
TWO STAGE CLASSIFIER CHAIN ARCHITECTURE FOR EFFICIENT PAIR-WISE
MULTI-LABEL LEARNING

Gjorgji Madjarov, Dejan Gjorgjevikj

FEEIT, Ss. Cyril and Methodius University, Skopje, Macedonia

ABSTRACT

A common approach for solving multi-label learning prob-
lems using problem-transformation methods and dichotomiz-
ing classifiers is the pair-wise decomposition strategy. One
of the problems with this approach is the need for querying
a quadratic number of binary classifiers for making a predic-
tion that can be quite time consuming, especially in learning
problems with large number of labels. To tackle this prob-
lem we propose a Two Stage Classifier Chain Architecture
(TSCCA) for efficient pair-wise multi-label learning. Six dif-
ferent real-world datasets were used to evaluate the perfor-
mance of the TSCCA. The performance of the architecture
was compared with six methods for multi-label learning and
the results suggest that the TSCCA outperforms the concur-
rent algorithms in terms of predictive accuracy. In terms of
testing speed TSCCA shows better performance comparing
to the pair-wise methods for multi-label learning.

Index Terms— Multi-label, two stage, learning, classifi-
cation

1. INTRODUCTION
The traditional problem of single-label classification is con-
cerned with learning from examples, each associated with
a single label λi from a finite set of disjoint labels L =
{λ1, λ2, ..., λQ}, Q > 1. For Q > 2, the learning problem is
referred to as a multi-class classification. On the other hand,
the task of learning a mapping from an example x ∈ X (X
denotes the domain of examples) to a set of labels Y ⊆ L is
referred to as a multi-label classification. Thus, in contrast
to multi-class classification, alternatives are not assumed to
be mutually exclusive such that multiple labels may be as-
sociated with a single example i.e., each example can be a
member of more than one class. The set of labels Y are called
relevant, while the set L\Y represents irrelevant labels for a
given example.

Besides the concept of multi-label classification, the
multi-label learning introduces the concept of multi-label
ranking [1], which is understood as learning a model that the
query example x associates both with a (label) ranking of
the complete label set and a bipartite partition of this set into
relevant and irrelevant labels.

The issue of learning from multi-label data has recently
attracted significant attention from many researchers. They

are motivated from an increasing number of new applications,
such as semantic annotation of images and video (news clips,
movies clips), functional genomics (gene and protein func-
tion), music categorization into emotions, text classification
(news articles, web pages, patents, emails, bookmarks, ...),
directed marketing and others.

In recent years, many different approaches have been de-
veloped to solve the multi-label learning problems. Tsoumakas
and Katakis [2] summarize them into two main categories:
a) algorithm adaptation methods, and b) problem transforma-
tion methods. Algorithm adaptation methods extend specific
learning algorithms to handle multi-label data directly. Ex-
amples include lazy learning [3] [4], neural networks [5],
boosting [6], etc. Problem transformation methods, on the
other hand, transform the multi-label learning problem into
one or more single-label classification problems. A common
approach for problem transformation is to use class binariza-
tion methods, i.e. decomposition of the problem into several
binary sub-problems that can then be solved using a binary
base classifier. The simplest strategy in the multi-label setting
is the one-against-all strategy also referred to as the Binary
Relevance method (BR) [2]. A method closely related to the
BR method is the Classifier Chain method (CC) proposed by
Read et al. [7]. Brinker et al. [1] propose a conceptually
new technique for extending the common pair-wise learning
approach to the multi-label scenario named Calibrated Label
Ranking (CLR). The key idea of calibrated label ranking is
to introduce an artificial (calibration) label λ0, which repre-
sents the split-point between relevant and irrelevant labels.
The calibration label λ0 is assumed to be preferred over all
irrelevant labels, but all relevant labels are preferred over it.
At prediction time (when majority voting strategy is usually
used), one will get a ranking over Q + 1 labels (the Q orig-
inal labels plus the calibration label). Besides the majority
voting that is usually used strategy in the prediction phase of
the CLR algorithm, Mencia et al. [8] propose another more
effective voting algorithm named Quick Weighted Voting
algorithm for multi-label classification(QWeightedML). In
our previous work [9] we proposed two stage voting strategy
that signifcantly improves the testing times of the CLR and
QWeightedML methods.

In this paper, we propose a novel architecture for efficient
pair-wise multi-label learning, named Two Stage Classifier

Chain Architecture (TSCCA) and its modification Two Stage
Pruned Classifier Chain Architecture (TSPCCA). The perfor-
mances of these two architectures are evaluated on a selection
of multi-label datasets that vary in terms of problem domain,
number of labels and label cardinality. The obtained results
demonstrate that our approaches outperform the competing
methods in terms of predictive accuracy.

Section 2 introduces the Two Stage Classifier Chain Ar-
chitecture and its modification. Section 3 presents the com-
putational complexity in prediction phase of TSCCA. The ex-
perimental results, that compare the performance of the pro-
posed approaches with the other competing methods are pre-
sented in Section 4. Section 5 gives the conclusions.

2. TWO STAGE CLASSIFIER CHAIN
ARCHITECTURE (TSCCA)

In this paper, we propose a novel Two Stage Classifier Chain
Architecture (TSCCA) for efficient pair-wise multi-label
learning that is related to the CLR algorithm [10]. The main
idea of this architecture is to reduce the number of classifiers
that are needed to be consulted in the prediction phase of the
CLR algorithm and increase the predictive accuracy.

The conventional pair-wise approach learns a model
Mij for all combinations of labels λi and λj , 1 ≤ i <
j ≤ Q. This means that, for a given training set S =
{(x1, Y1), (x2, Y2), ..., (xp, Yp)} (xi ∈ X,Yi ⊆ L, where X
denotes the domain of examples and L = {λ1, λ2, ..., λQ}
is a finite set of labels), each model Mij is trained with the
examples (xr, Y ′

r) (0 < r ≤ p) where Y ′
r is defined as:

Y ′
r =

{
+1, if λi ∈ Yr and λj /∈ Yr (1a)
−1, if λj ∈ Yr and λi /∈ Yr (1b)

This transformation of the dataset is known as the two-label
transformation. The main disadvantage of this approach is
that in the prediction phase a quadratic number of base clas-
sifiers (models) have to be consulted for each test example.

As a result of introducing the artificial calibration label λ0
in the calibrated label ranking algorithm [10], the number of
the base classifiers is increased by Q i.e., an additional set of
Q binary preference models M0k (1 ≤ k ≤ Q) is learned.
The models M0k that are learned by a pair-wise approach to
calibrated ranking, and the models Mk that are learned by
conventional binary relevance are equivalent. Using the same
notation as in the case of the pair-wise models (Mij), each
model M0k is trained with the examples (xr, Y ′

r) (r ∈ 1...p)
where Y ′

r is defined as:

Y ′
r =

{
+1, if λk /∈ Yr (2a)
−1, if λk ∈ Yr (2b)

This transformation of the datasets is addressed as single-
label transformation.

In the standard voting algorithm for CLR, each test ex-
ample needs to consult all the models M0k (1 ≤ k ≤ Q) and

binary relevance
models

pair‐wise models

M01 M02 M03 M04

M12 M13 M14 M23 M24 M34

Fig. 1. Two Stage Classifier Chain Architecture

Mij (1 ≤ i < j ≤ Q) in order to rank the labels by their order
of preference. As a result of the increased number of models,
the CLR method leads to more accurate prediction, but also
leads to slower testing and higher computational complexity,
especially when the number of the labels in the problem is
large.

The Two Stage Classifier Chain Architecture is organized
in two layers (Fig. 1). The first layer has Q binary relevance
models M0k, while the second layer has Q ∗ (Q− 1)/2 pair-
wise models Mij . Each model M0k from the first layer is
connected to Q− 1 models Mij from the second layer, where
k = i or k = j (1 ≤ i ≤ Q − 1, i + 1 ≤ j ≤ Q). It is
responsible for learning and predicting the probability associ-
ation of label λk. On the other hand, each model of the second
layer Mij is connected to exactly two binary relevance mod-
els from the first layer (M0i and M0j) and is responsible for
learning and predicting the probability associations of label
λi and label λj (p(λi) = 1− p(λj)).

The training phase of TSCCA starts with learning the bi-
nary relevance models M0k (the models from the first layer).
Each model is trained with the corresponding examples of a
given training dataset. After learning the models of the first
layer of the architecture, the feature space of each training
example involved in the learning process of the second layer
is extended with the probability predictions of all binary rel-
evance models M0k. That means that the feature space of
each link which connects the binary relevance models and
the pair-wise models is extended with the probability predic-
tions of all models of the first layer. The training procedure
of the first and the second layer is outlined on Fig. 2. Re-
call the notation for a training example (x, Y), where Y ⊆ L
(L = {λ1, λ2, ..., λQ}), and x is an instance feature vector.

In the prediction phase, each model M0k tries to deter-
mine the relevant labels for the corresponding test example.
Each model M0k gives the probability (the output value of
model M0k is converted to probability) that the test example
is associated with the label λk. If that probability is appro-
priately small (under some predetermined threshold), we can
conclude that the artificial calibration label λ0 is preferred
over the label λk, i.e., the label λk belongs to the set of ir-
relevant labels. In that case, we conclude that, the pair-wise
models of the second layer Mij where i = k or j = k, need
not be consulted for the corresponding test example, because
the binary relevance model M0k from the first layer has sug-
gested that the label λk belongs to the set of irrelevant labels.

D
A

G
M

2
0
1
1

S
u
b
m

issio
n

#
*
*
*
.

C
O

N
F

ID
E

N
T

IA
L

R
E

V
IE

W
C

O
P

Y
.

1
1

Table 4. The process of building the ML-SVMDT

TRAINING FIRST LAYER - TSCCA
(S = {(x1, Y1), ..., (xp, Yp)})
1: for k ∈ 1, ..., Q do
2: S0k = SingleLabelTransformation(S, λk)
3: M0k = TrainingModel(S0k)

4: x′ ← x
5: S′ ← {}
6: for (x, Y) ∈ S do
7: for k ∈ 1, ..., Q do
8: probability(M0k) = classify(M0k(x))
9: x′ ← x′ ∪ (probability(M0k))

10: S′ ← S′ ∪ (x′, Y)

TRAINING SECOND LAYER - TSCCA
(S′ = {(x′1, Y1), ..., (x′p, Yp)})
1: for i ∈ 1, ..., Q− 1 do
2: for j ∈ i+ 1, ..., Q do
3: S′

ij = TwoLabelTransformation(S′, λi, λj)
4: Mij = TrainingModel(S′

ij)

CLASSIFY(x) - TSCCA

1: x′ ← {x}
2: for k ∈ 1, ..., Q do
3: probability(M0k) = classify(M0k(x))
4: if probability(M0k) > 0.5 then
5: votes[λk]++
6: else
7: votes[λ0]++

8: x′ ← x′ ∪ (probability(M0k))

9: for i ∈ 1, ..., Q− 1 do
10: for j ∈ i+ 1, ..., Q do
11: if probability(M0i) > t& probability(M0j) > t then
12: probability(Mij) = classify(Mij(x

′))
13: if probability(Mij) > 0.5 then
14: votes[λj]++
15: else
16: votes[λi]++

17: else
18: if probability(M0i) > t then votes[λi]++

19: if probability(M0j) > t then votes[λj]++

20: order(votes[])

Fig. 2. Training and testing procedures of TSCCA

For each label λk that belongs to the set of irrelevant labels,
the number of pair-wise models that should be consulted de-
creases for Q− 1.

In order to decide which labels belong to the set of irrele-
vant labels i.e. which pair-wise models Mij from the second
layer do not have to be consulted, a threshold t (0 ≤ t ≤ 1)
is introduced. The value of the threshold t can be determined
by cross-validation or by some other method.

As previously described, each test example consults all
binary relevance modelsM0k first and then its feature space is
extended with the prediction probabilities of all M0k models.
After that, the prediction probability of each modelM0k (1 ≤
k ≤ Q) is compared to the threshold t.

• If the prediction probability is above the threshold, the
test example is forwarded to all the models Mij of the
second layer of the architecture that are associated to
the model M0k.

• If the prediction probability is under the threshold, the
test example is not forwarded to any model of the sec-
ond layer of the architecture.

From the viewpoint of the pair-wise models Mij , if we con-
sider the prediction probabilities of the binary relevance mod-
els M0i and M0j of the first layer, three distinct cases in the
voting process can appear:

1. The prediction probabilities of both binary relevance
models M0i and M0j that are connected to the pair-
wise model Mij are above the threshold t.

2. The prediction probability of only one of the binary rel-
evance models (M0i or M0j) is above the threshold t.

3. The prediction probabilities of the binary relevance
models M0i and M0j are both under the threshold t.

In the first case, the model Mij is consulted and its pre-
diction is decoded into a vote for one of the labels λi or λj .
In the second case, Mij is not consulted and its vote goes di-
rectly to the label whose binary relevance model prediction
probability is above the threshold t. In the third case Mij is
not consulted and it does not vote at all. The votes of all M0k

models and Mij models (where at least one prediction prob-
ability of the models M0i and M0j is above the threshold t)
are then aggregated to obtain the final prediction by majority
voting. The classification process is outlined on Fig. 2.

By increasing the value of the threshold, the number of
pair-wise models that should be consulted decreases. For
t = 1 no example is forwarded to the second layer of the
architecture and the decision is made by the classifiers of the
first layer. On the other hand, for t = 0, for each test example
all pair-wise models of the second layer are consulted.

2.1. Two Stage Pruned Classifier Chain Architecture -
TSPCCA

In this subsection we propose a modification of the TSCCA
in which the feature space of each example, involved in the
learning and testing process of the model Mij of the second
layer, is extended not by all, but only with the probability
predictions of the binary relevance models M0i and M0j , i.e.,
the models that are directly connect to the model Mij . These
predictions are the most relevant for the model Mij because
the model Mij tries to distinguish the label λi from the label
λj . This architecture will be called the Two Stage Pruned
Classifier Chain Architecture (TSPCCA).

Table 1. Dataset description and the values of the parameters t, abrmf and r
domain #tr.e. #t.e. #f. #l. lc abrmf t r

emotions[11] music 391 202 72 6 1.87 3.118 0.25 0.220
scene [12] image 1211 1159 294 6 1.07 3.337 0.02 0.260
yeast [13] biology 1500 917 103 14 4.24 7.928 0.15 0.302
tmc2007 [14] text 21519 7077 49060 22 2.16 4.93 0.1 0.042
bibtex [15] text 4880 2515 1836 159 2.40 15.1 0.02 0.008
corel5k [16] image 4500 500 499 374 3.52 64.01 0.01 0.029

3. COMPUTATIONAL COMPLEXITY
In the following, the term computational complexity is strictly
used in the sense of a computational complexity in the predic-
tion phase. The computational complexity of TSCCA signif-
icantly differs from the computational complexity of CLR.
The computational complexity of CLR (OCLR) can be de-
fined as a sum of the computational complexity of the binary
relevance models (OBR) and the pair-wise models (OP):

OCLR = OBR +OP (3)

On the other hand, computational complexity of TSCCA
can be defined as a sum of computational complexity of the
models located in the first layer of the architecture (OFL) and
computational complexity of the models located in the second
layer of the architecture (OSL):

OTSCCA = OFL +OSL (4)

The computational complexity of the first layer of the
TSCCA and the computational complexity of the binary rel-
evance models of the CLR method are equal (OBR = OFL).
In both methods the models are the same and each test ex-
ample must consult all of these models in order to predict the
class the example belongs to.

The main difference in computational complexity be-
tween CLR and TSCCA is in the computational complexity
of the pair-wise models of CLR and the second layer of
TSCCA. As noted in the previous section, if the threshold
is set to zero (t = 0), in TSCCA, all models of the second
layer are consulted and we have OSL ≈ OP (the inequality is
appearing as a result of the extended feature vector that adds
some complexity to the classifiers themselves). If the thresh-
old is set to one (t = 1), no models of the second layer will be
consulted, so OSL will be 0 and OTSCCA = OFL = OBR.
For threshold values 0 < t < 1, OSL = r ∗ OP where r
is a reduction parameter specific for each multi-label dataset
(0 < r < 1). The reduction parameter r is related to label
cardinality (lc) [2], i.e., the average number of relevant labels
per example in a given multi-label dataset. For a real world
problem the reduction parameter r can be determined as:

r =
abrmf ∗ (abrmf − 1)

Q ∗ (Q− 1)
(5)

where abrmf is the average number of binary relevance mod-
els located in the first layer of TSCCA that give a probability
that is above the threshold t in the prediction process. For an
ideal case (prediction accuracy of 100% by the binary rele-
vance models) abrmf is getting equal to the label cardinality
lc (abrmf = lc).

4. EXPERIMENTS
The performances of the proposed methods were measured
with two different multi-label evaluation metrics (Hamming
Loss and Average Precision) proposed Schapire et al. [6] on
the problems of recognition of text, video, images and protein
function. The performance of TSCCA and TSPCCA are com-
pared with the CLR method with majority voting strategy for
pairwise multi-label classification [10], QWeightedML algo-
rithm [8], Multi-label k-NN (ML-kNN) [3], Classifier Chain
method (CC) [7] and the Two Stage Voting Method (TSVM)
[9]. The training and the testing of TSCCA and TSPCCA
were performed using a custom developed application that
uses the MULAN 1 library for the machine learning frame-
work Weka [17]. The other comparing methods are also im-
plemented in MULAN.

Six different multi-label classification problems were ad-
dressed by each of the mentioned classifying methods. The
recognition performance was recorded for every method.
The complete description of the datasets: domain, number
of training (#tr.e.) and test (#t.e.) examples, number of
features (#f.), the total number of labels (#l.) and the label
cardinality (lc) are shown in Table 1.

The LIBSVM library [18] utilizing the SVM’s with radial
basis kernel were used for solving the partial binary classifica-
tion problems. The kernel parameter gamma and the penalty
C for the datasets were determined by 5-fold cross validation
using only the samples of the training sets.

Table 1 also shows the values of the threshold t for each
dataset separately, for which the presented results of TSVM,
TSCCA and TSPCCA are obtained. The value of the thresh-
old t for each dataset was determined by 5-fold cross valida-
tion using only the samples of the training set. This was done
in order to achieve optimal performance (trade off) in terms of
the two evaluation metrics and the computational efficiency.
The values 0.005 to 0.01 with step 0.001, 0.01 to 0.1 with step

1http://mulan.sourceforge.net/

Table 2. The evaluation of each method for every dataset
Eval. m. Algorithm emotions scene yeast tmc2007 bibtex corel5k

H
am

m
in

g
L

os
s ML-kNN 0.293 0.098 0.198 0.058 0.014 0.011

BR 0.271 0.117 0.205 0.017 0.012 0.017
CC 0.267 0.114 0.196 0.038 0.012 0.017
CLR 0.257 0.096 0.191 0.018 0.012 0.012
QWeightedML 0.262 0.095 0.191 0.026 0.012 0.012
TSVM 0.259 0.095 0.191 0.022 0.012 0.012
TSPCCA 0.255 0.094 0.190 0.018 0.012 0.012
TSCCA 0.256 0.094 0.190 0.018 0.012 0.011

A
ve

ra
ge

Pr
ec

is
io

n ML-kNN 0.693 0.851 0.758 0.844 0.348 0.265
BR 0.707 0.818 0.754 0.907 0.575 0.303
CC 0.713 0.815 0.757 0.916 0.576 0.298
CLR 0.721 0.860 0.768 0.963 0.578 0.352
QWeightedML 0.679 0.840 0.700 0.923 0.497 0.310
TSVM 0.724 0.859 0.764 0.934 0.578 0.341
TSPCCA 0.732 0.866 0.771 0.962 0.580 0.354
TSCCA 0.726 0.867 0.771 0.963 0.585 0.355

Te
st

in
g

tim
e

(s
) ML-kNN 0.25 13.92 5.16 230 77 46

BR 1.02 24.12 25.01 950 1370 35
CC 1.06 25.05 25.12 988 1410 37
CLR 2.56 66.15 104.34 6106 83358 2020
QWeightedML 1.67 40.32 60.39 2534 4710 119
TSVM 1.34 34.27 54.65 1135 1564 67
TSPCCA 1.35 35.25 54.72 1143 1593 233
TSCCA 1.40 36.68 58.42 1737 1742 328

0.01 and 0.1 to 1.0 with step 0.05 were considered for t.
In all classification problems the classifiers were trained

using all available training samples and were evaluated by
recognizing all test samples from the corresponding dataset.
Table 2 gives the performance of each method on each of the
datasets measured in terms of the two performance metrics
and testing speed. The first column of the table lists the eval-
uation metrics, the second lists the compared methods, while
the remaining columns show the performance of each method
for every dataset. The best results per dataset in terms of the
two performance metrics are shown in boldface. The testing
times of each method are measured in seconds.

Table 2 show that among the seven tested approaches in
terms of Hamming Loss, TSCCA and TSPCCA offer bet-
ter predictive performance for the emotions, scene and the
yeast datasets and similar results for the other three datasets
compared to the competing methods. In terms of Average
Precision the situation is more clear. For all six dataset,
TSCCA and TSPCCA show slightly better predictive per-
formance than CLR, while compared to the other methods,
TSCCA and TSPCCA are 1% to 5% better than CC and
BR, 2% to 20% better than ML-kNN and up to 8% better
than QWeightedML. The results also show that for the six
treated classification problems TSCCA and TSPCCA are

2 to 50 times faster (at prediction time) than CLR for all
datasets. The proposed methods are 10% to 220% faster than
the QWeightedML method for all datasets, except for the
corel5k dataset where TSPCCA and TSCCA showed 2 and
2.5 times slower testing time, respectively. The testing time
of the BR method is actually the same as the time spent in
the testing process for the models located in the first layer of
the proposed methods. The testing time of the CC method is
slightly longer than the testing time of the BR method as a
result of the increase in the feature vector size in each binary
relevance model (classifier) of the classifier chain. Com-
pared to TSVM, proposed methods show better predictive
performance and slightly slower testing times.

The testing time of the ML-kNN method is shorter than
the testing time of the problem transformation methods. The
intent of including algorithm adaptation method, as ML-kNN,
in the experiments was to show that the proposed methods,
that belong to the group of problem transformation methods,
can achieve comparable or even better predictive accuracy.
However, their performance and computational complexity
depend strongly on the type of the base classifier that is used
for solving the partial classification problems.

TSCCA and TSPCCA show similar predictive perfor-
mance for the six multi-label classification problems. Statis-

tically, TSCCA shows slightly better results than TSPCCA
only for Average Precision. In terms of testing time, TSPCCA
is significantly better than TSCCA.

The values of the reduction parameter (r) obtained by
equation 5 are shown in Table 1. It is interesting to be no-
ticed that for smaller values of the reduction parameter r the
testing times of TSCCA and TSPCCA approach to the testing
time of the binary relevance models (the models of the first
layer of the architecture).

5. CONCLUSION
A two stage classifier chain architecture (TSCCA) for ef-
ficient pair-wise multi-label learning and its pruned modi-
fication (TSPCCA) were presented. The performances of
these architectures were compared with the CLR method
with the majority voting strategy, QWeightedML, classifier
chains, binary relvance, multi-label kNN and the two stage
voting method on six different real-world datasets. The re-
sults showed that the TSCCA and its modification TSPCCA
outperform CLR in terms of predictive accuracy. TSCCA
and TSPCCA also show significantly better predictive per-
formances than the other compared methods. In terms of
testing speed TSCCA and TSPCCA show similar testing
times and were 2 to 50 times faster than CLR and up to 2.5
times faster than the QWeightedML method. Comparing to
the CC method and the BR method, TSCCA and TSPCCA
show better predictive performance, while their testing times
are always bigger as a result of the testing time of the models
of the second layer of the architectures.

6. REFERENCES

[1] K. Brinker, J. Furnkranz, and E. Hullermeie, “A uni-
fied model for multilabel classification and ranking,” in
Proc. of the 17th European conference on artificial in-
telligence, Riva Del Garda, Italy, 2006, pp. 489–493.

[2] G. Tsoumakas and I. Katakis, “Multi label classifica-
tion: An overview,” International Journal of Data Ware-
housing and Mining, , no. 3, 2007.

[3] M. L. Zhang and Z. H. Zhou, “Ml-knn: A lazy learning
approach to multi-label learning,” Pattern Recognition,
, no. 40, pp. 2038–2048, 2007.

[4] E. Spyromitros, G. Tsoumakas, and I. Vlahavas, “An
empirical study of lazy multilabel classification algo-
rithms,” Artificial Intelligence: Theories, Models and
Applications, pp. 401–406, 2008.

[5] M. L. Zhang and Z. H. Zhou, “Multi-label neural net-
works with applications to functional genomics and text
categorization,” IEEE Transactions on Knowledge and
Data Engineering, , no. 18, pp. 1338–1351, 2006.

[6] R. E. Schapire and Y. Singer, “Boostexter: a boosting-
based system for text categorization,” Machine Learn-
ing, vol. 39, no. 2/3, pp. 135–168, 2000.

[7] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Clas-
sifier chains for multi-label classification,” in Proc of
the ECML/PKDD, Bled, Slovenia, 2009, pp. 254–269.

[8] E. Loza Mencia, S. H. Park, and J. Furnkranz, “Effi-
cient voting prediction for pairwise multi-label classifi-
cation,” Neurocomputing, vol. 73, pp. 1164–1176, 2010.

[9] Gj. Madjarov, D. Gjorgjevikj, and T. Delev, “Efficient
Two Stage Voting Architecture for Pairwise Multi-label
Classification,” in AI 2010: Advances in Artificial Intel-
ligence, Jiuyong Li, Ed., vol. 6464 of LNCS, chapter 17,
pp. 164–173. Berlin, Heidelberg, 2011.

[10] J. Furnkranz, E. Hullermeier, E. Loza Mencia, and
K. Brinker, “Multi-label classification via calibrated la-
bel ranking,” Machine Learning, vol. 73, no. 2, pp. 133–
153, 2008.

[11] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas,
“Multilabel classification of music into emotions,” in
Proc. of International Conference on Music Information
Retrieval, Philadelphia, PA, USA, 2008, pp. 320–330.

[12] M.R. Boutell, J. Luo, X. Shen, and C.M. Brown,
“Learning multi-labelscene classiffication,” Pattern
Recognition, vol. 9, no. 37, pp. 1757–1771, 2004.

[13] A. Elisseeff and J. Weston, “A kernel method for multi-
labelled classification,” Advances in Neural Information
Processing Systems, vol. 14, 2001.

[14] A. Srivastava and B. Zane-Ulman, “Discovering recur-
ring anomalies in text reports regarding complex space
systems,” in Proc. of the IEEE Aerospace Conference.
2005, pp. 55–63, Morgan Kaufmann.

[15] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multil-
abel text classification for automated tag suggestion,” in
Proc. of the ECML/PKDD 2008 Discovery Challenge,
Antwerp, Belgium, 2008.

[16] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth,
“Object recognition as machine translation: Learning a
lexicon for a fixed image vocabulary,” in Proc. of the
7th European Conference on Computer Vision, 2002,
pp. 97–112.

[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten, “The
weka data mining software: An update, software
available at http://www.cs.waikato.ac.nz/ml/weka/,”
SIGKDD Explorations, vol. 11, no. 1, 2009.

[18] C.C. Chang and C.J. Lin, “Libsvm: a library
for support vector machines, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm/,” 2001.

