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Abstract—Recent progress in scientific machine learning
(SciML) has opened up the possibility of training novel neural
network architectures that solve complex partial differential
equations (PDEs). Several (nearly data free) approaches have
been recently reported that successfully solve PDEs, with exam-
ples including deep feed forward networks, generative networks,
and deep encoder-decoder networks. However, practical adoption
of these approaches is limited by the difficulty in training these
models, especially to make predictions at large output resolutions
(≥ 1024× 1024).

Here we report on a software framework for data parallel
distributed deep learning that resolves the twin challenges of
training these large SciML models training in reasonable time
as well as distributing the storage requirements. Our framework
provides several out of the box functionality including (a) loss
integrity independent of number of processes, (b) synchronized
batch normalization, and (c) distributed higher-order optimiza-
tion methods.

We show excellent scalability of this framework on both cloud
as well as HPC clusters, and report on the interplay between
bandwidth, network topology and bare metal vs cloud. We
deploy this approach to train generative models of sizes hitherto
not possible, showing that neural PDE solvers can be viably
trained for practical applications. We also demonstrate that
distributed higher-order optimization methods are 2-3× faster
than stochastic gradient-based methods and provide minimal
convergence drift with higher batch-size.

Index Terms—Deep generative models; Distributed training;
PDEs; Loss functions; Cloud vs HPC; Higher-order optimization

I. INTRODUCTION

Numerical simulation is a critical tool in analysis, optimiza-
tion, design, and control of complex engineered systems. The
status quo has predominantly been describing and modeling of
such systems through partial differential equations (PDEs) and
their numerical approximations. For increasingly complex en-
gineered applications (aircraft, rockets, autonomous systems,
etc.) the availability of fast predictive models becomes critical,

§Equal contribution

especially if the intent is to use these models for design and/or
control (so called model-predictive control, MPC).

Modern deep learning approaches have transformed a host
of application areas that involve assimilating large data streams
to make useful predictions. There has been increasing interest
in leveraging these advances for analysis, optimization, design
and control of complex engineered systems ([1], [2], [3], [4],
[5], [6]). However, off-the-shelf utilization of deep learning
strategies have had limited applicability, primarily due to the
following drawbacks:

• Reliance on abundance of data: Current ML approaches
tend to entirely let data dictate the narrative. As a result,
the data requirements for training such systems is very
large, which may be a major bottleneck for complex
simulations;

• Lack of generalizability: They are of narrow scope, i.e.,
they typically only succeed on the task that they are
trained on. Additionally, contextual constraints and do-
main knowledge known from physical system are left
unused.

These key issues have motivated the development of Scientific
Machine Learning (SciML) strategies that seek to bridge
modern deep learning concepts with numerical solutions of
PDE’s. Recent very exciting advances ([7], [8], [9], [10], [11])
have shown the efficacy of deep networks in solving partial dif-
ferential equations (PDEs). Specifically, methods as described
in [10], [11] rely on convolutional neural networks as a natural
representation of the domain for a PDE. The reliance on data
is reduced by explicitly incorporating notions of symmetry,
invariance or constraints into the network (either in the loss
function, or in the network definition). This also enables better
generalizability (due to the satisfaction of the constraints).
By training a deep neural network to act as (an arbitrarily
accurate) surrogate for a PDE (either a specific instance, or
a class of PDEs), significant gains in computational speed
have been shown to be possible. This is because the inference
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stage of neural networks is (near) real time, compared to the
cost of training. Thus, given a trained network that acts as a
PDE solver for arbitrary boundary and initial conditions, the
time-to-solve from a practitioner perspective is simply the time
for inference. This is consistent with ML standard practices,
where the (non-trivial) cost of training is amortized over the
large number of inferences required in, say, model predictive
control of complex systems.

While this field is evolving very rapidly, a preliminary
taxonomy of ‘neural-PDE’ approaches (through the lens of
computational science) is as follows: (a) PDE instance vs
PDE family solvers: Some approaches focus on improving
the numerical linear algebra ([10], [12], [13], [14], [15]), and
are limited to a single instance of a PDE, while other strategies
([7], [11], [16], [17]) focus on solving a general class of PDEs.
Instance solvers have the advantage of excellent performance,
but need to be retrained for each problem realization; (b) point-
wise predictions vs full field predictions: Some approaches
focus on making point wise predictions in the domain ([7],
[8], [9], [12], [18], [19], [20]), while others ([1], [11], [16])
make full field predictions. Point-wise predictions have the
advantage of easier trainability (since the output is usually a
single scalar), but full-field predictions naturally account for
boundary conditions. A common bottleneck to these ’neural-
PDE’ approaches is that nearly all of them scale poorly for
making predictions on large domain sizes, prohibiting their use
in real-world applications. This serves as the motivation for
the work presented here, and we illustrate our developments by
training DiffNet, a data-free conditional generative model, to
solve a parametric family of PDEs. DiffNet belongs to the full-
field predictions and PDE family solver classification in the
taxonomy introduced above. As such, it serves as a canonical
example of a complicated neural architecture that predicts full
field outputs for a space of initial/boundary conditions defining
a PDE class. We specifically focus on training DiffNet to
solve the inviscid Burgers’ equation, which is a fundamental
non-linear PDE with wide applicability in fluid mechanics,
gas dynamics and acoustics (i.e. conservation laws with shock
formation):

∂u

∂t
+ u

∂u

∂x
= 0 (1)

We seek to solve this PDE for a one-parameter family of initial
conditions defined as

u(x, t = 0) =
1

2
(1− cos(2πcx)) (2)

where c ≥ 0 is the parameter, and the domain of interest is the
unit square, (x, t) ∈ [0, 1] × [0, 0.2]. Conventional numerical
strategies for solving this PDE require some stabilization
to gracefully resolve the formation of shocks, and can be
computationally expensive for resolved simulations. Fig 1
shows a representative solution (generated via space-time finite
element solution) for a 1024 × 1024 mesh. This took about
400 seconds on 1 SKX node on TACC Stampede2, and serves
as our comparative baseline for performance.

DiffNet is a convolutional generative neural network that
takes in instances of parameterized boundary conditions as

input and outputs a full field. In order to train DiffNets, we
leverage the form of the PDE and minimize the sum of two
losses: PDE residual error, and reconstruction error of the
initial and boundary conditions. This approach has two major
advantages: (1) we only need to train a single neural network
for the entire parametric family of initial/boundary conditions
and/or coefficients, thus allowing fast inference for users; (2)
being data-free, we do not need any prior solutions of the PDE.
However, our prior experience with DiffNets [21] revealed that
training DiffNets for larger domain sizes (> 512 × 512) is
often impossible on standard GPUs (even on state-of-the-art
NVIDIA Tesla V100’s). Stable training for such generative
models also requires large batch sizes which leads to increas-
ingly larger GPU memory requirements.

Our primary contribution is a generalized approach to train
such large neural network architectures (that are data free)
which can serve as (near) real-time neuralPDE solvers. Our
main contributions include (a) a software framework (called
DeepFusion) for data parallel distributed deep learning, (b)
a hybrid distributed programming approach using OpenMP +
MPI for efficient inter/intra node communication, (c) leverag-
ing Intel MKLDNN for very fast forward and back propaga-
tion, (d) synchronized batch normalization, (e) loss integrity
independent of number of processes, (f) support for Hessian
based optimization methods, (g) illustrating this framework to
train DiffNet models for 1024×1024 domain sizes, which was
hitherto not possible on GPUs, and (h) providing results that
show nearly 100× speed-up in time to solve a PDE using
DiffNets compared to conventional PDE solvers, considering
only inference-time.

Fig. 1: A solution to the inviscid Burgers’ equation showing
shock formation, solved through finite element method

formulated in full space-time domain. Physically (x, t) ∈
[0, 1]× [0, 0.2] but all contour plots are rendered in a scaled

square grid



II. MATHEMATICAL PRELIMINARIES

Using the notation in Hsieh et. al. [10], we consider a PDE
defined as

Aν(u) = f, B(u) = b (3)

where u is the solution to the PDE over the domain Ω ∈
Rs, Aν is the non-linear functional form of the PDE defined
by its coefficients ν, and f is a forcing function. Here, B(·)
refers to the boundary conditions for the PDE. Without loss
of generality, we assume that Ω is the unit square.

A. DiffNets

Variable no. of
Upsampling blocks 

Convolutional Layer

Residual Block with
2x2 upsampling 
Dense Layer

�(�, 0)

�(�, �)

Residual
Block with upsampling

�1 BN ↑ 2 �2

Fig. 2: An exemplar architecture of DiffNets. A specific initial
condition, u(x, 0) is given as input to the generative model,
which then generates the solution for the specified initial value
problem. The primary building blocks for the network include
residual blocks with upsampling operations. The number of
upsampling blocks in the network depends on the resolution
of the domain.

For numerically solving the PDE, the standard approach is
to discretize Ω into S ∈ Ds where D is a discrete subspace
of Rs. Subsequently, u can be discretized into a vector, ū,
by approximating via a basis of piecewise-constant functions
over each sufficiently small discrete element. One can similarly
also discretize the boundary conditions appropriately. Given a
guess solution, ū, standard Finite Difference or Finite Element
strategies (FDM, FEM) linearize the non-linear PDE about this
guess solution (to get the PDE Jacobian, Aū) and iteratively
solve

Aū(δū) = res(ū); (4)
ū← ū + δū (5)

where res(ū) is the residual of the current guess w.r.t. the
PDE. The key computational cost lies in the repeated solution
to the linear equation, Eq. 4, while computing the residual is
computationally trivial. Most modern ’NeuralPDE’ approaches
exploit this computational asymmetry – checking to see if

a guess ū is in fact a solution is far more computationally
cheaper than actually solving the PDE for the solution, since
computing the residual is cheap.

The DiffNet approach is built on this concept. We model
the solution space using a generative neural network. DiffNet
consists of a generator Gθ : Rk → Rd that takes as input
the initial/boundary conditions b and any PDE coefficients ν.
The generator is then trained to generate the solution to the
PDE that corresponds to these initial/boundary conditions and
coefficients. This also models the stochastic case where b and
ν are sampled from distributions themselves.

We observe that for Gθ(·) to successfully represent the
solution space of the PDE, generator outputs must satisfy two
conditions: (1) Gθ(·) must satisfy the PDE, and (2) Gθ(.) must
respect the provided initial/boundary conditions. The training
loss can therefore be written in terms of two components:

L = Lp + λLb, (6)
where Lp(θ) = Eb,ν [‖Aν(Gθ(b, ν))− f‖22], (7)

Lb(θ) = Eb‖B(Gθ(b, ν))− b‖22]. (8)

The first term, Lp, minimizes the residual of the PDE
while the second term, Lb, pushes the generator to learn to
reproduce the given initial/boundary conditions. As stated in
the introduction, this is the overarching strategy for a variety
of neural-PDE solvers (e.g., PINN [8] and other works such
as [16]). The distinction of our approach lies in our choice
(a) of predicting the full field, u(x), rather than a single point
in the domain. This allows natural enforcement of boundary
and initial conditions; and (b) of using a generative model
in contrast to other recent approaches. Generative models
naturally account for uncertainty, and the network can be
extended to produce higher resolution outputs in a straight
forward way.

In order to train the above network, we sample from
the space of possible boundary conditions and coefficients,
{bi, νi}, i = {1, 2, · · · , k} and optimize the summed loss with
respect to θ using stochastic gradient descent (or a variant such
as Adam). Using minibatches sampled from a distribution of
b and ν allows the generator to learn the solutions for the
family of PDEs parameterized over (b, ν).

Implementing the forward model. The derivatives of
Lp(θ) with respect to θ require calculating ∂Aν

∂θ . This is
generally non-trivial and to make this tractable we borrow
ideas from finite difference methods. We approximate the kth

order derivative operator, ∇k(x,t) with convolutional operators
defined using finite-difference kernels. In practice, we use 3×3
Sobel kernels [22] for first order derivatives and Laplacian
kernels [23] for second order derivatives. This is identical to
the approach adopted by Zhu et. al. [16]; however, their setup
is somewhat restrictive since they use Encoder-Decoder (ED)
networks to construct solutions for a given specific PDE.

In the case of time-dependent PDEs, the generator Gθ must
learn to first reproduce the initial condition u0 at t = 0 in order
to successfully generate the rest of the solution. An incorrect
choice of the Lagrangian coefficient, λ, leads to failure either



by the model learning to generate the trivial solution (0) or
failing to converge. Additionally, the derivative operators in x
and t need to be scaled appropriately in order to satisfy the
CourantFriedrichsLewy condition for stability.

We show an exemplar architecture for a DiffNet in Fig. 2.
Note that we rely on additional residual upsampling blocks
for finer resolution, so as to keep the parameter count low.
The advantage of training a conditional generative model such
as DiffNet is that we only need to train a single model for
a distribution of parameters characterizing the system. Our
approach allows for interpolating and (possibly) extrapolating
over unseen boundary conditions and coefficients to generate
solutions. While our approach uses convolutional layers to
reduce the number of parameters, standard GPU based training
still restricts us to solving PDEs for limited domain sizes.
However, scaling our method to large scale distributed training
allows us to bypass this specific disadvantage. In the following
section, we discuss our approach for distributed training of
DiffNets.

III. ALGORITHMIC DEVELOPMENTS

GPUs remain the overwhelmingly popular compute plat-
form for training these models. GPU memory utilization
during training is driven by three factors: 1) number of model
parameters in the network, 2) mini-batch size, and 3) size of
intermediate tensors created during loss and gradient compu-
tations. A known limitation of GPUs is their relatively small
available memory: for example, a state-of-the-art NVIDIA
Tesla V100 GPU has only 32GB memory. Peak memory
utilization to train a DiffNet for domain size 512 × 512 and
mini-batch size 64 is ∼64GB, which is twice the available
GPU memory. Due to these memory limitations, training on
GPUs is done using mini-batches as small as 16, which in
turn results in slow convergence and prohibitive wall-clock
times. On Table I, we show maximum batch size and GPU
memory utilization for different domain sizes that we were
able to train on a NVIDIA Tesla RTX with 24GB memory.
DiffNet training on domain sizes > 512× 512 is not feasible
on currently available GPUs including Tesla V100.

Domain Size Batch Size GPU Memory (GB) Time/Epoch (s)
128×128 16 0.7 105
256×256 16 2.1 340
512×512 16 16.4 1401

TABLE I: GPU memory utilization and time per epoch for
4096 samples for different domain and batch sizes. On Titan
RTX with 24GB memory, Diffnet training on domain sizes
> 512× 512 with batch size 16 is not feasible.

NVIDIA AI Servers like DGX-2 can accommodate bigger
batch sizes by distributing the batches across multiple GPUs
in a single unit with more cumulative GPU memory (256GB
with 8 GPUs and 32GB/GPU). However, they come with an
expensive price tag of ∼$0.5M and are not affordable for the
general practitioner. In spite of this price tag, the maximum

available memory is still the same as the cumulative memory
available on 1 or 2 nodes of a CPU cluster.

In order to overcome those memory limitations, our Deep-
Fusion framework is based on data parallel distributed train-
ing on multi-node CPU clusters with 5-10x more memory-
per-node than a single GPU, and multiple cores-per-node
connected via high-end interconnects with low latency and
high bandwidth, which can match or exceed the performance
of single GPU. In addition to data parallelism, extension to
model parallelism can further push the envelope on accessible
network sizes.

The rest of this section is organized as follows: in section
III-A we provide details on data parallel training; in section
III-B we discuss the need for synchronized batch normaliza-
tion; the OpenMP and MPI based hybrid distribution model is
explained in section III-C; time complexities for computation
and communication are discussed in section III-D, and a
comparison to open-source software is made in section III-E.
In Table II, we summarize the notations used in this section.

Ns Total number of samples
bs Number of samples in a mini-batch
N loc
s Local number of samples
blocs Local mini-batch size
Nb Number of mini-batches
Nw Number of weights in the model
p Number of MPI tasks in comm
Nt Number of threads per MPI task
F Forward propagation complexity
B Backward propagation complexity
L Loss function
θ Model parameters
Gθ Gradient w.r.t model parameters

TABLE II: Notations used in this section

A. Data Parallel Distributed Deep Learning

We use the data parallel strategy, where multiple replicas
of a model are simultaneously trained to optimize a single
objective function [24]. In this approach, the training mini-
batches are equally split among the available workers, as
shown in Figure 3. Each of these workers asynchronously
perform forward and back-propagation of their local mini-
batch through the neural network. After each mini-batch, the
locally computed gradients are averaged among workers via
an MPI Allreduce operation, and that average is used by
each local optimizer to update the layer parameters. The loss
function is also computed locally, and the objective value is
averaged among workers.

It is important that the samples (training examples) are split
among workers in such a way that the same exact problem
gets solved no matter the number of processes (MPI ranks).
For that purpose, we adjust the total number of samples Ns
and the batch size bs to make them divisible by the number
of workers p, such that the local sample count and batch size



Fig. 3: Data Parallel Deep-Learning : multiple replicas of the
model are asynchronously trained by workers, each worker
using a subset of the global mini-batch.

are given by

N loc
s = dNs

p
e, (9)

blocs = bbs
p
c. (10)

Furthermore, as shown in Figure 4, each worker draws their
local mini-batch sequentially from the global sample pool, in
such a way that their union (global mini-batch) would equal
the one used in a single-processor run with the same values of
Ns and bs. This guarantees exactly identical results (modulo
rounding errors due to gradient reduction) for any number
of workers used. Finally, one can easily show that, when Ns
is not divisible by bs, the remainder Ns mod bs will still
be divisible by p, which enforces optimal load balancing by
guaranteeing that the local mini-batches processed by each
worker at any given time have identical sizes.

Fig. 4: Data splitting across workers in a parallel run: mini-
batches are always guaranteed to have the same size across
workers at any given time, promoting optimal load balance.

Algorithm 1 summarizes our per-epoch strategy for dis-
tributed training using the data parallel paradigm.

Algorithm 1 Data parallel distributed deep learning (1 epoch)
Require: Generate pN loc

s samples, split in mini-batches of size blocs
1: for mb = 1 to Nb do
2: xi ← {blocs samples} . Worker i local mini-batch
3: `i(θ)← L(xi, Gθ(b, ν)) . Forward pass and local loss
4: gi(θ)← ∇`i(θ) . Back-prop and local gradient
5: `(θ)← 1

p

∑
`i(θ) . Average loss using MPI Allreduce

6: g(θ)← 1
p

∑
gi(θ) . Average grad using MPI Allreduce

7: ∆θ ← u(g, θ, t) . Run local optimizer
8: θ ← θ + ∆θ . Update network parameters
9: end for

B. Synchronized Batch-normalization

Batch Normalization (BN) is a procedure that dramatically
improves the convergence of neural networks by re-scaling
and re-centering data using running statistics, namely mean
and variance, accumulated from each mini-batch in the course
of an epoch [25]. This creates a dependency on the local mini-
batch size, breaking the paradigm of problem independence on
the number of workers discussed in section III-A. To remove
this dependency, we developed a scheme to synchronize the
mean and variance statistics at all BN layers by performing an
MPI Allreduce operation after each epoch. This is especially
important when the local mini-batch size on each processor is
small, which would result in poor statistics and have a neg-
ative impact on validation accuracy. The BN synchronization
scheme is explained in Algorithm 2.

Algorithm 2 Batch-normalization synchronization algorithm
1: for each epoch do
2: for each BN layer in network do
3: if in evaluation then
4: µB ← 1

p

∑p
i µ

(i)
B . Allreduce BN means

5: σ2
B ← 1

p

∑p
i σ

2
B
(i)

. Allreduce BN variances
6: end if
7: end for
8: end for

C. Hybrid Distribution Model

Our parallel distribution scheme is based on the so called
hybrid MPI-OpenMP programming paradigm, in which com-
munication between processes is done via MPI, while each
process can spawn its own OpenMP threads that run inside
a single shared-memory processor (SMP) node, as illustrated
in Figure 5. Furthermore, since the OpenMP threads only
communicate with other threads within the same SMP node,
and MPI routines are only invoked outside of OpenMP parallel
regions, our distribution scheme can be said to model the
process-to-process hybrid paradigm. In particular, our applica-
tion spawns p processes via the usual mpirun utility, which
can land on up to p SMP nodes. The number of processes per
node depends on the specific specs of the host machines and
on details of the experiment. A few underlying libraries used
by our application (e.g., libtorch and mkldnn) spawn up to Nt
local threads of their own, where Nt can be controlled via the
OMP NUM THREADS environment variable.

D. Complexities

In this sub-section, we will discuss computation and com-
munication complexities of our approach. As shown in Figure
3, the entire data set with Ns samples is split into Nb
mini-batches with bs samples per mini-batch. Each MPI task
computes loss and gradients for the local mini-batch of size
blocs . Loss and gradient computations have a complexity of

O
(
F (Nw, b

loc
s ) +B(Nw, b

loc
s )

)
. (11)

Forward (F ) and backward (B) propagation complexities are
non-linear functions of Nw, blocs , number of cores allocated



Fig. 5: Process-to-process hybrid distribution paradigm: pro-
cesses communicate via MPI, and spawn local threads of their
own that communicate via OpenMP inside an SMP node. MPI
routines are only invoked outside of OpenMP parallel regions.

per MPI task and the network architecture. We use libtorch
C++ APIs to execute forward and backward propagation in
a single MPI task, which internally uses MKLDNN [26]
for optimal performance on Intel CPUs. Local gradients are
averaged using MPI Allreduce, which has a communication
complexity of O(Nw+ log(p)). Since Nw � p, we expect the
communication time to remain almost constant, independent
of p and of the underlying algorithm used by the OpenMPI
implementation. Network weights on each process are updated
using this averaged gradient via a stochastic gradient descent
(SGD) method. Synchronization of statistics for all batch
normalization layers after each epoch has a complexity of
O(Nw). The overall complexity per epoch is, therefore,

O
(
Nb

(
F (Nw, b

loc
s ) +B(Nw, b

loc
s ) +Nw

))
. (12)

E. Comparison to Open Source Software

Tensorflow and Pytorch are the most popular open source
libraries for deep learning, and both provide support for
distributed deep learning. Out of the box, they handle all-
reduce operations on gradients computed on a local mini-
batch on each device. Horovod is an open source library
[27] from Uber that enables data parallelism and gradient
averaging. However, optimal load balancing, guarantees of loss
independence on processor count, p (Figure 8), synchronized
batch normalization and hybrid distributed implementation
discussed in the previous sections are not provided out of the
box by these open source libraries.

DeepFusion democratizes the ability of data scientists to
train models that are too big for GPUs with desired system
performance and convergence rates without any distributed and
high performance computing experience.

Out of the box
functionality TF Pytorch Horovod DeepFusion
All reduce on

Gradient Yes Yes Yes Yes
Loss Integrity

independent of p No No No Yes
Synchronized

Batch Normalization No No No Yes

TABLE III: Qualitative comparison of DeepFusion function-
ality with Open Source Software

IV. RESULTS AND DISCUSSIONS

One of the key outcome of our experiments was to demon-
strate a practical approach to train DiffNets on domain sizes
> 512 × 512 that are too big for GPUs. We tested our
framework on both TACC Stampede2 HPC clusters with
bare-metal access, as well as Microsoft Azure and Amazon
Web Services (AWS) HPC clusters built using on-demand
virtual machines. We target these computational resources as
representative of what is easily accessible for the general data
science practitioner unlike DGX-2 that requires significant
investment. We report results obtained from AWS, Microsoft
Azure and Stampede2. On Table IV, we provide all relevant
specifications for Azure and Stampede2 used in our experi-
ments. Care was taken to select configurations on AWS and
Azure to reasonably match the CPU as well as interconnect
speeds of Stampede2. This allows rational assessment of
performance of DeepFusion across nearly similar platforms.
We present wall-clock time comparisons between AWS, Azure
and Stampede2 in section IV-A to determine the cluster to use
for our large domain runs. In section IV-B, we conduct strong
scaling experiments for 128 × 128 and 256 × 256 domain
sizes for 1 to 128 nodes (48 to 6144 cores) on Stampede2
to demonstrate scalability of our software. Finally, in section
IV-C, we present results for training a DiffNet model for
512×512 and 1024×1024 domain sizes for Burgers’ inviscid
equation (Eq. 1) for parameter distributions characterizing the
initial conditions (Eq. 2), which are currently not possible to
train.

Specification AWS Azure Stampede2

Type
Virtual

Machine
Virtual

Machine Bare-Metal

CPU
Intel Xeon

Platinum 8000
Intel Xeon

Platinum 8168
Intel Xeon

Platinum 8160
CPU cores 72 44 48

Memory (GB) 192 352 192

Interconnect
Elastic

Fabric Adapter
EDR

Infiniband
Intel

Omni-Path
Bandwidth 100 Gb/sec 100 Gb/sec 100 Gb/sec
Topology AWS Proprietary Fat tree Fat tree

TABLE IV: Functional specifications of AWS, Microsoft
Azure and Stampede2 infrastructure used in our experiments.

A. Conventional HPC vs. Cloud Based HPC

In this section, we compare wall-clock times between AWS,
Microsoft Azure, and Stampede2 in order to determine the
optimal HPC cluster configuration to train DiffNet with very
large (1024 × 1024) resolutions. On Table V, we show per-
epoch wall-clock times (in seconds) to train DiffNet with
64× 64 resolution using 1, 2 and 4 nodes. The total number
of samples used for this experiment was Ns = 4096 and the
global batch size was bs = 1024; the number of processes
per node was fixed at 4, with each process spawning 8 local
threads. Single node performance on bare-metal Stampede2 is
∼ 2× faster than on Azure and AWS VM. On the same table,
we also compare per-epoch wall-clock times (in seconds) for



different resolutions on 4 compute nodes (with 4 processes per
node, 8 threads per process). Even though the infrastructure
specifications of Azure, AWS and Stampede2 are almost
identical, slowness on Azure and AWS can be attributed to
the overheads associated with virtual machines.

Domain Size Nodes AWS Azure Stampede2
64x64 1 131.0 113.1 67.2
64x64 2 65.2 54.9 34.9
64x64 4 32.4 28.6 19.4

128x128 4 138.4 126.2 68.5
256x256 4 650.5 597.6 279.8

TABLE V: Comparison of per-epoch wall-clock times (in
seconds) between AWS, Azure and Stampede2 for varying
resolutions and different number of nodes (see Table IV for
cluster specs). For all three clusters, 4 processes were used
per node (spawning 8 threads each).

B. Scaling Experiments

In Figure 6, we report strong scaling results to train DiffNet
for 128 × 128 and 256 × 256 resolutions, using from 4 to
128 nodes on Stampede2. In this experiment, we used 8 MPI
processes per node and each process spawned 12 threads, to
a total of 96 threads per node. This matches the full capacity
of the Stampede2 Skylake nodes, which have 48 physical
hyperthread-enabled CPU cores, resulting in 96 hardware
threads per node. In Table VI, we compare per-epoch wall
clock time between a single GPU (Titan RTX as well as Tesla
V100) with the wall clock time using 128 Stampede2 nodes.
We show this (potentially unfair) comparison to illustrate the
advantage of scale-up on CPUs using a distributed training
approach.

Fig. 6: Strong scaling results for training DiffNet on Stam-
pede2: per-epoch times (in seconds) versus number of nodes
for 128 × 128 and 256 × 256 resolutions, using 8 processes
per node and 12 threads per process.

As discussed in section III-D, our computation time com-
plexity scales with p and communication complexity is in-
dependent of p. In Figure 7, we show the computation and

Output
resolution

1 Titan RTX
(seconds)

1 Tesla V100
(seconds)

128 Stampede2 nodes
(seconds)

128×128 105 130 4.6
256×256 340 494 12.7
512×512 1401 1961 25.3

1024×1024 N/A N/A 89.5

TABLE VI: Comparison of per-epoch wall-clock time between
Titan RTX, Tesla V100 and DeepFusion on 128 Stampede2
nodes to train Diffnet (of different resolutions) with 4096
samples. Training on large CPU clusters using DeepFusion
is 20− 60× faster than training on both GPU’s. The 30-40%
change between the Titan RTX vs Tesla V100 is attributable
to the 30% difference in clockspeed between them.

communication wall-clock times for different p. We observed
that our communication times increase only slightly with p, as
expected. Note that the communication times are significantly
(100×) smaller than compute times.

Fig. 7: Computation and communication wall clock times for
different p corresponding to strong scaling results for domain
size 256×256 in Figure 6. Computation time decreases linearly
with p, while communication time increases only slightly with
p.

As discussed in section III-A, the training samples are split
in such a way as to guarantee loss decay integrity, i.e., the
same exact problem is solved independently of the number
of MPI processes. In Figure 8, we show the loss vs. epoch
for different values of p. The small deviation in loss values
for different p is due to rounding errors in MPI Allreduce
operations for computing gradient averages.

C. High Resolution DiffNet
In this sub-section, we illustrate the ability of the framework

to train DiffNet models with very high resolution outputs
(sizes ≥ 512 × 512). This typically requires ≥ 2000 epochs
until convergence (for different ranges of the initial condition
frequency c) using a first-order optimizer like SGD.

Example 1: In the first example, we train a DiffNet to
produce outputs of resolution 1024 × 1024. We emphasize



Fig. 8: Comparison of loss decay vs. epoch for a subset of p
used in strong scaling experiments in Figure 6. Loss decay is
preserved (independent of p).

that generative models of this size have hitherto fore not been
trained (to the best of our knowledge). We train the DiffNet
to be predictive in a range of the parameter c ∈ [3, 6]. We
remind the reader that c represents a one-parameter family of
initial conditions to the inviscid Burgers equation. The training
sample set consists of 256 points from c ∈ [3, 6]. We set the
mini-batch size to 64. This model was trained on 8 nodes of
Stampede2 (with 8 processes per node), taking 2200 epochs
till convergence (see Fig. 10). The runtime for this training
was 32 hours.

After training, we performed inference using the DiffNet
for a set of initial conditions from the one-parameter family.
Results for c = 3 are shown in Fig. 9, where we compare the
DiffNet inference result with the solution from an optimized
FEM solver (based on the Petsc library) of the inviscid Burgers
equation. While the general trend of the solution (as the
wave evolves – from left to right in the figures – and forms
shocks) is captured well, there is still room for improvement
as the more diffused nature of the ML solution indicates.
We hypothesize that using higher order Sobel filters (i.e.
computing the gradients using higher order stencils) could help
in eliminating the diffusive features of the ML solution. We
continue to explore these aspects.

Example 2: In the second example, we explore if the
DiffNet can be trained to predict solutions for a much larger
distribution of the initial conditions. We train a DiffNet to
predict solutions at 512×512 resolution, but for initial condi-
tions from c ∈ [3, 16]. At higher values of c (which represent
initial conditions exhibiting higher frequencies), we expect
the formation of multiple shocks. The traditional numerical
solutions for these initial conditions have to be carefully
performed. We set the mini-batch size to 64. This model was
trained on 8 nodes (64 processors) on Stampede2, taking 4000
epochs till convergence (see Fig. 11). The runtime for training
this model was 15 hours. Notice that the loss in this case is
significantly larger than the previous example. This is due to
two reasons: the reduced resolution (1024→ 512) and, more

N c ||ug||2 ||ufd||2 ||ufe||2 ||δgfd||2 ||δfe
fd||2

512 3 0.506 0.570 0.570 0.134 0.007
512 5 0.495 0.527 0.527 0.077 0.009
512 10 0.497 0.493 0.493 0.038 0.013
512 13 0.507 0.493 0.493 0.043 0.016
1024 3 0.544 0.570 0.570 0.063 0.004

TABLE VII: Norm of different solutions (denoted u) and their
differences (denoted δ). ug is the solution generated through
DeepFusion, ufd is the solution obtained using explicit time
marching with finite difference approximation; and ufe is the
“space-time” solution obtained through finite element approxi-
mation in both space and time. The differences between them:
δgfd = ug−ufd and δfefd = ufe−ufd. All norms are calculated
over the entire spatiotemporal domain

importantly, the larger c space.
After training, we again performed inference using the

DiffNet for a set of initial conditions from the one-parameter
family. Results for c = 3, 5, 10, 13 are shown in Fig. 15, where
we compare the DiffNet inference result with the solution from
an optimized FEM solver (based on the Petsc library) of the
inviscid Burgers equation. As before, the general trend of the
solution (as the wave evolves – from left to right in the figures
– and forms shocks) is captured well, but there is still room
for improvement.

Fig. 12 and Table VII show additional, quantitative com-
parison between the DiffNet results with a stabilized Finite
Element solution (at 512×512 resolution) against a very high
resolution (2048 × 2048) finite difference solution. Fig. 12
plots the solution at one time point (t = 0.2), and suggests
that stabilized finite element space-time approach is still
unable to capture the shocks, while the DiffNet is able to
accurately capture the shock without any dispersive effects.
This is particularly promising as the loss function used in the
DiffNet is the simplest one possible, with significant room
for improvement. Table VII shows the L2 error norm (in
space-time) of the DiffNet and FEM solution against the
high resolution FDM solution. Interestingly, we find that the
DiffNet approach produces more accurate results for initial
conditions exhibiting more waves (larger c). This is in contrast
to what is observed in traditional approaches (compare the
last two columns of Table VII). We find it promising that the
DiffNet is able act as a general PDE solver for a wide range of
initial conditions. This strongly suggests that, with the proper
training infrastructure, it is possible to develop truly general
PDE solvers that produce accurate solutions for general classes
of PDE’s.

Effect of batch size on solution using first order (SGD)
and second order (L-BFGS) optimizers: The data paral-
lelism afforded by DeepFusion potentially allows one to use
larger batch sizes. However, it is well known that increasing
batch sizes can decrease the convergence of Stochastic Gra-
dient Descent (SGD). We explore this effect of batch size on
the training performance. Fig. 13(top) plots evolution of the
loss function with training epochs for increasing batch size
(BS) for a 64 × 64 resolution DiffNet. We clearly see some
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Fig. 9: Inviscid Burgers’ equation solved on 1024× 1024 pixels (left) or elements (right)

Fig. 10: Loss vs. epoch for training DiffNet with domain size
1024×1024 on Stampede2 using 256 sample points and batch
size 64.

degradation in convergence rate as the batch size is increased
to 64. We next trained the same network using a second order
optimizer (L-BFGS) implemented in the DeepFusion frame-
work. Fig 13(bottom) shows negligible impact of increasing
batch size on convergence. As expected, the second order
method converges in fewer epochs, with similar reduction in
loss happening within 10 training epochs as compared to 150
epochs for SGD. L-BFGS optimizers require larger memory
(to evaluate the Hessian) which a distributed approach (like
DeepFusion or LBANN) can gracefully accommodate.

The increased computational overhead results in increased
time per epoch, and this is plotted in Fig. 14. While L-
BFGS takes an order of magnitude less number of epochs
to converge, each epoch is more expensive due to memory
and compute requirements from evaluating the Hessian. It is
informative also to look at the results in terms of compu-
tational time to reach a certain convergence threshold, with
L-BFGS schemes about 3× faster than the SGD scheme. This
reduction in computational time to reach a desired loss thresh-

Fig. 11: Loss vs. epoch for training DiffNet with domain size
512 × 512 on Stampede2 using 256 sample points and batch
size 64.
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Fig. 12: An example of the solution profile u vs. x at the final
time (t = 0.2), compared for different methods. Resolution =
512× 512 and c = 10

old can be enhanced via parallelization. DeepFusion allows
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Fig. 13: Loss vs. epoch for 64 × 64 domain DiffNet with
varying batch-size (BS). Second order optimizers (L-BFGS)
provide minimal convergence drift with higher batch-size. All
training done on 1 node of Nova

p 64× 64 128× 128
2 63.6 208.4
4 42.5 113.4
8 32.0 67.2
16 23.6 46.2

TABLE VIII: Time (in minutes) taken to complete 100 epochs
of the L-BFGS method for the 64×64 and 128×128 domain
DiffNet on different number of processors

parallelization of L-BFGS based training across multiple CPU
nodes, and this training across multiple nodes proportionally
decreases the time-to-train, as shown in Table VIII

These results are very promising as they allow using second
order methods – which are less sensitive to large batch sizes
– and data parallelization to reduce time-to-solve to beat
SGD based approaches. We include additional results in the
appendix A.

Comparison of run-times between DiffNet and FEM
based solutions: While the training times for ML models is
admittedly long, once trained, the inference step is often very
fast. This allows one to amortize the cost of training across
multiple users and instances. The availability of a general
’NeuralPDE’ makes this a viable possibility. We quantify
this argument by comparing the time it takes for a trained
DiffNet to make a prediction (i.e. inference) with the time
it takes for a well optimized FEM solver to perform the
same prediction. Both DiffNet inference and FEM solve are
performed on one node of Stampede2. This comparison is
reported in Table IX, which shows a 40x improvement in
prediction time. We emphasize that the inference step is not
optimized, suggesting that the 40x improvement we show is a
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Fig. 14: Loss vs. time to solve for 64×64 domain DiffNet with
varying batch-size (BS). Second order optimizers (L-BFGS)
are substantially slower than SGD. All training done on 1
node of Nova

lower bound.

Domain Size FEM (seconds) DeepFusion (seconds)
512×512 23.2 3.6

1024×1024 395.6 9.8

TABLE IX: Comparison of solve time for the finite element
solution and the inference time for the DeepFusion solution

V. CONCLUSIONS

In this work, we report on a data distributed computing
approach for training large neural network architectures, es-
pecially in the context of data-free generative models that
serve as PDE solvers. We highlighted some of the key
challenges and improvements over conventional GPU based
training strategies, as well as other data-parallel approaches.
We demonstrated excellent scaling results for our framework
on current supercomputers. We illustrated the ability of this
framework to enable practitioners to train very large mod-
els, thus enabling practical applications of such ’neuralPDE’
solvers. We believe that availability of tools like the one
presented here will help democratize the ability of a data
scientist to produce (near) real time predictions of complex
systems characterized by PDEs. Our future goals include
extension of the framework to incorporate model parallelism
for increased scaleup, as well as apply second order strategies
to train DiffNets for a wide range of PDE’s.
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Fig. 15: Contour plots of the solution to the inviscid Burgers’ equation: solutions from DiffNet (left) vs solutions from a
finite element solver (right). The initial condition is characterized by the wave number c (defined in 2). The first row presents

solution for c = 3 and subsequently for c = 5, 10 and 13 in the latter rows respectively. On the left, the image size is
512× 512 pixels, whereas on the right, the discretization is a mesh of 512× 512 bilinear quadrilateral elements.
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VII. APPENDIX

A. Batch size effect on convergence

We continue exploring the effect of batch-size on conver-
gence rates of both first order optimizers (SGD) as well as
second order optimizers (L-BFGS) both of which are imple-
mented in a data parallel way in DeepFusion. Fig. 16 plots the
loss evolution with training epochs for a 128 × 128 DiffNet
model that was trained on 1 node on Nova. These results are
consistent with those shown in Fig. 13 for a 64 × 64 reso-
lution DiffNet model, where L-BFGS optimizer is relatively
insensitive to the batch-size ranges chosen. As expected, the
second order method converges in fewer epochs, with similar
reduction in loss happening within 30 training epochs as
compared to 150 epochs for SGD. L-BFGS optimizers require
larger memory (to evaluate the Hessian) which a distributed
approach (like DeepFusion) can gracefully accommodate. The
increased computational overhead results in increased time per
epoch, and this is plotted in Fig. 17.
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Fig. 16: Loss vs. epoch for 128 × 128 domain DiffNet with
varying batch-size (BS). Second order optimizers (L-BFGS)
show faster convergence rate and provide minimal convergence
drift with higher batch-size.

0 1,000 2,000 3,000 4,000 5,000

−1

0

1

time (sec)

lo
g

1
0
(L

)

BS=8 BS=16
BS=32 BS=64

(a) SGD

0 0.5 1 1.5 2 2.5

·104

−1

0

1

time (sec)

lo
g

1
0
(L

)

BS=8 BS=16
BS=32 BS=64

(b) L-BFGS

Fig. 17: Loss vs. time for 128 × 128 domain DiffNet shown
in Fig. 16



B. Additional quantitative comparison between DiffNet and
conventional PDE solvers

In this subsection, we provide additional results over those
shown in the main text to quantitatively compare the DiffNet
inferences with conventional PDE solver technology. Figure 18
plots the solution at a particular time instance (t = 0.2) where
there is formation of shocks. Notice that the DiffNet solution
is very close to the fully resolved FDM solution for the large
wave-number case (c = 13), with increasingly large deviations
as the wave-number is decreased.
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Fig. 18: The solution profile u vs. x at t = 0.2, compared for
different methods. Resolution = 512× 512 and c values are 3
(top), 5 (middle) and 13 (bottom)
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