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ABSTRACT

A classification algorithm based on a linear subspace
model has been developed and is presented in this paper.
To further improve the classification results, the full linear
subspace of each class is split into subspaces with lower di-
mensions and characterized by local coordinates constructed
from automatically selected training data. The training data
selection is implemented by optimizations with least squares
constraints or L1 regularization. The working application is
to determine the quality in wooden logs using microwave sig-
nals [1]. The experimental results are shown and compared
with classical methods.

Index Terms— classification, linear subspace, sparse rep-
resentation, training data selection

1. INTRODUCTION

Microwave signals are widely used for applications in a vast
range of different domains [2][3][4][5][6]. In this paper,
frequency domain measurements are used for wood quality
classification. A classifier based on linear subspace settings
has been developed, with the assumption that samples from
one class lie on one of the linear subspaces and the sub-basis
can be therefore derived from the corresponding data points.
Namely, each class contains more than one such linear sub-
space, and the representation of each sample can be defined
automatically using the least squares criterion or sparse reg-
ularization. The decision of the classifier is hence based on
some criteria which involve the distance from the data to
the estimated subspace. Moreover, these experimental sig-
nals have typically extremely high dimensionality, whereas
the training sample size is usually very small. The global
topological properties and statistical assumptions of the data
points thus become extremely difficult to verify and the train-
ing of the classifier becomes very challenging. In this paper,
two model assumptions are introduced, and a classification
algorithm based on one of them is presented.
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2. SIGNAL MODEL AND CLASSIFICATION
HYPOTHESIS

Given N, the total number of classes, let {, } be the training
setofclass ¢ € {1...N.}, where z’ is D dimensional complex
valuedand i € {1,--- , N} is the sample index. First, without
loss of generalization, let us consider the case where the total
number of classes N, is 2, namely ¢ € {1, 2}.

2.1. Model assumption 1

Each data point «’, drawn from class c is generated according
to a linear model defined as:

x, =Ual +e 0

zt, =Usal +e

where the columns of U,, denoted as {u.;} represent
the basis of the corresponding linear subspace with [ €
{1,---,D.}; ol is the weighting vector; and e is random
noise.

If U, is given, we can compute the distance d..(z") from
2 to the linear subspace spanned by its orthonormal columns

{uc,l}a

dia) = ot P, = |

- U Uy’
2
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where P denotes the projection matrix and U f is the Her-
mitian of the matrix U.

Given one unlabeled signal a’, the task is to estimate the
class label & according to the following criterion:

¢ = arg min de(x') 3)

2.2. Model assumption 2

Instead of a linear subspace spanned by U, each x is con-
sidered to be generated from a linear subspace spanned by a



>smaller’ basis U’Z, where k € {1,---, K.}, and K, is the
total number of such subspaces. By ’smaller’ basis, one can
imagine that the subspace spanned by the basis appeared in
(1) is now a set of K. linear subspaces spanned by some low
dimensional bases.

Let %. = {«': ' € class c}. From the assumption 2,
we have:

= \J wu )

ke{l.. K.}

where %Ck is a subset of %, which is a linear subspace defined
as:

D¢
wk={x: x = Zﬁluil %)
=1

where D¥ is the dimension of the subspace spanned by
Ut = {uk } with [ € {1,---, DK}, and $3; is the corre-

c,l
sponding coefficient.

Therefore, the matrix U, from (1) is no more defined as
the basis of a linear subspace, but rather as a set of K. bases:

U, = {U’g} ke {1..K.} (6)

Accordingly, the signal model becomes:

xt = U’fl(i)ﬁi +e o
xh = Ugm)[a’é +e
where, the weighting vector ﬁfz depends on the sample num-
ber 4, the class label ¢, as well as the basis number k(7). Note
that the purpose of writing k. (4) is to show that k.. is a func-
tion of the sample index 7, which means that the basis U IEC(Z)
needs to be established for each =? adaptively. Without ambi-
guity, we write k instead of k.(¢) for convenience.
Therefore, d* (x?) is indicating the distance from x* to the
subspace U’Z :
ot — UL (U)"a! ®)
And ¢ can be estimated in the same way as in (3) with a
slight modification.

dé(a’) = |

2

¢ = arg min d* (x?) 9

A low dimensional example can be visualized in Fig. 1.
Data point ' is a high dimensional vector and we can imag-
ine D = 3 for convenience. The solid and dash lines represent
one dimensional subspaces contained in class 1 and 2 respec-
tively. This d¥(x?) indicates the distance from x’ to the cor-
responding subspace %% . In this example, the meaning of the

model assumption 1 and 2 can be clearly visualized: accord-
ing to assumption 1, the subspace of class ¢ is constructed
from both lines with the same type, which is a two dimen-
sional hyperplane; whereas if we consider model assumption
2, each subset %, is the union of two one dimensional lines:

U, = U=" 0 Uk=2 (10)

Note that we use k. to indicate the subspace in the ex-
ample from Fig. 1. However, the subscript for & is usually
omitted for convenience.

€2

Fig. 1. A 3 dimensional example is shown. The solid and dash
lines indicate linear subspaces domained by the data points
from class 1 and 2 respectively.

3. PROPOSED METHOD

The proposed approach is based on the Model assumption 2,
where the topological space of signal x is assumed to be a
collection of some linear subspaces according to (6). To es-
timate ¢ with respect to (9), the method is discussed in this
section and a proposed algorithm is presented.

3.1. Adaptive training data selection for =°

According to (7), each sample from class c is assumed to be
lying in one of the K. subspaces. Therefore, before comput-
ing the distance by (8), we need to select the ’correct’ train-
ing set for &’ in both classes. The ’correct’ training set, de-
noted as O, is defined as the data set dominating the subspace
which has a smaller distance to * over all K. subspaces. This
can be illustrated in Fig. 1. As we can see, given an unlabeled
data ’, although the lines with the same type represent the
same class, we still need to select one of them to compute the



distance for a’. In this case, the selected subspaces are line
k‘z = 1andk1 =2

We define the training set & of x’ as an open set con-
taining the points from class ¢ which are lying on the closest
linear subspace spanned by a basis U f with respect to .
The metric is the usual distance computed by (2). Note that
O CUF.

In another word, & is selected with a linear subspace set-
ting. Namely, it is the set of data points which are linearly
dependent of ' in some directions. Practically, this selection
can be done by choosing D, data from the training set using
different criteria, where D, is pre-defined by cross validation.

First, consider a measurement matrix constructed by plac-
ing all training data from one class as its columns:

X, = [wl x2, - ch]

c) c

)

The task is to select D, relevant columns from X ., such
that &’ can be written as a linear combination of the basis
which spans the subspace dominated by these data. The se-
lection is carried out by computing a weighting vector w?’,
whose j'* element represents the importance of the respec-
tive column 7 with respect to reconstructing the a*. The
more significant data points are then chosen to be the correct
training data of =*. To simplify the expression, we call ¢
the training set of ’ from now on.

e Formulation using least square criterion

(12)

w, = arg min Hml - chCHQ
We

However, without constraints on the number of non-
zero elements, any linear combinations of data points
with insignificant directions are allowed. This results
in relatively arbitrary selections. To resolve this prob-
lem, a sparse representation [9] is needed to maintain
the significance of any selected columns.

e Formulation using sparse representation

w,. = arg min le - chc”l + Alwel,  (13)
w, 2

Theoretically, the training set of ¢ can be selected by
the columns in X . corresponding to the non-zeros el-
ements in the vector w’. Namely, the data points with
non-zero correlation. In practice, this is implemented
by sorting w’ and selecting the columns corresponding
to the first D, elements with higher values.

Let w’, be the sorted version of w’. The data points from
X . corresponding to the first D.. elements of w?, are selected

to construct OZ Let .J denote the set of the indices of X
associated to w,(1 : D), we then have:

O, =[], (14)

One parameter in this setting is the dimension of the sub-
space D., which reflects the variation of the signal to some
extent. Namely, the signal with higher variance is assumed to
dominate a higher dimensional subspace. For instance, in the
wood qualification application, we assume that the dimension
of the ’rotten subspace’ Dy is larger than the 'normal sub-
space’ D and the assumption is verified by cross-validation.

Compute wiC by least square criterion
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Fig. 2. The weighting vector w’, estimated with respect to
least squares criterion.

Compute wic by sparse representation
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Fig. 3. The weighting vector w’, estimated using sparse rep-
resentations.

3.2. Estimate basis U ’C“

Once OF is identified, the basis that spans the corresponding
subspace can be estimated from the matrix O®.



Let Oi be the matrix constructed by (14), the basis of the
subspace %,* can then be estimated by the left singular vec-
tors of O, computed from the singular value decomposition
(SVD) and the subspace distance is obtained by (8).

3.3. Algorithm

Given the training data sets {a:j} € %, and {:c% € U,
the measurement matrices X; and X5 can be constructed
by (11). The dimensions of the subspaces % and % are
estimated as D7 and D5 by cross validation. A classification
algorithm for multi-class case based on Model assumption 2

is presented in Algorithm 1.

Algorithm 1 Classification algorithm (Model assumption 2)

- Produce the feature vector &’ by pre-processing the data;
-Ve e {1,2,---, N.}, compute the weight vector w’:

w! = arg r?um Hmz - chiH2 + A ||'wi||l1
- Pick up the first D, larger elements of w’, and identify the
set of corresponding indices J. of X ., with D, being

defined by cross-validation;
- Construct the matrix:

0 = [:ﬁ} je .
- Estimate the basis U ff spanning O :
Uk, ~, ~] =svD(©O)
- Compute the distance:
d (@) = ||t — Uk((U) )

- Estimate the label of z?:

2

¢ = arg min d¥(x?)
(&

Fig. 4. An illustration of the experimental setup. Each cross
indicates the position of one antenna, playing a role both as
transmitter and receiver. The signal is then measured as the S
parameters in frequency domain. The antennas are labeled as
1,2,---, N, in a counterclockwise order.

4. APPLICATIONS AND RESULTS

4.1. Signal description

An illustration of the set up is shown in Fig. 4. Each green
cross indicates the position of one antenna playing both the
role of transmitter and receiver. The raw signals are scattering
(S) parameters (the ratio between the received and transmit-
ted energy of one antenna measured in frequency domain).

Normalized spectrum

0.10 0.46 0.83 1.19 1.55
Frequency (G Hz)

(a) S parameter measured at channel {1,5}

Normalized amplutude

100 200 300 400 500 600 700 800
Time sample

(b) Corresponding time domain signal
Fig. 5. The absolute value of the measured .S parameters S 5
using the antennas at the 1°* and the 5" positions as input

and output sensors respectively over all the frequency points.

The transmitter and the receiver number are indicated by ¢
and p respectively, and the pair is referred as channel {p, ¢}.



One example of measurement is shown in Fig. 4.1. The §
parameter measured at frequency point w,, = 27 f;, at channel
{p, ¢} can be written as:

Spq(wn) = €77 (15)

where the real part 7 represents the dumping and the imagi-
nary part jv gives the phase information. Note that S, (wy,) =

Sap(wn)

The signal for a given channel {p, ¢} can be expressed as
follows:

Spq(wr)
Spq = : (16)
Spa(wn.,)
Therefore, the full measurement « for all the channels can
be written as:

S11
S1in,
51

. (17)

San,

SN, N, ]

Furthermore, according to our setup, we have N, = N, =
N,, where N, is the number of antennas. The vectorized
signal « is therefore considered as a D dimensional vector,
where the dimension D is determined by

1
D= §Nw(N§ + N,). (18)

4.2. Pre-processing

Different types of signal pre-processing procedures can be ap-
plied before the signals are used as the input of the classifier.
In this work, the main operations are 1) feature selection by
frequency points; 2) logarithm transformation; 3) normaliza-
tion of each channel.

e Frequency point selection:

For each channel S, in (16), N, = 401 frequency
points are measured. However, only the first 180 points
(corresponding to approximately 0.1 ~ 1.3 GHz) are
assumed to be containing the main information are se-
lected as the input of the classifier for computational ef-
ficiency. This is determined empirically and verified by
cross-validation. More sophisticated feature selection
can be further developed to improve the performance.
The signal 2 in (17) is then constructed by using only
180 frequency points from each channel.

e [ogarithm transform
We take log(x?) as the new signal vector instead of the
x' defined in (17) to retrieve the complex number 7 +

Jv-

e Normalization

The reflection S,,,, where p = ¢, is typically much
stronger than the transmission where p # ¢. However,
the later one might carry more information of the ob-
ject. Therefore, to unify the contribution of different
channels, a channel-wise normalization is implemented
on the signal S, in (16) to ensure that they contain the
same energy level.

S
S — rq
" 1Sl

(19)

4.3. Experimental Results

The experiment is based on the setup shown in Fig. 4. There
are N, = 12 antennas and the number of selected frequency
points N, is 180. From (18), we have the dimension of the
vectorized signal x* is 14040. In this experiment, 54 and 108
samples for normal and rotten timbers are measured respec-
tively.

Classification results
Method Corr. Rate | FAR
0 0
Classical methods SI;I,II\I/I 247‘;;; ;;8(;;
Assum.1 81.6% 29.0%
Subspace model | Assum.2(LS) 84.2% 29.0%
Assum.2(L1) 87.9% 29.0%

Table 1. The classification rate and false alarm rate of rotten
log obtained by randomized N-fold testing.

A randomized N-fold testing procedure has been per-
formed, where the samples are randomized, and among which
44 are used for training and the rest for testing. The random-
ization is repeated 30 times. The results are evaluated by both
the classification rate for the rotten wood and the false alarm
for the normal wood, then compared with classical meth-
ods such as support vector machines (SVM) [7] and nearest
neighbors approach (NN) [8]. The results of classification
rate with a fixed false alarm rate are shown in Table 1 and the
ROC curve can be found in Fig. 6. The effect of different
formulations of w? discussed in Sec. 3.1 on the classifica-
tion result (referred as LS and L1 in Table 1) is similarly
compared.

5. CONCLUSION

A classification algorithm has been proposed in this paper to
differentiate healthy timber from the rotten ones. We intro-
duce the model where the signals from one class are drawn
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Fig. 6. The ROC curves of selected classifiers introduced in
the paper.

from several different subspaces. It gives the most promising
results when the correct training set is estimated by a sparse
representation. One potential of the classifier is that we es-
timate the basis independently and the classification results
only depend on the estimated basis and the unlabeled data
point. Therefore, this approach can be extended to multi-class
cases with no extra effort. That is, as long as the basis for each
class is estimated, the distance can then be computed accord-
ingly. Related experiments and analysis are under progress.
Issues are remaining to be investigated as a subject of the fu-
ture work, such as automatic determination in the dimension
of the subspaces.
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