to optimize the performance on both GPU and
dataflow architectures. More specifically, we use PyTorch [7]
and focus on inference performance [8]–[10]. We test and
compare neural network inference performance on both Nvidia
and AMD GPUs [11]. For each GPU architecture, we compare
multiple generations of GPU [12]. We also test toolkits and
APIs like TensorRT [13] for improving inference performance
on Nvidia GPUs [10, 14].

From these works, we gather best practices that we applied
in our own performance experiments. For example, one way
that we ensure a fair comparison between architectures in the
context of CogSim workloads is considering data movement
and if it should be included in latency and throughput mea-
surements [15]. Unlike these previous publications, we extend
the performance measurement work to dataflow architectures.
In doing so, we establish novelty of our work in the neural
network inference performance and CogSim space.

IV. IN-THE-LOOP INFERENCE

As discussed in Section II-B, one of the most challeng-
ing tasks for a disaggregated AI accelerator is to support
in-the-loop inference. The challenges are that the infer-
ence is typically on the critical path of the primary scientific
calculation, may require multiple independent models to serve
different inference tasks, will typically have small numbers of

requests per time-step, and will have to serve requests from
multiple compute nodes (and distributed MPI ranks). These
system integration challenges are why this paper focuses on
two data-driven surrogate models: Hermit and MIR. It is also
important to note that neither these models are massively large,
or utilize complex neural network architectures or layers, and
as a result allow this study to focus on the system level issues.

A. Hermit: a surrogate model for NLTE collisional-radiative
atomic physics

The Hermit neural network model described in [1] is
diagrammed in Figure 2a. The model consists of 21 fully
connected layers across 3 sub-structures: an encoder, Deep
Jointly-Informed Neural Network (DJINN) layers, and a de-
coder. The total input size for each sample is just 42 values.
The encoder has 4 layers with a maximum hidden layer width
of 19 and the decoder has 6 layers with a maximum hidden
layer width of 27 neurons. The bulk of the network size from
the DJINN layers, which reach a maximum width of 2050
neurons. In total, there are 2.8M parameters in the Hermit
model.

We use the description of the Hermit model integration
with the Hydra physics simulation code in [16] to characterize
the needs of our in-the-loop inference requirements and
test our hypothesis that disaggregated systems are feasible for
CogSim applications. Hermit is used to replace the Detailed
Configuration Accounting (DCA) package and requires two or
three inference calculations per zone in each timestep of the
simulation. Typical simulations can be tens of thousands of
timesteps. The relationship between DCA or Hermit and the
rest if Hydra is shown in Figure 2b and 2c.

While problem and use case dependent, typical Hydra
problems using DCA physics are run with only a few zones
per node due to high memory capacity needs and/or time to
solution requirements [17]. On Nvidia V100 GPUs, users typ-
ically run 100-1,000 zones per GPU when using DCA physics
models. Swapping in the Hermit model both accelerates the
calculation and reduces the memory footprint, enabling the
user to run with more zones per GPU. In Hydra, two or three
inference calculations are required per zone in each timestep
of the simulation. With 10,000 zones per GPU, 20,000 -
30,000 inference calculations are needed per timestep. In
addition, inference requests from each MPI rank are submitted
to different Hermit models, where each model is trained to
represent a particular material. An MPI rank might typically
require results for 5-10 different materials. The low number of
inference calculations needed and the fact that they are spread
across multiple models means small batch size performance is
key to Hermit performance.

B. Material Interface Reconstruction (MIR) Model

The MIR model is a neural network used for material in-
terface reconstruction in physics simulations, in which bound-
aries are constructed between immiscible materials based on
volume fractions for each zone in the environment. Current
methods tradeoff continuity and conservation of material,

(a) Hermit neural network structure (b) Hydrodynamics with DCA physics (c) Replacing DCA with Hermit model(s)
(one per atomic structure)

Fig. 2: Hermit model and interaction with hydrodynamics multi-physics simulation.

often to the detriment of the reconstruction accuracy. Figure
3a compares outputs for one current reconstruction method,
PLIC, and the MIR model. PLIC conserves the volume of the
material in each zone but leads to discontinuous boundaries.
The MIR model is able to create continuous boundaries while
conserving volumes and looks remarkably like the ground
truth.

The MIR model is a convolutional autoencoder and is
diagrammed in Figure 3b. It is composed of 4 convolution
layers with pooling, layernorm after every convolution, 3 fully
connected layers, two of which with 4608 neurons each, and
transposed convolution layers to return the output of the fully
connected layers to the size of the original image. The weights
of the convolution and transposed convolution layers are tied
as a form of regularization. In total, there are 700K parameters
in the MIR model.

Mixed zones, or zones with more than one material in
them, are processed each simulation timestep. The workflow
of the simulations is shown in Figure 3c. The number of
mixed zones per GPU for each simulation timestep ranges
from the thousands to the hundreds of thousands depending
on the application. The number of zones per timestep may
vary throughout the simulation in some applications. To not
impede the physics calculations going on around it, the target
throughput of the model is 100,000 samples per second per
MPI rank.

C. Optimizing the MIR Model for dataflow architectures

The original MIR model, which was much larger, did not
translate well to a dataflow architecture. In order to optimize
for dataflow, batchnorm layers were replaced with layernorm
layers and work was done to shrink particularly large fully
connected layers. The GPU model was subsequently changed
to match the version run on the DataScale system.

V. EVALUATION

To test the efficacy of these new accelerators for
in-the-loop inference workloads we use the Hermit and
MIR models, described in Section IV. We measure the in-
ference performance of 3 accelerator architectures: 1) Nvidia
GPUs, 2) AMD GPUs, and 3) SambaNova DataScale. We

describe our experimental setup, demonstrate optimizing per-
formance on GPU and dataflow architectures, and compare the
architectures for in-the-loop CogSim workloads.

A. Experimental Setup

In this section, we describe the experimental setup for each
of the tested architectures. We established a fair comparison
across different architectures by working with the vendors to
ensure optimal configurations and accurate measurements of
the hardware performance. We implemented the models in
PyTorch and used them as references to generate the models
on all tested hardware. For the GPU tests, the models were run
with the PyTorch API as well as used to generate compiled
models for Nvidia’s TensorRT and CUDA Graphs APIs. On
the DataScale, the SambaFlow software stack compiles a
model from the PyTorch reference model.

In our experiments for all hardware, we measured half-
precision inference latency and throughput bandwidth. We
performed these measurements across a range of mini-batch
sizes (i.e., 1, 4, 16, 64, 256, 1K, 2K, 4K, 8K, 16K, and 32K)
to capture the performance landscape and record how it is
modulated by the number of samples being pushed through a
model. We adjusted the total number of samples run through a
model, with respect to the mini-batch size, such that the total
wall-clock time is greater than 10s for each performance run.
Latency was measured in milliseconds (ms) as the average
time across all mini-batches for running inference on a single
mini-batch of samples. Throughput was measured in samples
per second across all samples of a given mini-batch size.
Before each performance measurement on the GPUs, we
“warmed-up” the hardware by running inference on 10 mini-
batches. The performance measurement occurred directly after
the warm-up phase.

We performed two types of experiments: node-local in-
ference and remote inference. As discussed in Section II,
surrogate models can reside on the same GPU as the CogSim
simulation. Therefore we measured the node-local inference
for GPUs, where the input data is generated and model
inference is executed on the same GPU. Also discussed in
Section II, new dataflow architecture accelerators, such as the
SambaNova DataScale, can reside on separate nodes and be
made available to compute nodes via a high-speed InfiniBand

Ground
Truth

Volume Fraction
(input)

PLIC
Neural

Network

(a) Comparison of reconstruction with PLIC and with
the MIR model. Reconstructions are created from the
volume fraction image.

Encoder Decoder
Fully Connected

Layers

4608 4608

64

(b) Diagram of MIR Model Architecture

MIR Model

Physics Simulation

Turn volume
fractions into

image

Turn output
image into

mesh

Volume
Fractions

Mesh

Volume
fraction image

Reconstruction
image

(c) MIR model in physics simulation
workflow

Fig. 3: Material Interface Reconstruction (MIR) Model

network. We first measure node-local inference on the DataS-
cale to optimize model performance, sans network latency, to
obtain an upper bound on performance. We then measured
remote inference with the DataScale, where input data is
generated on a compute node, sent across the network to the
DataScale node, and inference results are sent back across
the network to the originating compute node. Communication
was done via a prototype C++ API and library, but these tests
mimic the expected use case where multiple MPI ranks would
issue queries to the DataScale node. Additionally, the GPU
measurements include no data movement between system
memory and the accelerator to mimic the real-world CogSim
application, where the simulation and models are both resident
on the GPU. Measurements on the DataScale do include
movement to and from system memory for both node-local
and remote inference.

We tested several generations of GPU architecture from
Nvidia (i.e., P100, V100, and A100) and AMD (i.e., MI50
and MI100). For each of these hardware types, we use
PyTorch 1.9.0. Our Nvidia setup uses CUDA 11.4, cuDNN
8.2.2.26, and TensorRT 8.0.1.6. Our AMD setup uses ROCm
4.2 and MIOpen 2.11.0. Models were run in half-precision
with FP16 on the GPUs. In addition to our baseline PyTorch
implementation, we also worked with the vendor to optimize
performance for an A100 GPU. We tested TensorRT and
CUDA Graphs APIs in Python and C++. TensorRT, with the
Torch2TRT library, compiles our PyTorch model to optimize
performance through kernel selection and by combining layers.
CUDA Graphs allows the model to be called from a single
CPU operation and reduces kernel launch overhead from the
PyTorch API. While TensorRT, CUDA Graphs, and C++ add
complexity to running the model, the benefit-cost ratio is
high for a frequently used inference model (e.g., a CogSim
surrogate model).

For the dataflow architecture, we tested the DataScale AI
accelerator from SambaNova Systems. Our surrogate models
are run in half-precision with BF16 on the DataScale. The
SambaFlow 1.8 library generated a compiled model from the
PyTorch model. Given the relative novelty of this hardware,
we performed a more extensive survey of the performance
landscape compared to GPU-related experiments. The DataS-
cale system is composed of 8 SN10 RDUs. Each RDU
contains 4 tiles, which are discrete compute and memory units

of the RDU. A single model can be deployed in various
configurations, ranging from 1/4 of an RDU (i.e., 1 tile)
up to a complete RDU (i.e., 4 tiles). The RDU uses an
additional micro-batch size parameter that the GPUs do
not have. This parameter determines the size of accumulated
data sent across the RDU tiles during inference. The micro-
batch size must always be equal to or less than the mini-
batch size. In our exploration of DataScale performance, we
tested how inference performance scales with RDU tiles using
different combinations of mini-batch and micro-batch sizes.
From these results we established a baseline for PyTorch node-
local performance of the DataScale and then worked with the
vendor to optimize the model using C++ APIs and hand-tuned
model placement on the hardware.

Remote inference performance tests on the DataScale were
run with the configurations (i.e., RDU tile count, mini-batch
size, and micro-batch size, optimizations) that provided the
best performance. In remote inference experiments, data is
generated on a remote compute node, sent across a high-
speed network, inference is performed on the DataScale, and
the results are returned to the remote client. The high-speed
network in our tests was the Mellanox Infiniband ConnectX-6
with a bandwidth of 100 Gb/s. Latency measurements include
the additional round-trip of data transfer. Throughput was max-
imized in these tests by allowing asynchronous communication
between the client and SN10-8 server. The client sends mini-
batch n+1 to the server before inference results for mini-batch
n are returned to the client.

All experiment measurements were replicated 5 times. The
figures in the remainder of this section plot the mean of the 5
measurements with error bars indicating the 95% confidence
interval.

B. Tuning for the GPU architectures

We measured performance of 2 surrogate models, Hermit
and MIR, across 3 generations of Nvidia GPUs: P100, V100,
and A100. Figure 4 shows the inference latency of the Nvidia
GPUs across different mini-batch sizes for the Hermit model.
The left panel of the figure shows a nearly constant latency
for each of the GPUs at mini-batch sizes smaller than 256.
The A100 has the lowest single sample latency of 0.65ms.
Perhaps unexpectedly, the V100 latency is larger than the
P100 at these small mini-batch sizes. The Hermit model is a

100 101 102 103

Mini-Batch Size
0

0.50

1.0

1.5

2.0

2.5
La

te
nc

y
(m

s)
P100, FP16, Naïve PyTorch
V100, FP16, Naïve PyTorch
A100, FP16, Naïve PyTorch

102 103 104 105

Mini-Batch Size
0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Fig. 4: Inference latency of the Hermit model on Nvidia P100,
V100, and A100 GPUs using the PyTorch Python API. We
observe the lowest latency across all mini-batch sizes with the
A100.

small network, so with the “naı̈ve PyTorch” implementation,
performance at small mini-batch sizes is CPU-bound. This is
due to the overhead of PyTorch CPU logic that determines
which GPU kernels to launch. In context of the measured
GPU performance, both the P100 and A100 systems use x86
architecture, while the V100 system uses Power9. The CPU-
bound nature of the naı̈ve PyTorch implementation at small
mini-batch sizes is the cause of larger latency with the V100
compared to the P100 in Figure 4.

On the right side of Figure 4, we see that the latency
increases more rapidly for the P100 than either the V100 or
A100. This result suggests that at these larger mini-batch sizes
for the Hermit model the P100 hardware becomes saturated.
The P100 latency is more than 8x that of the A100 at the
largest mini-batch size of 32K. The A100 has a latency of
3.92ms at this mini-batch size.

Measured throughput of the three Nvidia GPUs with the
Hermit model is shown in Figure 5. We see a similar pattern
as the latency measurements, with the V100 being slower than
the P100 at the smallest mini-batch sizes. At larger sizes the
additional transistor and memory hardware on the V100 and
A100 are apparent as they achieve inference throughputs in
excess of 5 Million samples/s. The throughput measurements
of the A100 were largest for all mini-batch sizes, with 1 and
32k mini-batch throughputs of 1,534 and 8.35M samples/s,
respectively.

In Figure 6 we show the measured latency for Hermit on
two AMD GPUs, the MI50 and MI100. We observe near
constant latency with the MI100 for mini-batch sizes at and
below 1K. Single sample latency of the MI100 is measured at
0.96ms. MI50 performance was similar to P100 performance
in Figure 4 as we see a marked increase in latency as the mini-
batch size increases beyond 1K. Our measurements also show
an unexpected drop in performance for the MI100 at a mini-

100 101 102 103

Mini-Batch Size
0

50K

100K

150K

200K

250K

300K

350K

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

P100, FP16, Naïve PyTorch
V100, FP16, Naïve PyTorch
A100, FP16, Naïve PyTorch

102 103 104 105

Mini-Batch Size
0

1.0M

2.0M

3.0M

4.0M

5.0M

6.0M

7.0M

8.0M

9.0M

Fig. 5: Inference throughput of the Hermit model on Nvidia
P100, V100, and A100 GPUs using the PyTorch Python API.
We observe more than 8x speedup on the A100 compared to
the P100 at the largest batch sizes.

100 101 102 103

Mini-Batch Size
0

0.25

0.50

0.75

1.0

1.2

1.5

1.8

2.0
La

te
nc

y
(m

s)
MI50, FP16, Naïve Pytorch
MI100, FP16, Naïve Pytorch

102 103 104 105

Mini-Batch Size
0

5.0

10.0

15.0

20.0

25.0

Fig. 6: Inference latency of the Hermit model on AMD MI50
and MI100 GPUs using the PyTorch Python API. We observe
the lowest latency across all mini-batch sizes with the MI100.

batch size of 4K. At the maximum mini-batch size of 32k, we
recorded a latency of 5.59ms on the MI100, corresponding to
a maximum throughput of 5.85M samples/s.

A comparison of the fastest Nvidia GPU (i.e., A100) and
fastest AMD GPU (i.e., MI100) is shown in Figure 7. We
observe that the measured throughput of the A100 is larger
than the MI100 at all tested mini-batch sizes. At the 32K mini-
batch size, the A100 can process more than 2M additional
samples per second than the MI100. We also note that the
A100 has a lower TDP at 250W than the MI100 at 290W.
We normalize throughput of the MI100 based on TDP and
show these values in Figure 7 as well. At the smallest mini-
batch sizes the A100 is superior to the MI100 with respect to
latency, with measured single sample latencies of 0.65ms and

100 101 102 103

Mini-Batch Size
0

50K

100K

150K

200K

250K

300K

350K

400K
Th

ro
ug

hp
ut

 (s
am

pl
es

/s
)

MI100, FP16, Naïve Pytorch
MI100, FP16, Naïve Pytorch (TDP normalized)
A100, FP16, Naïve PyTorch

102 103 104 105

Mini-Batch Size
0

2.0M

4.0M

6.0M

8.0M

10M

Fig. 7: Inference latency of the Hermit model on the Nvidia
A100 and AMD MI100.

0.96ms. The unexpected plateau in performance of the MI100
between mini-batch sizes of 1K and 4K shown in Figure 7 may
be explained by the beta support for AMD GPUs of PyTorch
1.9.0.

100 101 102 103

Mini-Batch Size
0

0.20

0.40

0.60

0.80

1.0

La
te

nc
y

(m
s)

A100, FP16, Naïve PyTorch
A100, FP16, PyTorch, TRT
A100, FP16, PyTorch, Graphs
A100, FP16, C++, TRT
A100, FP16, PyTorch, TRT & Graphs

102 103 104 105

Mini-Batch Size
0

0.50

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fig. 8: Inference latency of the Hermit model on a Nvidia
A100 GPU using combinations of Python and C++ APIs for
PyTorch, CUDA Graphs, and TensorRT.

Given the baseline performance measurements that we ob-
tained, we next optimized the performance of the Hermit and
MIR models for the Nvidia A100 GPU. We worked closely
with the vendor to identify and implement optimizations that
would improve latency and throughput in our experimental
measurements. We tested five configurations: (1) naı̈ve Py-
Torch implementation, (2) PyTorch with TensorRT using the
torch2trt library, (3) PyTorch with CUDA Graphs, (4) PyTorch
with TensorRT and CUDA Graphs, and (5) C++ TensorRT
API.

Figure 8 shows the measured inference latency with these

five configurations on an A100 GPU with the Hermit model.
The left panel of Figure 8 shows that all configurations are
more than twice as fast as the initial naı̈ve PyTorch imple-
mentation for single sample latency. PyTorch with TensorRT
and CUDA Graphs provides the lowest inference latency for
all mini-batch sizes, with a single sample latency of 0.12ms
and a 32k samples latency of 1.52ms.

100 101 102 103

Mini-Batch Size
0

250K

500K

750K

1.0M

1.2M

1.5M

1.8M

2.0M

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

A100, FP16, Naïve PyTorch
A100, FP16, PyTorch, TRT
A100, FP16, PyTorch, Graphs
A100, FP16, C++, TRT
A100, FP16, PyTorch, TRT & Graphs

102 103 104 105

Mini-Batch Size
0

2.5M

5.0M

7.5M

10M

12.5M

15M

17.5M

20M

22.5M

Fig. 9: Inference throughput of the Hermit model on an Nvidia
A100 GPU using combinations of Python and C++ APIs for
PyTorch, CUDA Graphs, and TensorRT.

100 101 102 103

Mini-Batch Size
0

20K

40K

60K

80K

100K

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

1x A100, FP16, Naive PyTorch
1x A100, FP16, PyTorch w/ CUDA Graphs
1x A100, FP16, PyTorch w/ TRT
1x A100, FP16, PyTorch w/ CUDA Graphs & TRT

102 103 104

Mini-Batch Size
0

20K

40K

60K

80K

100K

120K

Fig. 10: Throughput of the MIR Model using combinations of
PyTorch, CUDA Graphs, and TensorRT APIs

Throughput measurements for different configurations on
the A100 with the Hermit model are presented in Figure 9.
PyTorch with TensorRT and CUDA Graphs had the largest
bandwidth for all mini-batch sizes. We measured a single
sample and 32K sample throughput of 8,240 samples/s and
21.6M samples/s. We observe that all the configurations using
TensorRT provide very similar bandwidth performance across
the tested mini-batch sizes.

We also measured performance of the MIR model on an
A100 with 4 of the described configurations. Figure 10 shows
that for this larger model, CUDA Graphs gives the greatest
increase in throughput bandwidth. This figure also shows that
configurations using TRT have measurably worse performance
than the standard PyTorch implementation at mini-batch sizes
larger than 64. We note that this is caused by the Torch2TRT
library that we use to convert our PyTorch model to a Ten-
sorRT model. The library has unoptimized implementations of
layernorm and unary functions that cause a performance
bottleneck in the configurations using TensorRT. The vendor
has indicated that the upcoming TensorRT release will address
the performance issues we show here. Figure 10 shows, that
unlike with the Hermit model, the MIR model performance on
the A100 with different configurations converge at the largest
mini-batch size to nearly equal throughput bandwidth. This
may indicate that at the largest tested mini-batch size, the
compute capability of the A100 is saturated, regardless of the
configuration.

C. Tuning for a data flow architecture

1 4 16 64 256
1024

2048
4096

8192
16384

32768

Mini-Batch Size

1

4

16

64

256

1024

2048

4096

8192

M
icr

o-
Ba

tc
h

Si
ze

0.0
9

0.1
0

0.1
5

0.3
6

1.2 4.5 8.8 17
.6

35
.1

70
.0 14

0

0.0
9

0.1
0

0.1
6

0.3
7

1.2 2.3 4.6 9.1 18
.0

35
.9

0.1
1

0.1
4

0.2
4

0.6
7

1.3 2.4 4.7 9.3 18
.4

0.1
9

0.2
7

0.5
8

1.0
0

1.8 3.5 6.9 13
.5

0.7
2

1.0 1.5 2.3 4.0 7.4 14
.2

1.8 2.4 3.8 6.5 11
.9

22
.6

3.8 5.3 8.0 13
.5

24
.3

0

5

10

15

20

25

30

m
s

Fig. 11: Latency of the Hermit model on 1/4 RDU for a range
of mini-batch and micro-batch sizes using the Python API. The
lowest latency (mini-batch, micro-batch) pair for each mini-
batch size is highlighted.

As discussed in Section V-A, the DataScale has several
tunable parameters. We measured the node-local performance
of the Hermit model on a different amount of RDU compute
resources (i.e., RDU tiles) and across a range of micro-batch
and mini-batch sizes. Figure 11 shows the latency of inference
requests with mini-batch sizes and micro-batch sizes ranging
from 1 to 32K on a single RDU tile (i.e., 1/4 RDU). In
Figure 11 we see that both mini-batch size and micro-batch
size modulate the latency of the network on the DataScale.
Each mini-batch size has a micro-batch size that provides
optimal performance in terms of latency. We highlight the
minimum latency values in purple for each mini-batch size.
We also note that tuning the micro-batch and mini-batch size
to be multiples of 6 offers additional performance in terms

of latency and throughput by exploiting hardware properties
of the DataScale. We show this below in Figures 13 and 14.
However, for the purposes of these tests, we focus on common
mini-batch sizes that are also optimized for GPU architectures.

1 4 16 64 256
1024

2048
4096

8192
16384

32768

Mini-Batch Size

1

4

16

64

256

1024

2048

4096

8192

M
icr

o-
Ba

tc
h

Si
ze

0.0
8

0.0
8

0.1
1

0.2
0

0.5
4

1.9 3.8 7.5 15
.0

29
.9

59
.8

0.0
8

0.0
9

0.1
1

0.2
0

0.5
7

1.1 2.0 3.9 7.8 15
.5

0.1
0

0.1
1

0.1
6

0.3
5

0.6
1

1.1 2.1 4.2 8.2

0.1
4

0.1
7

0.3
1

0.4
9

0.8
5

1.8 3.7 7.5

0.2
8

0.4
4

0.5
9

0.9
2

1.7 3.2 6.7

0.8
5

1.0
0

1.3 1.9 3.0 5.3

1.6 2.0 2.6 4.2 7.3

3.2 4.1 6.0 9.4

6.4 8.9 13
.3

0

5

10

15

20

25

30

m
s

Fig. 12: Latency of the Hermit model on 1 RDU for a range of
mini-batch and micro-batch sizes using the Python API. The
lowest latency (mini-batch, micro-batch) pair for each mini-
batch size is highlighted.

Figure 12 shows the latency of inference requests with
the same range of mini-batch size and micro-batch size as
Figure 11 but on 4 RDU tiles (i.e., one RDU). Again, we
highlight the combination of mini-batch size and micro-batch
size that give optimal performance. We observe that providing
more RDU tiles for model inference changes which mini-batch
and micro-batch size combinations give optimal performance.

In both Figure 11 and Figure 12, the white squares indicate
configurations that are not valid (e.g., micro-batch size larger
than mini-batch size) or failed to run on the hardware. From
both figures, we can see that at low mini-batch sizes, the
micro-batch size has benign effects on performance. As the
mini-batch size increases, choosing the proper micro-batch
size is important for optimizing performance. For example, in
Figure 12 at a mini-batch size of 32K, the difference between
the slowest and fastest micro-batch size is 10-fold. For this rea-
son, we performed parameter sweeps of the (mini-batch,
micro-batch) landscape for each tested configuration and
report the maximum throughput and minimum latency for each
mini-batch size in the remainder of this section.

Similar to the Nvidia A100 GPU, the DataScale has several
configuration options that can optimize the model for latency
and throughput. We tested the Python and C++ APIs and hand-
optimized model placement for the DataScale to optimize
node-local inference. Figure 13 shows the latency of the
Hermit model on 1 RDU with several configurations that
optimize for performance. We show the base performance
of the Python API (i.e., “naı̈ve”) and show how different
modifications improve overall performance. Hand-optimized
model placement (i.e., “optimized”) on the hardware provides
benefits to the latency, especially at larger mini-batch sizes.

100 101 102 103

Mini-Batch Size
0

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20
La

te
nc

y
(m

s)
RDU, BF16, Python, Naïve, Local
RDU, BF16, Python, Optimized, Local
RDU, BF16, C++, Optimized, Local
RDU, BF16, C++, Preferred MB, Optimized, Local

102 103 104 105

Mini-Batch Size
0

1.0

2.0

3.0

4.0

5.0

6.0

Fig. 13: Inference latency of the Hermit model on the DataS-
cale with 1 RDU and 3 optimization methods.

We also show that switching to a C++ API (with hand-
optimized model placement) provides additional benefits to
latency. These benefits are significant for the smallest mini-
batch sizes, where inference latency is more than halved
compared to the Python API.

An additional optimization we show in Figure 13 is from
making small adjustements to the mini-batch and micro-batch
sizes. In Figure 12 we showed the performance landscape for
mini-batch and micro-batch sizes that are powers of 2 (i.e.,
sizes ⊂ 2n). However, the DataScale hardware design is such
that multiples of 6 for micro-batch sizes and mini-batch sizes
that are multiples of a given micro-batch size can provide
better performance. We show the effect of using “preferred
MB” in conjunction with the other optimizations in Figure 13.
The lowest latency values are observed with the C++ API and
hand-optimized model placement, with the exception of the
2 largest mini-batch sizes, where the Python API provides
slightly lower latency. At the smallest mini-batch sizes we
observe a minimum latency of 0.04ms. The “preferred MB”
optimzation provides additional reduction in latency.

We also measured the throughput bandwidth of the different
configuration of the DataScale. Figure 14 shows this data.
On the right panel of the figure, we see that the C++ API
with hand-optimized model placement provides a maximum
throughput bandwidth of 8.14M samples/s at a mini-batch size
of 16K. While the “preferred MB” optimzation shows better
latency and throughput, to maintain a fair comparison with
GPU architectures we show only the powers of 2 mini-batch
sizes in subsequent figures. Figure 13 and Figure 14 show that
the C++ API with hand-optimized model placement provided
the best overall performance on a single RDU in node-local
performance tests. We use this configuration for the remote
inference experiments. As such, the node-local performance
will serve as an upper limit for the performance we can expect
from remote inference.

Because the DataScale System will be disaggregated from

100 101 102 103

Mini-Batch Size
0

1.0M

2.0M

3.0M

4.0M

5.0M

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

RDU, BF16, Python, Naïve, Local
RDU, BF16, Python, Optimized, Local
RDU, BF16, C++, Optimized, Local
RDU, BF16, C++, Preferred MB, Optimized, Local

102 103 104 105

Mini-Batch Size
0

2.0M

4.0M

6.0M

8.0M

10M

Fig. 14: Inference throughput of the Hermit model on the
DataScale with 1 RDU and 3 optimization methods.

100 101 102 103

Mini-Batch Size
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

La
te

nc
y

(m
s)

RDU, BF16, Python, Optimized, Local
RDU, BF16, C++, Optimized, Remote
RDU, BF16, C++, Optimized, Local

102 103 104 105

Mini-Batch Size
0

1.0

2.0

3.0

4.0

5.0

6.0

Fig. 15: Inference latency of the Hermit model on the DataS-
cale with 1 RDU using the hand-optimized model placement
and C+ API for local and remote inference.

other system compute nodes, the remote inference experiments
provide information about expected performance with CogSim
applications that do in-the-loop inference. Figure 15
shows the remote inference latency measurements for the
Hermit model compared to node-local latency measurements.
All models were run with the hand-optimized model place-
ment, the remote inference is through the C++ API, and
both Python and C++ APIs are shown for node-local. In
Figure 15 we observe that remote inference adds additional
latency overhead compared to both Python and C++ node-
local inference. However, at the smallest batch sizes on the
left panel of Figure 15 we see that C++ remote inference can
be as fast or faster than Python node-local inference, with
an average four sample latency of 0.05ms. At a mini-batch
size of 16K, we observe the largest difference in performance

between the node-local and remote inference with the C++
API at 1.14ms.

100 101 102 103

Mini-Batch Size
0

1.0M

2.0M

3.0M

4.0M

5.0M

Th
ro

ug
hp

ut
 (s

am
pl

es
/s

)

RDU, BF16, Python, Optimized, Local
RDU, BF16, C++, Optimized, Remote
RDU, BF16, C++, Optimized, Local

102 103 104 105

Mini-Batch Size
0

2.0M

4.0M

6.0M

8.0M

10M

Fig. 16: Inference throughput of the Hermit model on the
DataScale with 1 RDU using the hand-optimized model place-
ment and C+ API for local and remote inference.

Remote inference throughput measurements for the DataS-
cale are shown in Figure 16. In the left panel of the figure,
we see that the C++ remote inference throughput was be-
tween node-local Python and node-local C++ inference mea-
surements for small mini-batch. At mini-batch sizes greater
than 1K, both node-local configurations exceeded the remote
inference throughput. At a mini-batch size of 16K, a maximum
remote inference throughput of 6.4M samples/s was recorded.
Given the competitive performance of the DataScale remote
inference compared to node-local performance shown in Fig-
ure 15 and Figure 16, we find a compelling reason to support
disaggregated systems for CogSim workloads. In the following
sections, we directly compare the performance of the dataflow
architecture with the more traditional GPU accelerators.

D. Latency Comparison

The latency of inference is an important measurement for
CogSim applications. With in-the-loop inference, the
time to return an inference result needs to be short enough
to avoid bottlenecking and degrading performance of the
application. In Section V-B we measured the performance
of GPU node-local inference in the context of a CogSim
application running a surrogate model. And in Section V-C
we measured the performance of the DataScale node-local and
remote inference. For disaggregated accelerators, the remote
inference is the measurement important to CogSim workflows.

Figure 17 shows a comparison of the mini-batch latency
measured for different configurations of the A100 and DataS-
cale, from Sections V-B and V-C. The included configurations
represent the fastest and slowest performance for each and
the fastest remote inference for DataScale. We observe that
at mini-batch sizes below 1K, the node-local RDU provides a
lower latency than the A100. At mini-batch sizes in the range

100 101 102 103

Mini-Batch Size
0

0.20

0.40

0.60

0.80

1.0

La
te

nc
y

(m
s)

A100, FP16, Naïve PyTorch
A100, FP16, PyTorch, TRT & Graphs
RDU, BF16, Python, Naïve, Local
RDU, BF16, C++, Optimized, Remote
RDU, BF16, C++, Optimized, Local

102 103 104 105

Mini-Batch Size
0

1.0

2.0

3.0

4.0

5.0

6.0

Fig. 17: Inference latency of the Hermit model on the 1 RDU
and A100 with various configurations.

[4, 256] the measured latency of the remote inference on the
DataScale is lower than the latency of the most optimized
node-local A100. As the mini-batch size increases above 256,
the node-local performance of the A100 exceeds first remote
and then node-local performance of the DataScale System.

From the measured latency of inference on the A100 and
DataScale presented in Figure 17, we find that neither GPU
or dataflow architectures dominate the performance landscape.
However, for the CogSim application of the Hermit model,
small mini-batch size performance is most important. There-
fore, we observe that our disaggregated system out-performs
traditional GPUs for our specific in-the-loop inference.

More generally, we observe the Hermit model at smaller
mini-batch sizes is more performant on the DataScale System
while larger mini-batch sizes are faster on the A100. Given
the different behaviors of optimized configurations for Hermit
and MIR models in Section V-B, we find that the viability of
disaggregated systems for CogSim workloads is heavily driven
by choice of surrogate model and latency tolerances.

E. Throughput tests

Throughput tolerances are also important for CogSim work-
loads. Figure 18 shows the Hermit inference throughput for
the same configurations of the A100 and DataScale as in
Figure 17. In the left panel of the figure, we see that in all
configurations at mini-batch sizes below 1K, the DataScale is
measured to have the largest throughput. As the mini-batch
size increases above 1K, the A100 throughput exceeds the
DataScale throughput. We also observe remote inference has
less bandwidth than the node-local inference on a single RDU.
This drop in throughput bandwidth is a result of additional
latency and overhead associated with the high-speed network
connecting the remote client to the DataScale System.

The relative performance measured on a single RDU of the
DataScale compared to the A100 for different configurations
with the Hermit model is shown in Figure 19. This plot

100 101 102 103

Mini-Batch Size
0

1.0M

2.0M

3.0M

4.0M

5.0M

6.0M
Th

ro
ug

hp
ut

 (s
am

pl
es

/s
)

A100, FP16, Naïve PyTorch
A100, FP16, PyTorch, TRT & Graphs
RDU, BF16, Python, Naïve, Local
RDU, BF16, C++, Optimized, Remote
RDU, BF16, C++, Optimized, Local

102 103 104 105

Mini-Batch Size
0

2.5M

5.0M

7.5M

10M

12.5M

15M

17.5M

20M

22.5M

Fig. 18: Inference throughput of the Hermit model on 1 RDU
and A100 with various configurations.

shows the speedup factor of the DataScale System on the Y-
axis across all tested mini-batch sizes. We compare 3 sets of
configurations between the A100 and RDU: (1) naı̈ve PyTorch
implementations (i.e., the slowest), (2) optimized node-local
implementations (i.e., the fastest), and (3) optimized A100
node-local and optimized DataScale remote (i.e., CogSim
workload). We include another set of datapoints for config-
uration (3) where we normalize the DataScale throughput
by transistor count. The A100 has 1.3x the transistor count
of the DataScale RDU. Above the horizontal dotted line
of Figure 19 indicates higher throughput bandwidth on the
DataScale compared to the A100. These comparisons show
that the DataScale dominates performance at the lower mini-
batch sizes with the Hermit model. The largest difference in
performance is between the most highly optimized node-local
measurements, with a more than 7X speedup. In the context
of CogSim and in-the-loop inference, we find that the
remote inference DataScale measured performance is more
than 3X that of the most highly optimized node-local A100 for
the smallest mini-batch sizes. As the mini-batch sizes increase
above 1K, the DataScale System lags behind the A100. At the
largest mini-batch sizes, the A100 offers better performance.

Switching to the MIR model, which has a target throughput
of at least 100K samples/s, we compare DataScale and Nvidia
GPU performance in Figure 20. This comparison is done on
a version of the MIR model without layernorm to ensure the
model would compile optimally on both architectures. In this
Figure, we show the target throughput with a horizontal dashed
line. We observe that at low mini-batch sizes, throughput
is similar between the A100 and DataScale. The DataScale
system reaches the target throughput bandwidth at a mini-
batch size of 128 while the A100 reaches it at size 256.
As the mini-batch size increases toward 8K, the DataScale
system reaches a maximum throughput of over 140K while
the A100 struggles to achieve a throughput much larger than
100K. This result is contrasting to the results with Hermit in

100 101 102 103 104 105

Mini-Batch Size
0x

2x

4x

6x

8x

10x

Sa
m

ba
No

va
 P

er
fo

rm
an

ce
 S

pe
ed

up

Naïve Python DataScale vs. Naïve Pytorch A100
Optimized Local DataScale vs. Optimized Pytorch A100
Optimized Remote DataScale (transistor count normalized) vs. Optimized Pytorch A100
Optimized Remote DataScale vs. Optimized Pytorch A100
equal performance

Fig. 19: The inference latency speedup on 1 RDU compared
to the A100 under various configurations.

Fig. 20: Inference throughput of the MIR model on 1 RDU
and A100 with different configurations.

Figures 18 and 19, where the DataScale provided the largest
advantage over the A100 at small mini-batch sizes.

Our comparisons of measured latency in Section V-D and
throughput in this section for the DataScale and A100 reveal
that new dataflow architectures are viable for disaggregated
CogSim workloads. Specifically, we demonstrated that with
the Hermit model at mini-batch sizes below 1K and with the
MIR model at large mini-batch sizes the DataScale dominates
performance. This indicates that disaggregated systems are
not only competitive, but potentially faster than traditional
GPU accelerators in these contexts. From differences and
similarities in the performance landscapes between the two
tested models, we conclude that the DataScale and A100
are more performant based on several contributing factors,
including model size and throughput/latency requirements. For
example, in the context of tight latency requirements for large
mini-batches with Hermit, the A100 would be the best option.

Our current results are model specific and cannot capture all
the complexities of the contributing factors. We discuss how
our results can be generalize to better demonstrate the viability
of disaggregated systems in the following section.

VI. CONCLUSION

In this paper, we explored the viability of disaggregated
systems for CogSim workloads, including in-the-loop
inference. We tested our hypothesis using two surrogate mod-
els, Hermit and MIR, across three Nvidia GPUs, two AMD
GPUs, and the new SambaNova DataScale system. Measuring
inference latency and throughput across various configurations
of the hardware, we described the performance landscape and
determining factors of DL performance. Our results indicate
that disaggregated systems are viable and in some cases
offer better performance than node-local GPU accelerators for
CogSim workloads. We found that the optimal hardware for
CogSim workloads is largely determined by the model and
latency/throughput requirements.

Throughout this work we engaged very closely with vendor
engineering teams to ensure that our applications were mapped
as efficiently as possible for each accelerator architecture. We
found that that there were opportunities to use these example
applications to identify areas for improving the vendor’s tool
chains for CogSim SciML workflows. One area that is the
subject of ongoing work is a generalized application for remote
inference on the DataScale, which supports remote inference to
multiple, independent models that is necessary for the Hermit
and MIR integration.

While our findings are relevant to CogSim workloads and
more specifically applications that use Hermit and MIR models
for in-the-loop inference, our results are not extensive
enough to generalize to all workloads. The results we obtained
indicate that factors like model size, layer types, computational
requirements of the simulation, optimizability of the model,
as well as inference latency and throughput requirements are
contributing factors to determining the viability of a disag-
gregated system for a particular workload. Our future work
aims to explore this space by extending our results to more
automatically generated DL models that represent a wide array
of CogSim applications. This work would serve as a reference
for other researchers to indicate if a disaggregated system is
viable for a given CogSim application.

ACKNOWLEDGMENT

We thank Adam Moody (LLNL) for his contributions to
this work. This work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory. LLNL-CONF-826438.

REFERENCES

[1] G. Kluth, K. D. Humbird, B. K. Spears, J. L. Peterson, H. A. Scott,
M. V. Patel, J. Koning, M. Marinak, L. Divol, and C. V. Young, “Deep
learning for nlte spectral opacities,” Physics of Plasmas, vol. 27, no. 5,
p. 052707, 2020. [Online]. Available: https://doi.org/10.1063/5.0006784

[2] K. D. Humbird, J. L. Peterson, J. Salmonson, and B. K.
Spears, “Cognitive simulation models for inertial confinement
fusion: Combining simulation and experimental data,” Physics of
Plasmas, vol. 28, no. 4, p. 042709, Apr 2021. [Online]. Available:
http://dx.doi.org/10.1063/5.0041907

[3] R. Anirudh, J. J. Thiagarajan, P.-T. Bremer, and B. K. Spears,
“Improved surrogates in inertial confinement fusion with manifold
and cycle consistencies,” Proceedings of the National Academy of
Sciences, vol. 117, no. 18, pp. 9741–9746, 2020. [Online]. Available:
https://www.pnas.org/content/117/18/9741

[4] L. Sun, H. Gao, S. Pan, and J.-X. Wang, “Surrogate modeling
for fluid flows based on physics-constrained deep learning without
simulation data,” Computer Methods in Applied Mechanics and
Engineering, vol. 361, p. 112732, Apr 2020. [Online]. Available:
http://dx.doi.org/10.1016/j.cma.2019.112732

[5] M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens, L. Flo-
rescu, S. Jairath, W. Liu, T. Nama, and A. Sujeeth, “Accelerating scien-
tific applications with sambanova reconfigurable dataflow architecture,”
Computing in Science & Engineering, vol. 23, no. 02, pp. 114–119, mar
2021.

[6] S. Mittal and S. Vaishay, “A survey of techniques for optimizing
deep learning on gpus,” Journal of Systems Architecture, vol. 99,
p. 101635, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1383762119302656

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[8] C. Holmes, D. Mawhirter, Y. He, F. Yan, and B. Wu, “Grnn: Low-latency
and scalable rnn inference on gpus,” in Proceedings of the Fourteenth
EuroSys Conference 2019, 2019, pp. 1–16.

[9] A. Zlateski, K. Lee, and H. S. Seung, “Znni: maximizing the inference
throughput of 3d convolutional networks on cpus and gpus,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2016, pp. 854–
865.

[10] R. Xu, F. Han, and Q. Ta, “Deep learning at scale on nvidia v100
accelerators,” in 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS). IEEE,
2018, pp. 23–32.

[11] N. Kondratyuk, V. Nikolskiy, D. Pavlov, and V. Stegailov, “Gpu-
accelerated molecular dynamics: State-of-art software performance and
porting from nvidia cuda to amd hip,” The International Journal of
High Performance Computing Applications, vol. 35, no. 4, pp. 312–324,
2021. [Online]. Available: https://doi.org/10.1177/10943420211008288

[12] S. Dong, X. Gong, Y. Sun, T. Baruah, and D. Kaeli, “Characterizing
the microarchitectural implications of a convolutional neural network
(cnn) execution on gpus,” in Proceedings of the 2018 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
96–106. [Online]. Available: https://doi.org/10.1145/3184407.3184423

[13] H. Vanholder, “Efficient inference with tensorrt,” 2016.
[14] R. Xu, F. Han, and Q. Ta, “Deep learning at scale on nvidia v100

accelerators,” in 2018 IEEE/ACM Performance Modeling, Benchmarking
and Simulation of High Performance Computer Systems (PMBS), 2018,
pp. 23–32.

[15] C. Gregg and K. Hazelwood, “Where is the data? why you cannot
debate cpu vs. gpu performance without the answer,” in (IEEE ISPASS)
IEEE International Symposium on Performance Analysis of Systems and
Software, 2011, pp. 134–144.

[16] M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt,
S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and
R. Wallace, “Three-dimensional simulations of nova high growth factor
capsule implosion experiments,” Physics of Plasmas, vol. 3, no. 5, pp.
2070–2076, 1996. [Online]. Available: https://doi.org/10.1063/1.872004

[17] S. H. Langer, I. Karlin, and M. M. Marinak, “Performance character-
istics of hydra – a multi-physics simulation code from llnl,” in High
Performance Computing for Computational Science – VECPAR 2014,
M. Daydé, O. Marques, and K. Nakajima, Eds. Cham: Springer
International Publishing, 2015, pp. 173–181.

https://doi.org/10.1063/5.0006784
http://dx.doi.org/10.1063/5.0041907
https://www.pnas.org/content/117/18/9741
http://dx.doi.org/10.1016/j.cma.2019.112732
https://www.sciencedirect.com/science/article/pii/S1383762119302656
https://www.sciencedirect.com/science/article/pii/S1383762119302656
https://doi.org/10.1177/10943420211008288
https://doi.org/10.1145/3184407.3184423
https://doi.org/10.1063/1.872004

	I Introduction
	II Disaggregated Heterogeneous System Architectures for CogSim
	II-A CogSim Disaggregated System Architectures
	II-B CogSim Workloads on Disaggregated Machines

	III Related Work
	IV In-the-loop inference
	IV-A Hermit: a surrogate model for NLTE collisional-radiative atomic physics
	IV-B Material Interface Reconstruction (MIR) Model
	IV-C Optimizing the MIR Model for dataflow architectures

	V Evaluation
	V-A Experimental Setup
	V-B Tuning for the GPU architectures
	V-C Tuning for a data flow architecture
	V-D Latency Comparison
	V-E Throughput tests

	VI Conclusion
	References

