COMBINING OBJECT DETECTION AND BRAIN COMPUTER INTERFACING: THE
MIND SCENE SPELLER

Arne Robben, Nikolay Chumerin, Nikolay V. Manyakov, Adrien Combaz, Marijn van Vliet and
Marc M. Van Hulle

K.U.Leuven, Laboratorium voor Neuro- en Psychofysiologie, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium

ABSTRACT

In this paper we propose an application which com-
bines two research disciplines: object detection and brain-
computer interfacing. It is in particular useful for patients
suffering from a severe motor impairment which prevents
them to interact with their surrounding environment. The
application shows an image of e.g., the room of the patient,
on a computer screen and searches for instances of certain
objects in the image. When these are found, a flashing
dot appears on top of them, flickering in a fixed but
different frequency for each object. Meanwhile, brain-
activity (EEG) is recorded. Selecting an object can then
be achieved by looking at the corresponding flashing dot:
the application processes the EEG-readings and identifies
the frequency embedded in the signal (SSVEP decoding).
Therefore it can conclude on the object the subject was
looking at. In this way a patient can (re)gain interaction
with his or her environment.

I. INTRODUCTION

In the last decade, research on object detection has
become a flowering branch in the domain of computer
vision. The task is, given an image, to conclude on the
presence of a specified object and, if present, to determine
its location in the image. Research on detectors for faces,
cars, motorcycles, pedestrians, road signs and many more,
already led to successful and reliable applications [1], [2],
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Most techniques are based on the matching of local
features of an image to a database of features (a codebook)
derived from a training-set of an object class. Among these
local features are grayscale patches, Haar-like features,
local shape contexts, SIFT, SUREF, etc... [2], [5], [6], [7].

For this application we made codebooks of SIFT-des-
criptors. These local features are 128-dimensional vectors,
proposed by David Lowe in 1999 and are constructed
in such way that they are invariant to scale and rotation
(Scale Invariant Feature Transform abbreviates to SIFT).
Besides this, they are also claimed to be partially invariant
to a substantial change of affine distortion, change in
3D viewpoint, addition of noise and illumination [8]. We
constructed 3 codebooks: one for a coffee-thermos, one for
a cup with an apple-print, and one for a white CRT-monitor
(see Fig. 1.), objects which might appear in everyday

environments.
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Fig. 1. The cup, thermos and monitor for which codebooks
were constructed.

Our application connects the domain of object detec-
tion with the research topic of Brain-computer interfaces
(BCIs), resulting in a combination which has, to the best
of our knowledge, never been looked into before.

Over the last few years, research on BClIs is witnessing
a tremendous development (see, for example [9]). These
interfaces are able to directly read out brain activity and
thus establish a communication pathway between the brain
and a computer, bypassing the need for muscular activity.
As such, BCIs can significantly improve the quality of
life of patients suffering from impairments as amyotrophic
lateral sclerosis, stroke (CVA), brain/spinal cord injury,
multiple sclerosis, etc.



In principle, two kinds of BCIs can be discerned: in-
vasive (intra-cranial) and non-invasive ones. The former
are characterized by implanted micro-electrodes, mostly
in the premotor-or motor frontal areas or into the parietal
cortex (see, for example [10]), the latter mostly work with
electroencephalograms (EEGs) recorded from the scalp.

There are many kinds of EEG-BClISs, categorized accord-
ing to the paradigm that is behind the BCI. A first group
relies on the P300 event-related potential (ERP) [11]. A
brain potential is prominent in the parietal cortex as a
response to infrequent but preferred stimuli in contrast to
non-preferred high-frequent stimuli (also called the oddball
paradigm). A second group is based on the detection of
mental tasks (imagination of limb movement, subtraction,
word association, etc...) which are discovered through slow
cortical potentials (SCP) [12], readiness potentials [13]
and event-related desynchronization (ERD) [14].

The third group relies on the detection of steady-state
visual evoked potential (SSVEP) responses and is also
used for our application. If a visual stimulus flickers at
a sufficiently high rate (> 6 Hz), individual transient
visual responses overlap, resulting in a steady state signal,
observable mostly in the occipital area. [15]. Not only the
stimulus frequency f can be discovered in the signal, the
harmonics 2 f and 3 f are also often embedded in the signal.

When there are multiple targets flickering in different
frequencies it intuitively suffices to look at the maxima
of the Fourier transform of the EEG-signal and decide
with this information on which frequency the subject was
focusing (as illustrated in Fig. 2.). It is however often not
that easy. One problem is that the amplitude of a typical
EEG in the spectral domain is inversely proportional to
the frequency. The major problem though, is due to the
nature of the EEG-recordings: a lot of noise and other
on-going brain activity are present in the signal. Standard
techniques for dealing with this problem record over a long
time interval, average over several time intervals[16] or
make use of preliminary training. In this application we use
a different approach, inspired by the method proposed by
[17], which does not require a preliminary training stage.

Two main results of our studies will be treated: the
performance of our detection system, and the SSVEP-
decoder. A study with X subjects was carried out to
estimate the accuracy of the SSVEP classifier.

II. OBJECT DETECTION
II-A. Acquiring SIFT-features

Our object detector is mainly based on the matching
of SIFT-features found in a scene-image to SIFT-features
found from pictures from a cup, thermos and monitor under
different viewpoints and stored in a ’codebook’.

Acquiring SIFT-features from an image starts from de-
tecting interest points (or keypoints) in this image, these
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Fig. 2. Standard SSVEP-decoding approach: (A) a subject
looks at Target 1, flickering with frequency fi, (B) noisy
EEG-signals are recorded, (C) taking the Fourier Trans-
form over a sufficient large window shows peaks at f1,2f;
and 3f.

are salient points in the image with rich local information.
In order to achieve these interest points, a scale space
is constructed by convolving Gaussians in variable scale
with the input image and taking the difference of these
convolutions for nearby scales (also called Difference of
Gaussians (DoG)). The interest points correspond to local
minima/maxima of the DoG images (for more details, see
(8D

Next, based on local grayscale image properties, a
dominant gradient direction is computed for each interest
point in the scale where it was found. This is not only
done for the interest point but also for every pixel in
the neighborhood of this keypoint, giving more weight to
nearby pixels then to pixels further from the interest point.
Putting these orientations into local orientation histograms
provides us with the entries which make up the 128-
dimensional descriptor. By normalizing the descriptors to
unit length, the effects of illumination change are said to
be reduced (again, see [8]).

The images used in this study where all taken by a digital
camera and have a resolution of 2304 x 3072 each. In large
images many small gradients are detected even if these
gradients are due to small texture variations, reflecting
light, etc. What we really want are keypoints found on
the level of the objects in the image: on the outline of
objects, on logos on the object, on handles off the object,
etc. This is where a first user-dependent parameter comes
into play: how much downscaling is needed to get optimal
performance, both for the scene-image as for the training-
images of our objects.

We designed 3 detectors, one for each object. They only



differ in the way the scene-image and training-images are
scaled: the cup has for example smaller details then the
thermos so we will downscale thermos-images more then
cup-images. After some trial and error, the following down-
scaling was applied for thermos, cup and monitor images
(both for training and scene-images): 225 x 300, 750 x 1000
and 527 x 700 respectively.

II-B. Training a detector

Around 15 training images where taken of each object,
taken under different viewpoints. The objects where man-
ually segmented from the background and downscaled like
above. Each training-image in now filled with the object.
It is however very likely that in scene-images this object
will appear smaller then in the training images. Although
the SIFT-descriptors are scale-invariant, we really want
descriptors on the level of the object (like discussed above),
therefore we set up a vector a of reasonable scales (in
percentage) in which the object might occur in a scene
image. For the monitor this is for example a linearly spaced
vector between 0.30% and 0.52%, with 6 elements. For
each scale o and for all training-images, SIFT-descriptors
are computed and stored in a codebook C,. Finally, the
center c of each object in each training image is manually
assigned and the location locy® of each keypoint k in the
image on scale «, relative to c, is stored (as illustrated in
Fig. 3).
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Fig. 3. Construction of codebooks and relative keypoint
locations, from training images on different scales.

II-C. Detecting an object in a scene

Now the codebooks C, and the relative keypoint loca-
tions lock® are computed for an object, the recognition
for this object in a scene-image can begin. First the scene-
image is loaded in and rescaled as above. SIFT-descriptors

are computed and matched for each o with the codebook
C,, (matching as in the sense of [8]). In order to recognize
an object in the scene, a voting space V, is created for
each scale «; this is a zero-valued matrix with the same
size as the image. We will now fill these voting spaces
with votes for the center of the object in the scene. The
idea is to eventually compare all votes over all scales,
find the maximum vote and compare it to a user-defined
threshold. In this way we will be able to conclude on both
the presence and the location of the object.

When a descriptor k’ in the scene matches with a
keypoint k” in C,, a vote can be cast for the center of the
object in V: we just distract from k’ the relative position
to the center that we stored for k” . The vote goes thus to
the location: k’ — locy~®. To incorporate the uncertainty
of this vote we store a Gaussian N (locy“, o) in V, with
o around 0.10 times the height of the scaled-down scene
image.

Iteratively, all keypoints in the scene-image are pro-
cessed in this way (see Fig 4) and votes in V, are
accumulated. Finally the maximal vote over all scales
« is our guess for the location of the object and our
application draws a colored dot on the object. The value of
this maximum can be treated as a confidence measure for
this guess, especially when it is normalized with respect
to V. In our case we divide each Gaussian vote by its
maximum value and by the number of found keypoints.
If one position would get all votes the maximum of the
voting space on this position would then be equal to 1. By
comparing the weighted maximum over V, with a user-
defined threshold t, the detector is thus able to decide on
the presence of the object in the scene-image.

III. SSVEP DECODING
III-A. EEG Data acquisition and filtering

The EEG recordings were performed using a prototype
of an ultra low-power 8-channels wireless EEG system,
which consists of an amplifier coupled with a wireless
transmitter and a USB stick receiver, developed by IMEC'.
The data is transmitted with a sampling frequency of 1000
Hz for each channel. We used a brain-cap with large filling
holes and sockets for active Ag/AgCl electrodes (ActiCap,
Brain Products). The recordings were made with eight elec-
trodes located on the occipital pole (covering the primary
visual cortex, where the SSVEP is most prominent), more
precisely at positions P3, Pz, P4, PO9, O1, Oz, 02, PO10,
according to the international 10-20 system. The reference
electrode and ground were respectively placed on the left
and right mastoids.

The raw EEG signals are filtered above 3 Hz, with a
fourth order zero-phase digital Butterworth filter, so as to

1Interuniversity Microelectronics Centre (IMEC), http://www.imec.be
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Fig. 4. Detecting the thermos: (A) SIFT-features are ex-
tracted and matched against the codebooks, (B) votes for
the center of the thermos are casted, (C) the maximal vote
is selected as our guess for the object location.

remove the DC component and the low frequency drifts. A
notch filter is also applied to remove the 50 Hz powerline
interference.

III-B. Experiment design

X healthy subjects (x male, x female, age x-x, x left
handed, x right handed) participated in the experiment.
One session lasted around x hours in order to maintain
the concentration of the subjects. Because our application
was trained on 3 objects, 3 flickering dots were presented
to the subject, flickering in different frequencies fi, fo and
f3. The visualization of the stimuli was implemented via
the Psychtoolbox® for Matlab (see Fig 5 ). The subjects
were asked to focus on each dot for x seconds, a pause
was taken and the session was repeated X more times.
During preliminary experiments, it became obvious that the
choice of stimulation frequencies, in terms of accuracy, is
very subject dependent. Therefore a calibration stage was
first introduced showing a wide range of frequencies each
for x seconds. By visually inspecting the spectrogram, 3
prominent frequencies could be chosen.

ITI-C. Spatial filtering and classification

We designed a spacial filter in the sense of [17]; a linear
combination of the signals from our 8 channels is sought
which decreases the level of noise in our frequencies of
interest: the target frequencies f1, f2, f3 and their harmon-
ics 2f1,3f1,2f2,3f2,2f3 and 3f3 (also called Minimum

2 http:/fpsychtoolbox.org
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Fig. 5. After detecting the objects in the scene image (A),
the dots are enlarged and positioned as in (B), now the
actual stimulation can begin.

Energy Combination). This can be done in 2 steps. First
consider the (7' x 8) matrix X containing the recorded
EEG data of duration 7" for each channel in the columns. A
(T x 18) matrix A is then constructed with the functions
sin(2whf;t) and cos(2mwhf;t) in its columns, in the time-
moments ¢ € 1,...,T and where h € {1,2,3} denotes
the harmonics of f;,4 € {1,2,3}. By multiplying X with
the T x T projection matrix Py = A(ATA)~'AT and
subtracting this matrix from X gives us X = X — P4 X, a
matrix like X but without the information about the target
frequencies and their harmonics. X can be considered as
the components of the original signal which are not related
to the visual stimulation.

The second step is to find a linear combination of
X which minimizes the variance of these non-interesting
components. This can be obtained by performing a princi-
ple component analysis on X, these principle components
correspond to the eigenvectors of the covariance® matrix
> = E[XTX]. The first principle component v; points
in the direction of the maximum variance of the data, the
second component vy lies in the direction of maximum
variance in the space orthogonal to vy, etc. In this way,
an orthogonal projection of the data on the first principle
components takes as much variance as possible to a lower
dimensional space. The other way around is in this case of
our interest: projecting on the last principle components
represents the data in a lower dimension with a lot less
variance. Because we compute these principle components
for X7 (the matrix containing non-interesting informa-
tion), the resulting projection 8 X k matrix V) (columns
are k-last eigenvectors) times X corresponds to the linear
combination of X which minimizes the variance of these
non-interesting components, we write: S = XV;. We
choose k such that Z?:s-k Aif Z?zl A; < 0.1, where
A; is the eigenvalue corresponding to the eigenvector
’Ui,i = 1, ceey 8.

To classify the stimulation frequency, test statistics 7
are calculated for each target frequency f;,¢ = {1,2,3}

3E[-] denotes the statistical expectancy. By definition ¥ = E XTX]—
E[XT]E[X], but because of our filtering method the data is centered
around zero, the last term drops.



and by making use of S. Forrnally
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where Py, (f;) and 0,2178( /i) are estimates of respectively
the power and the noise of target frequency f; in its
harmonics (index over h) and estimated by means of the
s-th column of S. Classification is then as simple as taking
the maximum of these test statistics T;,7 = {1, 2, 3}.

P}, s(fi) can be computed as

T
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)sin(2mwhf;t) + s(t)cos(2mwh f;t)),
with s(t) the s-th column of S (which is simply the discrete
Fourier transform magnitude at frequency hf;).
Estimating the noise power is a harder thing to do.
Following [17] we used an autoregressive model on S
because it can be considered as a filter (working through
convolution), in terms of ordinary products between trans-
forms of signals and filter coefficients in the frequency
domain. Since we assume that the prediction error in
autocorrelation model is uncorrelated white noise, we have
a flat power spectral density for it with magnitude as a
function of the variance of this noise signal. Thus, the
Fourier transformations of the regression coefficients a;
(estimated, for example, with use of Yule-Walker equa-
tions) show us the influence of the frequency content
of particular signals into the white noise variance. More
formally, we have
T 52
A= o exp(—2m/ TS F)]
where 7T is the length of the signal, ¢ is an estimate of the
variance of white noise, p is an order of regression model,
Fy is the sampling frequency (1000 Hz).

hs(fi) =

1 @j €Xp

IV. RESULTS AND DISCUSSION
IV-A. The object detector

Measuring the performance of a detection system is not
trivial. Depending on the lightning conditions of a scene
image, the amount of detail of the object, the amount of
detail in the scene image responsible for triggering false
interesting points, the scale of the sought object in the
scene, and many more factors, the object detector will
perform better or worse. Comparison with other studies is
also not straightforward; most widespread datasets contain
images of faces, cars, pedestrians, etc. The goal of our ap-
plication is though to detect objects which could be found
in the near environment of a patient. Therefore we took for
the cup, monitor and the thermos respectively 100, 97 and
120 scene images, taken inside our lab under both natural
and artificial light, in different rooms and viewpoints and

always with other objects in the neighborhood. The scale
of the object inside the scene image was a little restricted,
for example: the height of the monitor was always around
0.3 to 0.5 times the height of the image. By doing so,
the vector o of reasonable scales in section II-B could be
constructed.

By visually inspecting the output of the object detectors
we discerned the correct detections (true positives) as the
detections where the winning vote for the object center
(as defined in section II-C) is a pixel belonging to the
object. If the vote does not belong to the object it is a
false positive. Like in [2] the number of true and false
positives detections are used to compute the precision and
recall and the receiver operator characteristic (ROC), while
varying the threshold for detection as proposed in section
II-C. The result is shown in figure 6

Again it should be well emphasized that this measure for
the performance is not absolute. It remains a big challenge
to constrain the parameters which influence the accuracy of
an object detector and at the same time be general enough
to find the object in a large amount of different scene
images. In testing the classifier we found that the choice of
« (the vector of ~of reasonable scales” from section II-B) is
extremely influential. Despite these difficulties, our results
do show the potential of these kind of object detectors for
our application. One nice addition would be to implement a
generic training phase where new objects can be trained in
order to increase the environmental interaction of a specific
patient.

IV-B. The SSVEP classifier

During a calibration stage 3 frequencies where chosen
for each subject and data was recorded for x seconds
(see II). The accuracy of the SSVEP classifier was then
off-line assessed in terms of the duration of the EEG-
recordings. The accuracy can be described by the number
of correct predictions divided by all predictions made by
the classifier. These results are brought together in figure
6.

When there would be more object detectors available,
the selection task by means of different frequencies be-
comes more difficult: the minimal energy combination
method for 4 or more targets is less precise then for 3
targets and it is harder to find 4 or more different distinct
frequencies for each subject. One solution for this can be
to group objects together and do a tree search; if one group
of objects is selected a new selection phase begins where
each individual object from this group becomes selectable.
Another strategy to handle more targets is not only to
incorporate the magnitude of a selection of frequencies but
also its phase. For example: in [18], 8 targets where shown,
flickering in the same frequency but each with a different
phase-shift. Either of the methods or a combination of both
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Fig. 6. Left and middle figure: accuracy of the object detectors when varying the threshold as described in section II.
Right figure: accuracy of the SSVEP classifier as a function of the data duration ¢ in seconds.

can

therefore handle an increase in the number of object

detectors.

V. CONCLUSION

A new application was presented which can improve the
interaction of motor impaired patients with their environ-
ment. It allows the patient to select objects by means of
object detectors and brain computer interfacing. Improve-
ments in both research domains will directly lead to an
improvement of our application.
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