
ar
X

iv
:2

11
0.

00
62

5v
1

 [
cs

.L
G

]
 1

 O
ct

 2
02

1

Accelerate Distributed Stochastic Descent for Nonconvex Optimization with

Momentum

Guojing Cong

IBM TJ Watson Research Center

gcong@us.ibm.com

Tianyi Liu

Georgia Institute of Technology

tyliu@gatech.edu

Abstract—Momentum method has been used extensively
in optimizers for deep learning. Recent studies show that
distributed training through K-step averaging has many nice
properties. We propose a momentum method for such model
averaging approaches. At each individual learner level tradi-
tional stochastic gradient is applied. At the meta-level (global
learner level), one momentum term is applied and we call
it block momentum. We analyze the convergence and scaling
properties of such momentum methods. Our experimental re-
sults show that block momentum not only accelerates training,
but also achieves better results.

I. INTRODUCTION

Deep neural networks (DNNs) have achieved great suc-

cess recently in many different domains. Training DNNs

requires solving large-scale non-convex optimization prob-

lems. This process is usually time consuming because of

the fast increasing size of datasets and complexity of the

network structures. As a result, researchers often wait for

weeks or months for models to train. For example, finishing

a 90-epoch ImageNet-1k (1 million training images in res-

olution 224× 224) training with large scale ResNet (around

25.6 million parameters) on a single NVIDIA Titan XP

GPU takes over 10 days. To accelerate the training process,

parallel and distributed processing is widely adopted in deep

learning applications.

A line of parallel solvers based on Stochastic Gradient

Descent [18], or SGD for short, are proposed these years.

[24] first introduces a parallel variants of SGD called

synchronous SGD. Theoretical analysis has shown that

synchronous SGD with P learners achieves a convergence

rate of O(1/
√
NP) for solving non-convex optimization

problems, where N is the number of samples processed. In

2012, [3] presents the Asynchronous SGD (Async-SGD).

Different from its synchronous counterpart, each worker

communicates with the parameter servers independently of

the others when running Async-SGD, and thus, the commu-

nication cost is reduced. [10] shows that Async-SGD (e.g.,

[17], [9]) converges for non-convex objectives and achieves

the same convergence rate when the staleness is bounded. In

practice, however, Async-SGD is hard to implement because

of the requirement of small learning rates and the difficulty

in controlling the staleness. Recently, [23] introduces the K-

step average SGD (K-AVG) which allows delayed gradient

aggregation to minimize the communication overhead. In

this algorithm, the communication interval K is manually

chosen. [23] theoretically and empirically verifies that the

optimal K 6= 1 for many different cases. A large K greatly

reduces the communication cost. Thus, the negative impact

on convergence caused by asynchrony can be avoided.

Moreover, K-AVG scales better and allows larger learning

rates than Async-SGD.

Many machine learning models, however, are often trained

using algorithms equipped with momentum such as Momen-

tum SGD [16] where a weighted average of the previous

update is added to the current gradient. For example, MSGD

can achieve the best test accuracy for training ResNet

for image classification tasks [5]. [4] show that MSGD is

guaranteed to converge to the first order stationary point for

non-convex objective. [21] provides a uniform framework to

analyze the convergence of SGD with momentum for both

convex and non-convex objectives. They further show that

MSGD can achieve O(1/
√
N) convergence rate for non-

convex objectives. Another line of research tends to study

the reason behind the good performance of MSGD. [20]

suggest that momentum accelerates computation by avoiding

“long ravines” and “sharp curvatures” in the sub-level sets of

cost function. [12] theoretically proves that MSGD can help

avoid saddle points for the streaming PCA problem. [14]

presents an illustrative example to show that the momentum

can potentially avoid local minima.

Recent years, people start to focus on the application

of momentum in parallel computing both empirically and

theoretically. Empirical study such as [1], [11] observe that

momentum can improve the convergence and text accuracy

for distributed training of neural networks. [22] considers

a distributed communication efficient MSGD method and

proving its linear speedup property. [13] shows that there

is an acceleration trade-off between momentum and delay

while using Async-MSGD.

Based on the previous study, in this paper, we propose the

Momentum Average SGD (M-AVG) algorithm to incorpo-

rate the advantage of momentum in K-AVG. Specifically, at

the meta-level (global learner level), one momentum term

is applied to add the weighted average of the previous

http://arxiv.org/abs/2110.00625v1

update to the current one, while at each individual learner

level, K-step SGD is implemented.We theoretically study the

convergence property of M-AVG algorithm and compare it

with K-AVG to show the positive impact of the momentum.

The main advantage of adding momentum is the speed-up,

i.e., with properly chosen step size, M-AVG can achieve

same accuracy using less samples than K-AVG. At the same

time, adding momentum will inherit the advantage of K-

AVG in reducing optimization cost. In fact, our theoretical

analysis and experimental result verify that the optimal K
is not equal to 1 even in the presence of the momentum

parameter. Moreover, to ease the tuning process in practice,

several tuning guidelines are included in the paper.

Our main contributions are summarized as follows:

• We propose a new momentum method M-AVG and

prove the convergence rate.

• We show that M-AVG can achieve faster convergence

rate than K-AVG.

• Several useful tuning guidelines are provided to ease

the implementation.

Using an image recognition benchmark, we demonstrate

the nice convergence properties of K-AVG in comparison to

two popular ASGD implementations: Downpour [Dean et

al., 2012] and EAMSGD [Zhang et al., 2015]. In EAMSGD,

global gradient aggregation among learners simulates an

elastic force that links the parameters they compute with

a center variable stored by the parameter server. In both

Downpour and EAMSGD, updates to the central parameter

server can also have a K-step delay. On our target platform,

when K is small, K-AVG significantly reduces the commu-

nication time in comparison to Downpour and EAMSGD

while achieving similar training and test accuracies. The

training time reduction is up to 50much better training and

test accuracies than Downpour and EAMSGD after the same

amount of data samples are processed. For example, with

128 GPUs, K-AVG is up to about 7 and 2-6 times faster

than Downpour and EAMSGD respectively, and achieves

significantly better accuracy

The rest of the paper is organized as follows: In section

2, we introduce the M-AVG algorithm and the optimization

problem we considered. Assumptions needed to analyze

SGD methods is inclueded; In section 3, we formally the

standard convergence results of M=AVG with fixed stepsize

for non-convex objectives. Based on the convergence result,

we analyze the speed up of M-AVG over K-AVG and

investigate the optimal choice of K. Some useful tunning

guidelines is provided in this section; In section 4, we

present our experimental results to validate our analysis.

Notations: Given a vector v = (v(1), . . . , v(d))⊤ ∈ R
d,

we define the vector norm: ‖v‖2 =
∑

j(v
(j))2. P denote s

number of processors. K denotes the length of the delay.

Bn or B denotes the size of mini-batch. ηn or η denotes the

step size. µ denotes the momentum parameter. ξjk,s denotes

the i.i.d. realizations of a random variable ξ generated by the

algorithm on different processors and in different iterations,

where j = 1, ..., N , k = 1, ...,K, and s = 1, .., B.

II. ALGORITHM AND MODEL

We propose to solve the following general non-convex

minimization problems:

min
w∈X

F (w), (1)

where the objective F : R
m → R is a continuously

differentiable non-convex function over X ∈ R
m. Train-

ing deep neural networks is a special case of (1), where

F (w) = 1
n

∑n
i=1 ℓ(yi, f(xi,w)) given n observations de-

noted by {(xi, yi)}ni=1, where xi is the i-th input feature,

yi is the response and ℓ is the loss function. We will

impose the following regularity conditions on the objective

F, throughout our analysis.

Assumption 1. • ∇F is L-Lipschitz, i.e.,

‖∇F (x)−∇F (y)‖2 ≤ L‖x− y‖2, ∀x, y.

• F is lower bounded by a constant F ∗.
• Bounded Gradient: ∇F is bounded, i.e., there exists a

constant M such that

‖∇F (x)‖22 ≤M, ∀x.

• F is bounded below by a constant F ∗.
• Unbiased Estimate: For any fixed parameter w, the

stochastic gradient ∇F (w; ξ) is an unbiased estimator

of the true gradient corresponding to the parameter w,

namely,

Eξ∇F (w; ξ) = ∇F (w).

• Bounded Variance: There exist a constant σ ≥ 0 such

that,

Eξ

∥∥∇F (w; ξ)
∥∥2

2
−
∥∥Eξ∇F (w; ξ)

∥∥2

2
≤ σ2.

Same assumptions have been used in [23]. To solve

problem (1), we propose the following M-AVG algorithm

in Algorithm 1 based on K-AVG algorithm. Specifically,

Each learner runs mini-batch SGD for k steps and return the

k−th iteration to the server. Then at the meta level, th global

learner average these returns, update the momentum and the

weight estimation. Note that in Algorithm 1, d is actually

the product of K-step average gradient and the step size. If

we denote Gn = 1
BnP

∑P
j=1

∑K−1
t=0

∑Bn

s=1∇F (wj
n+t, ξ

j
t,s).

Then the update of M-AVG algorithm can be written as

vn+1 = µvn − ηnGn, (2)

w̃n+1 = w̃n + vn+1

where µ is the momentum parameter and ηn is the step

size. We will use the update (2) to carry on our theoretical

analysis. We further note that since the momentum is added

to the meta level, we call this momentum block momentum.

We can also add momentum to the learner level.

Algorithm 1 M-AVG Algorithm

initialize w̃1;

v ← 0;
for n = 1, ..., N do

Processor Pj , j = 1, . . . , P do concurrently:

set wj
n = w̃n ;

for k = 1, ...,K do
randomly sample a mini-batch of size Bn and up-

date:

w
j
n+k = w

j
n+k−1 −

γn
Bn

Bn∑

s=1

∇F (wj
n+k−1; ξ

j
k,s)

a← 1
P

∑P
j=1 w

j
n+K ;

d← a− w̃n;

v ← µv + d;

w̃n+1 = w̃n + v;

III. MAIN RESULTS

A. Convergence of M-AVG

We study the convergence of M-AVG algorithm. In The-

orem 1, we show that the algorithm can converge to first

order stationary point. We present the upper bound on the

expected average squared gradient norms.

Theorem 1. Under Assumption 1, suppose Algorithm 1 is

run with fixed step size η > 0, batch size B > 0 and

momentum parameter µ ∈ [0, 1) such that the following

condition holds.

1 ≥ L2η2(K + 1)(K − 2)

2(1− µ)2
+

2ηLK

1− µ

and

1− δ ≥ L2η2/(1− µ)2,

for some constant δ ∈ (0, 1). Then the expected average

squared gradient norms of F satisfy the following bounds

for all N ∈ N :

1

N

N∑

i=1

E
∥∥∇F (w̃i)

∥∥2

2
≤ 2(1− µ)(F (w1)− F ∗)

N(K − 1 + δ)η

+
L2η2σ2(2K − 1)K(K − 1)

6(K − 1 + δ)B(1− µ)2

+
2LK2σ2η

PB(K − 1 + δ)(1 − µ)

(
1 +

µ2

2(1− µ)2

)

+
Lηµ2K2M

(K − 1 + δ)(1 − µ)3
. (3)

Remark 2. Note that when µ = 0, M-AVG is reduced to K−
AV G. Our Theorem 1 is also a generalization of Theorem

3.1 in [23]. In fact, take µ = 0 in 3, the right hand side is

equivalent to that of (3.2) in [23].

Proof: The proof follows the proof idea in [21]. Since

M-AVG shares the same learner level procedure with K-

AVG, some important results in [23] will also be used in

our proof.

Define an auxiliary sequence zn = w̃n + µ
1−µ

vn. Then z
is updated as follows:

zn+1 = zn −
ηn

1− µ
Gn. (4)

Recall that ∇F is L-Lipschitz, thus we have for any x, y,
the following inequality holds.

F (y) ≤ F (x) +∇F (x)⊤(y − x) +
L

2
‖y − x‖22. (5)

Combine (4) and (5) together, we get

F (zn+1)− F (zn)

≤∇F (zn)
⊤(zn+1 − zn) +

L

2

η2n
(1 − µ)2

‖Gn‖22

≤− ηn
1− µ

∇F (zn)
⊤Gn +

L

2

η2n
(1− µ)2

‖Gn‖22

=− ηn
1− µ

(∇F (zn)−∇F (w̃n))
⊤ Gn

− ηn
1− µ

∇F (w̃n)
⊤Gn +

L

2

η2n
(1− µ)2

‖Gn‖22

≤ 1

2L
‖∇F (zn)−∇F (w̃n)‖22 +

L

2

η2n
(1 − µ)2

‖Gn‖22

− ηn
1− µ

∇F (w̃n)
⊤Gn +

L

2

η2n
(1− µ)2

‖Gn‖22

=
1

2L
‖∇F (zn)−∇F (w̃n)‖22 −

ηn
1− µ

∇F (w̃n)
⊤Gn

+
Lη2n

(1− µ)2
‖Gn‖22. (6)

We only need bound the three terms on the left hand side of

(6). We start from the first term. By the Lipschitz continuity

of ∇F, we have

1

2L
‖∇F (zn)−∇F (wn)‖22 ≤

L

2
‖zn − wn‖22

=
L

2

µ2

(1− µ)2
‖vn‖22.

Thus, we only need bound the norm of vn. Denote Γn−1 =∑n−1
i=0 µi = 1−µn

1−µ
≤ 1

1−µ
. We can rewrite vn as the

weighted sum of {Gi}n−1
i=0 . Specifically, we have

vn = µvn−1 − ηn−1Gn−1 =

n−1∑

i=0

µiηn−iGn−i.

Then, the expected norm of vn can be bounded as follows.

E‖vn‖22 = E‖
n−1∑

i=0

µiηn−iGn−i‖22

= Γ2
n−1E‖

n−1∑

i=0

µi

Γn−1
ηn−iGn−i‖22

≤ Γ2
n−1

n−1∑

i=0

µi

Γn−1
η2n−iE‖Gn−i‖22

= Γn−1

n−1∑

i=0

µiη2n−iE‖Gn−i‖22.

By the bounded gradient and variance assumption, we have

E‖Gn−i‖22 = E‖ 1

BP

P∑

j=1

K−1∑

t=0

B∑

s=1

∇F (wj
n−i+t, ξ

j
t,s)‖22

≤ K

P 2B2

K−1∑

t=0

E‖
P∑

j=1

B∑

s=1

∇F (wj
n−i+t, ξ

j
t,s)‖22

≤ K

P 2B2

K−1∑

t=0

E‖
P∑

j=1

B∑

s=1

(
∇F (wj

n−i+t, ξ
j
t,s)

−∇F (wj
n−i+t) +∇F (wj

n−i+t)
)
‖22

≤ K2σ2

PB
+K

K−1∑

t=0

E‖∇F (wj
n−i+t)‖22

≤ K2σ2

PB
+K2M. (7)

Thus, we have the bound of E‖vn‖22.

E‖vn‖22 ≤ Γn−1

n−1∑

i=0

µiη2n−iE‖Gn−i‖22

≤ Γn−1

n−1∑

i=0

µiη2n−i

(
K2σ2

PB
+K2M

)

≤ η2

(1− µ)2

(
K2σ2

PB
+K2M

)
.

Then we have the bound of the first term.

1

2L
‖∇F (zn)−∇F (wn)‖22

≤L

2

µ2

(1− µ)2
η2

(1 − µ)2

(
K2σ2

PB
+K2M

)
. (8)

For the second on the right hand side of (6), the proof

follows that of Theorem 3.1 in [23]. We first expend Gn

in the second term as follows.

− ηn
1− µ

∇F (w̃n)
⊤Gn

=− ηn
1− µ

∇F (w̃n)
⊤

 1

BnP

P∑

j=1

K−1∑

t=0

Bn∑

s=1

∇F (wj
n+t, ξ

j
t,s)

=− ηn
1− µ

1

BnP

P∑

j=1

K−1∑

t=0

Bn∑

s=1

∇F (w̃n)
⊤∇F (wj

n+t, ξ
j
t,s).

Given w̃n, for fixed j and t, by the tower property of

conditional expectation, we have

1

Bn

Bn∑

s=1

E∇F (w̃n)
⊤∇F (wj

n+t, ξ
j
t,s)

=
1

Bn

Bn∑

s=1

E

[
E

[
F (w̃n)

⊤∇F (wj
n+t, ξ

j
t,s)|wj

n+t

]]

=E

[
F (w̃n)

⊤∇F (wj
n+t)

]
.

Moreover, given w̃n, since noise ξ′s are i.i.d, and for each

j, wj
n+t follows the same updated rule, which implies for

any fixed t, ∇F (wj
n+t)

′s are i.i.d. Thus, we get rid of the

summation over j as follows.

1

P

P∑

j=1

1

Bn

Bn∑

s=1

E∇F (w̃n)
⊤∇F (wj

n+t, ξ
j
t,s)

=
1

P

P∑

j=1

E

[
F (w̃n)

⊤∇F (wj
n+t)

]
= E

[
F (w̃n)

⊤∇F (wj
n+t)

]
.

Together with bound (3.14) in [23], we get the bound of the

expectation of the second term.

E

[
− ηn
1− µ

∇F (w̃n)
⊤Gn

]

≤− (K + 1)ηn
2(1− µ)

(
1− L2η2nK(K − 1)

2(1− µ)2(K + 1)

)∥∥∇F (w̃n)
∥∥2
2

− ηn
2(1− µ)

(
1− L2η2n(K + 1)(K − 2)

2(1− µ2)

)K−1∑

t=1

E

∥∥∥∇F (wj
n+t)

∥∥∥
2

2

+
L2η3nσ

2(2K − 1)K(K − 1)

12B(1− µ)3
. (9)

Following similar lines to (7), we get the bound of the

expectation of the last term.

Lη2n
(1− µ)2

E‖Gn‖22

≤ LK2σ2η2n
PB(1− µ)2

+
η2nLK

(1 − µ)2

K−1∑

t=0

E

∥∥∥∇F (wj
n+t)

∥∥∥
2

2

≤ LK2σ2η2n
PB(1− µ)2

+
η2nLK

(1 − µ)2

K−1∑

t=1

E

∥∥∥∇F (wj
n+t)

∥∥∥
2

2

+
η2nLK

(1− µ)2
‖∇F (w̃n)

∥∥2
2
. (10)

Combine (9), (10) and (8) together, and we have

E{F (zn+1)− F (zn)}

≤ − (K + 1)η

2(1− µ)
C1E

∥∥∇F (w̃n)
∥∥2
2

− η

2(1− µ)
C2

K−1∑

t=1

E

∥∥∥∇F (wj
n+t)

∥∥∥
2

2

+
L2η3σ2(2K − 1)K(K − 1)

12B(1− µ)3

+
LK2σ2η2

PB(1− µ)2

(
1 +

µ2

2(1− µ)2

)
+

Lη2µ2K2M

2(1− µ)4
,

where C1 = 1 − L2η2K(K−1)
2(1−µ)2(K+1) −

2ηLK
(1−µ)(K+1) , C2 =

1 − L2η2(K+1)(K−2)
2(1−µ2) − 2ηLK

1−µ
. Under the condition 1 ≥

L2η2(K+1)(K−2)
2(1−µ)2 − 2ηLK

1−µ
, i.e., C1 ≥ 0, the second term on

the right hand side can be discarded. At the same time, the

above condition also yields the following inequality.

L2η2K(K − 1)

2(1− µ)2(K + 1)
+

2ηLK

(1− µ)(K + 1)
≥ K − L2η2/(1− µ)2

K + 1
.

For some δ ∈ (0, 1) such that 1 − δ ≥ L2η2/(1 − µ)2, we

have

E{F (zn+1)F (zn)}

≤ − (K − 1 + δ)η

2(1− µ)
E
∥∥∇F (w̃n)

∥∥2
2
+

L2η3σ2(2K − 1)K(K − 1)

12B(1− µ)3

+
LK2σ2η2

PB(1− µ)2

(
1 +

µ2

2(1− µ)2

)
+

Lη2µ2K2M

2(1− µ)4
.

The above inequality holds for all i = 1, 1, ..., N sum them

together and we get

E{F (zN+1)− F (z1)}

≤ − (K − 1 + δ)η

2(1− µ)

N∑

i=1

E
∥∥∇F (w̃i)

∥∥2
2

+
NL2η3σ2(2K − 1)K(K − 1)

12B(1− µ)3

+
NLK2σ2η2

PB(1− µ)2

(
1 +

µ2

2(1− µ)2

)
+

NLη2µ2K2M

2(1− µ)4
,

which is equivalent to

(K − 1 + δ)η

2(1− µ)

N∑

i=1

E
∥∥∇F (w̃i)

∥∥2

2

≤E{F (z1)− F (zN+1)}+
NL2η3σ2(2K − 1)K(K − 1)

12B(1− µ)3

+
NLK2σ2η2

PB(1− µ)2

(
1 +

µ2

2(1− µ)2

)
+

NLη2µ2K2M

2(1− µ)4

≤E{F (z1)− F ∗}+ NL2η3σ2(2K − 1)K(K − 1)

12B(1− µ)3

+
NLK2σ2η2

PB(1− µ)2

(
1 +

µ2

2(1− µ)2

)
+

NLη2µ2K2M

2(1− µ)4
.

Note that z1 = w1 implies E{F (z1)− F ∗} = F (w1)−F ∗.

Multiply each hand side by
2(1−µ)

N(K−1+δ)η , we have

1

N

N∑

i=1

E
∥∥∇F (w̃i)

∥∥2

2
≤ 2(1− µ)(F (w1)− F ∗)

N(K − 1 + δ)η

+
L2η2σ2(2K − 1)K(K − 1)

6(K − 1 + δ)B(1− µ)2

+
2LK2σ2η

PB(K − 1 + δ)(1 − µ)

(
1 +

µ2

2(1− µ)2

)

+
Lηµ2K2M

(K − 1 + δ)(1 − µ)3
.

We have the following observations based on the upper

bound 3.

• Convergence to ǫ−optimal solution: Note that the first

term on the right hand side of (3) goes to zero as

N → ∞, while the other term remains unchanged

during updating. If we let η → 0, these terms will

vanish. Thus, M-AVG can achieve ǫ−optimal solution

where ǫ can be any positive number given small enough

η and large N.
• Momentum accelerates convergence but hurts accuracy:

The first term is reduced by a factor 1 − µ which

means M-AVG converges faster than K-AVG. However,

adding momentum shows an adverse impact on the final

convergence, since the other terms are increased. This

observation is constant to that in [12].

• Different from K-AVG, the bound of M-AVG has an

additional term Lηµ2K2M
(K−1+δ)(1−µ)3 which is not affected

by P and B. This is the additional variance induced by

the momentum and can only be controlled by the step

size. Thus, adding momentum usually requires a small

step size. to guarantee the convergence.

B. Comparison with K-AVG

• Speed Up: Theorem 1 demonstrates that M-AVG can

converge to the ǫ−optimal solution and accelerate the con-

vergence speed. However, as a con of momentum, the

final accuracy is increased. A simple question is under

the same hyper-parameter tuples (N,K,P,B), does adding

momentum leads to a better estimate? In other words, given

a target accuracy, does M-SGD achieve it faster than K-

AVG? Lemma 3 provides a positive answer. It shows that

under certain conditions, the optimal momentum parameter

µ to minimize the upper bound obtained in Theorem 1 is

non-zero .

Lemma 3. Under Assumption 1, suppose Algorithm is run

with fixed step size η > 0, batch size B > 0, number of

learners P > 0a for N meta iterations, such that

1 >
L2η2(K + 1)(K − 2)

2
+ 2ηLK

and

1− δ > L2η2,

for some constant δ ∈ (0, 1). When the following conditions

hold,

η2 <
B(F (w1)− F ∗)

5LNσ2(5/P + 6L)
and K ≤ 5

or

1 >
Nσ2

2B(F (w1)− F ∗)
(

1

2LP
+

1

L
) and K > 5,

we have

µoptimal > 0.

Proof: Details are omitted to conserve space.

Lemma 3 justify that adding momentum does improve the

performance of K-AVG under same hyper parameters. The

next lemma show that M-AVG running N steps can achieve

better upper bound than K-AVG running 1/(1−µ/2) steps.

For notational simplicity, let the upper bound in Theorem 1

be g(µ,N, η;P,B,K), i.e.,

g(µ,N, η;P,B,K)

=
2(1− µ)(F (w1)− F ∗)

N(K − 1 + δ)η

+
L2η2σ2(2K − 1)K(K − 1)

6(K − 1 + δ)B(1 − µ)2

+
2LK2σ2η

PB(K − 1 + δ)(1 − µ)

(
1 +

µ2

2(1− µ)2

)

+
Lηµ2K2M

(K − 1 + δ)(1− µ)3
.

Lemma 4. Suppose M-AVG is run with fixed µ > 0, N, η,
P, B, K such that

1 ≥ L2η2(K + 1)(K − 2)

2(1− µ)2
+

2ηLK

1− µ

and

1− δ ≥ L2η2/(1− µ)2,

for some constant δ ∈ (0, 1). Then under the following

condition,

η <

√
PB(F (w1)− F ∗)(1− µ)3

2NKC3
,

where C3 = 2LKσ2 + PL2σ2(2K − 1)(K − 1) +
LKMPB, we have

g(µ,N, η;P,B,K) < g(0,
1

1− µ
2

N, η;P,B,K).

Proof: Details are omitted to conserve space.

We remark that here 1 − µ/2 can be replaced by any

1 − αµ where α ∈ (0, 1). When α is large, a smaller

η is required. Lemma 4 explicitly show the advantage of

M-AVG over K-AVG in terms of convergence speed. This

1 − αµ improvement is consistent with the finding in [12].

Moreover, this improvement can be seen from the update

(4) of the auxiliary sequence. In fact, z can be viewed as

the K-AVG update using a larger step size, which leads to

a (1− αµ) faster convergence speed according to Theorem

3.1 in [23].

• Optimal K is not 1: One important advantage of K-AVG

is that frequent averaging is not necessary and the optimal

K is proved to be large than 1, which greatly lower the

communication cost. We next show that for many cases, this

advantage will be inherited even after adding momentum.

We consider the same case as in [23] where the amount of

samples processed N × K is constant, which means that

the computational time remains as a constant given a fixed

number of processors. We then have the following lemma.

Lemma 5. Let S = N ∗ K, be a constant. Suppose the

Algorithm 1 is run with a fixed step size η, a fixed batch

size B, and a fixed number of processors P. Suppose for a

fixed µ ≥ 0, the optimal frequency is Kopt(µ). Then under

the following condition,

1− δ

δ

(F (w1)− F ∗)

Sη
>

1

(1− µ)3
L2η2σ2

2B

+
1

(1− µ)2
3δ − 1

2δ

(
µ2

(1− µ)2
(
Lσ2η

PB
+ LηM) +

2Lσ2η

PB

)
,

(11)

we have

Kopt(µ) > 1.

Proof: Details are omitted to conserve space.

Our experiment further shows that the optimal K can

be very large such as 32, 64. Thus, M-AVG with large

K also enjoys the low communication cost property. Note

that condition (11) requires (F (w1) − F ∗) to be larger

than in Theorem 3.4 in [23]. Intuitively, Less averaging and

adding momentum both increase the variance, which is only

preferred far away from the global solution. As a result,

M-AVG need the initialization to be further than K-AVG.

C. Tuning guidelines

We have shown M-AVG can achieve great perfor-

mance. However, since M-AVG has 5 hyper parameters

(P,B,K, η, µ) which need tuning, it is still difficult to

achieve the best performance of M-AVG in practice with-

out any guidelines. In this section we provide two tuning

guidelines theoretically to ease the work or practitioners.

• More processors available (Increase P): A nature question

is if we have more processors, how to change µ accordingly.

Let the original number of processors be P0. We consider the

case that the total number of samples processed N∗P ∗B∗K
is a constant and B,K are fixed. We remark that, in the

following discussion, we assume the condition in Theorem

1 holds, i.e.,

1 ≥ L2η2(K + 1)(K − 2)

2(1− µ)2
− 2ηLK

1− µ

and

1− δ ≥ L2η2/(1− µ)2,

hold for some δ ∈ (0, 1). We then have the following lemma.

Lemma 6. Let S = N ∗P ∗B ∗K, be a constant. Suppose

the Algorithm 1 is run with a fixed step size η, a fixed batch

size B, and a fixed frequency K. Suppose for P = P0,
the optimal momentum parameter is µ∗

0. If the number of

processors is increased from P0 to λP0, where λ > 1, the

momentum parameter µ∗
λ satisfies

µ∗
λ > µ∗

0.

Proof: Details are omitted to conserve space.

Intuitively, increasing number of processors will decrease

the noise in the average stochastic gradient. Thus, M-AVG

can tolerate more variance from a larger momentum. At the

same time, since the number of meta iterations decrease, a

larger momentum also helps improve the performance.

• Switch From K-AVG to M-AVG: We next show that

adding momentum can decrease the optimal K. We consider

the same setting as in Lemma 5.

Lemma 7. Let S = N ∗ K, be a constant. Suppose the

Algorithm 1 is run with a fixed step size η, a fixed batch

size B, and a fixed number of processors P. Suppose for a

fixed µ ≥ 0, the optimal frequency is Kopt(µ). Then under

the following condition,

1− δ

δ

(F (w1)− F ∗)

Sη
>

1

(1− µ)3
L2η2σ2

2B

+
1

(1− µ)2
3δ − 1

2δ

(
µ2

(1− µ)2
(
Lσ2η

PB
+ LηM) +

2Lσ2η

PB

)
,

(12)

we have

Kopt(µ) ≤ Kopt(0).

As we discussed after Lemma 5, frequent averaging and

momentum both increase the variance, and thus are conflict.

As a direct result, we need to decrease K when µ is

increased.

Both of these two tuning guidelines will be empirically

verified in Section IV. There are many other cases that worth

consideration. Due to space limit, we only present these two

and leave others to our future research.

IV. EXPERIMENT

We experiment on a cluster of IBM Power9 CPUs with

NVIDIA Volta100 GPUs connected with Infiniband. We

use Spectrum-MPI for communication. All algorithms are

implemented with PyTorch [15]. We test our implementation

with image classification using the CIFAR-10 data set and

the ImageNet-1K data set.

A. MAVG accelerates convergence

We first demonstrate that MAVG accelerates convergence

using a range of neural network models with the CIFAR-10

data set. The 7 state-of-art neural network models we use

in our study are: ResNet-18 [5], DenseNet [8], SENet [7],

GoogLeNet [19], MoibleNet [6], PreActResNet-18 [5], and

DPN [2]. They represent some of the most advanced convo-

lution neural network (CNN) architectures used in current

computer vision tasks. Figures 1, 2, 3, 4, 4, 5, 6 show the

evolution of training accuracies for KAVG and MAVG.

In the figure, the labels res, pre, goo, den, mob, dpn,

and sen are for ResNet-18, PreActResNet-18, GoogLeNet,

DenseNet, MoibleNet, DPN, and SENet, respectively.

 70

 75

 80

 85

 90

 95

 100

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 1. ResNet-18

Table I shows the validation accuracy achieved after 200

epochs.

Figures 7 and 8 shows the training and validation

accuracy using ResNet-50 with ImageNet-1K. Again MAVG

performs better than KAVG, and this demonstrates the

acceleration of convergence through momentum.

 70

 75

 80

 85

 90

 95

 100

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 2. PreActResNet-18

 78

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 3. GoogLeNet

B. µ with P and an optimal µ

we study how to tune µ when we have more processors.

We use ResNet18 with the CIFAR-10 data set. We set

P = 6, 12, 24, 48 and for each choice of P , we test different

µ’s ranged from 0 to 0.9. The validation accuracies are

shown in Figures 9, 10, 11, 12. When P is small, we can

Model KAVG MAVG

ResNet-18 94.81 95.31

DenseNet 95.2 95.5

SENet 94.73 94.91

GoogLeNet 94.36 95.00

MoibleNet 91.77 92.16

PreActResNet-18 94.54 95.03

DPN 95.69 95.75

Table I
VALIDATION ACCURACY

 65

 70

 75

 80

 85

 90

 95

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 4. MoibleNet

 70

 75

 80

 85

 90

 95

 100

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 5. DPN

see the optimal µ is 0.7. When µ < 0.7, the larger µ is,

the higher accuracy we can achieve. However, µ = 0.9
works the worst among all the choices. This is because the

additional variance caused by momentum is too large and

ruin the performance. However, as P increases, µ = 0.9
becomes a better choice gradually. It is the best choice when

P = 48. These observation is consistent with the tuning

guidelines we suggest in Lemma 6 that we can use a lager

µ when we have more processors.

V. CONCLUSIONS

In this paper, we propose a new momentum method M-

AVG and theoretically prove the finite sample error bound.

Our theory justifies the speed up brought by adding mo-

mentum. Thus, M-AVG can achieve faster convergence than

K-AVG. At the same time the optimal K is large than 1

which implies M-AVG has low communication cost. We also

provide two useful tuning guidelines. Specifically, when we

 70

 75

 80

 85

 90

 95

 100

 20 30 40 50 60 70 80 90 100

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 6. SENet

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 7. ResNet50

have more processors , we can choose a larger momentum.

When we switch from K-AVG to M-AVG, we have use a

smaller K.

Our M-AVG algorithm adds momentum at the meta level.

We can certainly use MSGD instead of simple SGD in the

learner level to accelerate. Our numerical experiment find

that this algorithm does have a good performance. However,

it is theoretically much harder to analyze its behavior. We

leave it to our future research.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90

A
cc

u
ra

cy
 (

%
)

Epoch

KAVG
MAVG

Figure 8. ResNet50

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 160 165 170 175 180 185 190 195 200

A
cc

u
ra

cy
 (

%
)

Epochs

Validation

0
0.1
0.3
0.5
0.7
0.9

Figure 9. P=6

REFERENCES

[1] Kai Chen and Qiang Huo. Scalable training of deep learning
machines by incremental block training with intra-block par-
allel optimization and blockwise model-update filtering. In
2016 ieee international conference on acoustics, speech and
signal processing (icassp), pages 5880–5884. IEEE, 2016.

[2] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,
Shuicheng Yan, and Jiashi Feng. Dual path networks. CoRR,
abs/1707.01629, 2017.

[3] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul Tucker,
Ke Yang, Quoc V Le, et al. Large scale distributed deep
networks. In Advances in neural information processing
systems, pages 1223–1231, 2012.

[4] Saeed Ghadimi and Guanghui Lan. Accelerated gradient
methods for nonconvex nonlinear and stochastic program-
ming. Mathematical Programming, 156(1-2):59–99, 2016.

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 160 165 170 175 180 185 190 195 200

A
cc

u
ra

cy
 (

%
)

Epochs

Validation

0
0.1
0.3
0.5
0.7
0.9

Figure 10. P=12

 0.89

 0.895

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

 160 165 170 175 180 185 190 195 200

A
cc

u
ra

cy
 (

%
)

Epochs

Validation

0
0.1
0.3
0.5
0.7
0.9

Figure 11. P=24

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[6] Andrew G. Howard, Menglong Zhu, Bo Chen, et al. Mo-
bileNets: Efficient convolutional neural networks for mobile
vision applications. CoRR, abs/1704.04861, 2017.

[7] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation
networks. CoRR, abs/1709.01507, 2017.

[8] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely
connected convolutional networks. CoRR, abs/1608.06993,
2016.

[9] Janis Keuper and Franz-Josef Pfreundt. Asynchronous
parallel stochastic gradient descent - A numeric core for
scalable distributed machine learning algorithms. CoRR,
abs/1505.04956, 2015.

[10] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asyn-
chronous parallel stochastic gradient for nonconvex optimiza-

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 160 165 170 175 180 185 190 195 200

A
cc

u
ra

cy
 (

%
)

Epochs

Validation

0
0.1
0.3
0.5
0.7
0.9

Figure 12. P=48

tion. In Advances in Neural Information Processing Systems,
pages 2737–2745, 2015.

[11] Tao Lin, Sebastian U Stich, and Martin Jaggi. Don’t use large
mini-batches, use local sgd. arXiv preprint arXiv:1808.07217,
2018.

[12] Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. Toward
deeper understanding of nonconvex stochastic optimization
with momentum using diffusion approximations. arXiv
preprint arXiv:1802.05155, 2018.

[13] Tianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, and Tuo
Zhao. Towards understanding acceleration tradeoff between
momentum and asynchrony in nonconvex stochastic optimiza-
tion. In Advances in Neural Information Processing Systems,
pages 3682–3692, 2018.

[14] Peter Ochs, Thomas Brox, and Thomas Pock. ipiasco: Inertial
proximal algorithm for strongly convex optimization. Journal
of Mathematical Imaging and Vision, 53(2):171–181, 2015.

[15] Adam Paszke, Sam Gross, Soumith Chintala, et al. Automatic
differentiation in pytorch. 2017.

[16] Boris T Polyak. Some methods of speeding up the conver-
gence of iteration methods. USSR Computational Mathemat-

ics and Mathematical Physics, 4(5):1–17, 1964.

[17] Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. Hogwild: A lock-free approach to parallelizing stochas-
tic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[18] Herbert Robbins and Sutton Monro. A stochastic approxi-
mation method. The annals of mathematical statistics, pages
400–407, 1951.

[19] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
et al. Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

[20] Ashia C Wilson, Benjamin Recht, and Michael I Jordan. A
lyapunov analysis of momentum methods in optimization.
arXiv preprint arXiv:1611.02635, 2016.

[21] Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence
analysis of stochastic momentum methods for convex and
non-convex optimization. arXiv preprint arXiv:1604.03257,
2016.

[22] Hao Yu, Rong Jin, and Sen Yang. On the linear speedup anal-
ysis of communication efficient momentum sgd for distributed
non-convex optimization. arXiv preprint arXiv:1905.03817,
2019.

[23] Fan Zhou and Guojing Cong. On the convergence properties
of a k-step averaging stochastic gradient descent algorithm for
nonconvex optimization. arXiv preprint arXiv:1708.01012,
2017.

[24] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J
Smola. Parallelized stochastic gradient descent. In Advances
in neural information processing systems, pages 2595–2603,
2010.

	I Introduction
	II Algorithm and Model
	III Main Results
	III-A Convergence of M-AVG
	III-B Comparison with K-AVG
	III-C Tuning guidelines

	IV Experiment
	IV-A MAVG accelerates convergence
	IV-B with P and an optimal

	V Conclusions
	References

