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Abstract

Constrained spectral clustering with affinity propagation in its original form is not practical for
large scale problems like image segmentation. In this paper we employ novelty selection sub-
sampling strategy, besides using efficient numerical eigen-decomposition methods to make this
algorithm work efficiently for images. In addition, entropy-based active learning is also employed
to select the queries posed to the user more wisely in an interactive image segmentation
framework. We evaluate the algorithm on general and medical images to show that the
segmentation results will improve using constrained clustering even if one works with a subset of
pixels. Furthermore, this happens more efficiently when pixels to be labeled are selected actively.

Index Terms
Constrained spectral clustering; active learning; image segmentation

1. INTRODUCTION

Data clustering and image segmentation are two challenging problems in machine learning
and computer vision. In many image segmentation applications creating supervisory labels
is very time-consuming and labels might not even be accurate. At the same time
unsupervised algorithms may not yield sufficient accuracy. In the last decade, many semi-
supervised algorithms have been proposed where limited amount of supervisory information
is used to efficiently guess the full label set.

In image segmentation, there are two different ways of interacting with clustering
algorithms: either by specifying labels of a small subset of pixels [1, 2], or by putting
equivalence constraints [3, 4, 5] in which instead of determining class of pixels explicitly,
relationships between them are given. The way that these information are taken into account
also varies from using them to formulate constrained optimization problems [6, 4] to make
posterior distributions in probabilistic frameworks [5]. In the latter scenario, there should be
defined a model to be used as the likelihood of the data given the constraints.

In interactive image segmentation, besides developing semi-supervised versions of computer
vision methods, such as contour-based algorithms [7], machine learning strategies have been
also used widely. One of the most popular family of methods in this area is graph-cut based
clustering [6, 4]. The main difficulty with such methods is that creating graphs and
processing them is very time- and memory-consuming for large datasets (like images). To
cope with this problem, the number of available data points (pixels) is reduced either by
means of over-segmentation to super-pixels using strategies like Mean-shift [4], or by down-
sampling the image [8].

In this paper we use a semi-supervised type of spectral clustering method which uses
probabilistic models to involve the user’s pairwise constraints to guide a binary
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segmentation. As Kumar and Kummamuru discussed [3], pairwise constraints are not
suitable for multi-class clustering.

This paper is mainly based on the work done by Lu and Carreira-Perpifian [5]; applying their
graph-based algorithm to image segmentation is not straightforward because of the
aforementioned issues for large datasets. Besides there are some heuristics used in their
work which make the algorithm fail at some points. Here, we use sub-sampling strategy for
data reduction in addition to a sophisticated algebraic tool for speeding up the eigen-
decomposition process in order to make the algorithm work for large images. This approach
will also be combined with an entropy-based active learning to pick out the queries more
wisely than random selection. Finally, we analyze the cases where the heuristics make the
algorithm fail to enforce the constraints properly. Note that the goal here is not to give a
perfect clustering solution, but to improve it as much as possible by getting information
from the user.

2. SEMI-SUPERVISED IMAGE SEGMENTATION

In this section we explain how interactive spectral clustering with affinity propagation works
for binary segmentation. Then an existing sampling strategy that is used for data reduction is
explained. Finally active query selection strategy is demonstrated briefly.

2.1. Constrained Spectral Clustering

Let X = [Xq, ..., XN]axn e the matrix containing feature vectors of all data points. In graph-
based clustering methods, the data is represented by an undirected weighted graph. The goal
is to bipartition the constructed graph into two clusters C; and C, such that the total weights
of the cut edges is minimum while avoiding too small clusters by balancing the volumes. In
this paper, K is the adjacency (similarity) matrix and D is the corresponding diagonal degree

N
matrix where dii:zj:lkij. Let us first define f as the indicator vector:

1 ,x; € C
fi={ TETL

—ry X € Cy

where ry = (Ex;ec; il (Xxic,dii)- Then normalized graph-cut problem can be formalized by
the following optimization:

f—arg min 0K
“bri, fpf @

where 1~ is the all-ones vector with N entries. The discrete optimization problem in (2) can

be shown to be NP-hard [9]. Spectral clustering gives a solution by relaxing the discreteness
of the characteristic function f [9]. Constrained spectral clustering with affinity propagation

is based on the main assumption that f is realization of a Gaussian Process such as:

1 —HTK'f
p(f)———=e 2" Do
( )(27T\K0)N/2 ©

where the covariance matrix of this process is considered to be equal to the unconstrained
adjacency matrix K. Note that this formulation is very similar to Gaussian random field
model [1, 10] except that the covariance matrix in that model is set to be the unnormalized
Laplacian of the data graph A = D — K. However this cannot be employed directly when
constraints are in the form of pairwise links.
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Must- or cannot-links between two points x; and x; make their corresponding soft labels
closer or further by putting a zero-mean Gaussian distribution on their difference or
summation respectively (fj + fj ~ »'(0, £2)). The variance &2 can also be different for each
case.

Denoting the set of must-link by # and cannot-links by ¢, the posterior distribution can be
obtained by simplifying the multiplication of two Gaussian distributions:

(4 UG )=p(£)p( UE|f)~e 3T (Ko M (g

where M is a sparse matrix (for details see [5]). The matrix K, ' +M is inverse of the
updated affinity matrix and can be used to do constrained spectral clustering. More details of
this algorithm are discussed in section 3.1.

2.2. Novelty Selection

There are several sampling techniques that we can use. Here, as in [8], we use novelty
selection method where the points are sampled such that there is least amount of information
redundancy between them; more specifically we pick the first pixel, then go through the rest
one by one and add a pixel if the distance between its feature vector to the closest point
already selected, is less than a threshold d. The constrained clustering algorithm can be run
on a graph constructed over this subset of points as a sparse-labeling step; the full-labeling
process can be performed simply by using nearest neighbors (NN) or Kernel Density
Estimation (KDE); here, for the sake of simplicity, we’ve used the former one. In the
following sections, we denote Sas the set of selected samples for which the number of
entries |§ = Ng(dg) depends on the threshold &,

Figure 1 shows a case where we sampled an image using a threshold of 65 = 0.2; this gave us
a subset of pixels which has less than one percent (0.8%) of the whole number of pixels
(figure 1b). In this example we used, as features, only the spatial and intensity information
of the samples. The first row of the figure shows the result of the unconstrained spectral
clustering and the rest illustrates how putting few constraints on the samples can lead to
desired clusters although we’re working only on a small portion of dataset. In the second
row the user tried to cluster the man from his background (7 must-links plus 14 cannot-Inks)
while in the third row his hat is the only targeted object (no must-links and 11 cannot-links);
as can be seen in the first case since the heterogeneity of the desired object is higher and
more similar to background we needed more constraints.

2.3. Laplacian Eigendecomposition

Besides sub-sampling the image, to further ease the task of spectral clustering, we take
advantage of the iterative invariant-subspace estimation techniques. For estimating the first
two eigenvectors of the Laplacian matrix we have used subspace (orthogonal) iterations [11]
which is a generalization of the power method. It starts from an orthonormal initial set of
vectors and at each iteration they’re multiplied by the matrix followed by an
orthonormalization process (e.g. QR factorization) which is required to preserve linear
independence between the vectors. However, because orthogonalization is expensive for
large matrices, it’s preferable to perform it after each fix number of iterations; this
corresponds to multi-step subspace iteration that we have used here [12]. Empirically we set
the intervals between consecutive factorizations equal to 200 iterations. More details about
this iterative method is discussed in section 3.2.
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2.4. Choosing Constraints Actively

Choosing a point from the sample pool to put constraints on, is not trivial and has been
studied widely under the title of active learning. All such algorithms select queries such that
putting constraints on them has the largest effect and therefore the user needs to have
minimum interaction to get the desired result. One way of doing this is uncertainty sampling
[13], which chooses the query as the point with posterior distribution of highest entropy,
hence least certainty for the algorithm. Let y be the estimated class label for the feature
vector X. Then Shannon entropy of the posterior is given by:

H(ylx)==>_p(ylx)logp(y[x), g

We consider binary segmentation so y has only two possible values (say 1 and 2); the
posterior for each class, at a pixel x € S is proportional to the multiplication of likelihoods
computed using KDE and the empirical class priors:

ZxkeclK(X’ Xk) yy=1

ZxkeczK(X’ Xk) ay:2 ©

_1
P(y|x) < p(x|y)P(y)= { gNﬁNQ%

N1+N2

where N; is the number of samples in the C; cluster and K can be extracted from the affinity
matrix. Our goal is to pick out a sample that the algorithm has the least confidence about its
label; we use the absolute value of the log-posteriors as a criterion for the query selection:

x,=arg maxH (y|x)

os [ 2] ©

=arg min
x€S

3. IMPLEMENTATION DETAILS

Efficient implementation of different blocks in previous sections needs more detailed
analysis which is done in this section. It should be noted that we use the same heuristic of
making all the negative elements in the resulted new affinity matrix equal to zero.

3.1. Computing Constrained Affinity Matrix

The set of all constraints 2 can be broken into several individual links Q=U’_,Q, where
each Q) is either a must- or a cannot-link; keeping in mind that we can apply constraints
sequentially we’ll focus only on t’th constraint:

t -1
K=K, L +M,) '= (K01+2Mi> )

=1
Each constraint matrix M can be written in a permuted form:

Mtp::P?MtPt: [ (Ft())2><2 8

Ns+Ns
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1 #£1
1
where Iy has the form=*> | +£1 1 |[(with negative for must-link and positive for cannot-
link constraints). Using Wood-bury inversion identity, (8) can be rewritten as K; = K- =
Ki1(I = MK-1)"IMK -1 where | is the identity matrix. Since using permutation leads to

considerable simplifications, similar to Mtp we also define Kt,lpzszKt,lPt, then it can
be easily shown that

Ktp:Kt—1p—Kt—1p(I—MtpKt—1p)71MtpKt—1p ©)
=PTK,P.

Therefore in order to compute the next constrained affinity matrix, we can use permutations

of Ki—1 and M and then permute back to original indices to get the result. It’s better to do so
because deriving the permuted update is cleaner: let us first divide Kt_lp into four blocks as

below:

2 Ng—2
2 K1 K
N,—2 Ko Ky

Then after some matrix manipulations, the second term in (9) can be computed by the
following matrix products:

K

Ki1,— Ky, = { K2

} (CKn+D) T | KL KL |

Note that the inversion appeared in above equation is over a 2 x 2 matrix and therefore very
easy to compute. Doing further matrix algebra, eventually we can write each column of the
new affinity matrix as the linear combination of the same column and the constrained
columns in the old matrix; more particularly assuming that the t’th constraint is between
points x; and xj both in S one can verify fork=1, ..., Ng

Must-link:

ki 1i—ki_1;
K 1=K¢ 11— (W) (Ki—1,:—Ki—1 ;) (108

Cannot-link:

by 1ok 1
K =K1, 1~ (%) (Ki—1,s—Ki—1,5) (100

where Ky y is the k’th column of K and:

_ 2
a=ki_1tki_15;—2ki_1,5+€7,

B=ki 1 aitke1,5+2ke 1,05+ an

From equations (11), (10a) and (10b) we can observe that as ¢ gets larger, the constraint
becomes less effective. As in the original paper [5], we put ¢ close to zero in order to have

|EEE Int Workshop Mach Learn Sgnal Process. Author manuscript; available in PMC 2014 January 22.
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hard constraints; however, it should be noted that it cannot get smaller than the squared root
of the machine’s precision (epsilon). Also it is clear that points which are far from x; and x;
won’t take any effects.

Another observation is that the diagonal terms corresponding to the affected points shrink as
we get more and more constraints. On the other hand, a zero on-diagonal term might cause
the whole column to shrink to zero. So in our implementation, we normalize columns and
rows of the new affinity matrix each time a new constraint is arrived:

normalized K;=A:KiA;, (12)

. . . o
where A; is a diagonal matrix and AH—W.

Besides the gradual shrinkage, on-diagonal terms might become zero at once before
normalization; this happens if one of the following cases take place for a point x,, k=1, ...,
Ng:

a< [kt~1,ik*kt~1,ij]2

13
B < [ky1,in+ke1,45]%. 3

If either conditions in (13) occurs the corresponding diagonal term becomes non-positive,
therefore such constraints should be avoided.

3.2. Large Matrix Eigendecomposition

Suppose Vs an estimated eigenvector of a matrix A and A the corresponding estimated
eigenvalue from the Rayleigh quotient:

~ vTAv

= ——,

vTv

then residual vector of the estimation is defined by r = Av™= X\?%atisfying the following
inequality for a symmetric A [12]:

A=Al < [l @

So r is usually used as the stopping criterion in iterative eigen-decomposition methods.
Here, we compute a matrix containing the residual vectors rq and r, for the estimated first
two eigenvectors respectively; we monitor norm-2 of these two vectors terminating the
iterations if they fall below the threshold 107> which from equation (14), implies that
violation of the estimated eigenvalues from the actual ones are at most 107°.

To further speed up the eigen-decomposition process, we follow locking strategy which
simply means freezing the eigenvectors that have already converged; obviously such
freezing process will start from eigenvectors associated with larger eigenvalues since their
convergence rates are higher.

4. EXPERIMENTAL RESULTS

For evaluating the active constrained spectral clustering method that is described on
interactive image segmentation we simulate user constraints using the ground truth

|EEE Int Workshop Mach Learn Sgnal Process. Author manuscript; available in PMC 2014 January 22.
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segmentation labels. After running the unconstrained spectral clustering (using [14]) once,
we start generating constraints sequentially through an automatic procedure shown in
Algorithm 1. Steps 5 to 9 are related to constraints generation after taking query from the
active learning process. Steps 6 and 8 are different because from (10b) putting cannot-links
between two points which are far away from each other won’t effect the affinity matrix.

For each image that is shown in this section, the initial adjacency matrix is computed using
Gaussian affinity on normalized unit-variance feature vectors which contain spatial and
nonspatial information. Effects of constraints are monitored by computing Rand index as the
pairwise accuracy of the yielded clustering results. Figure 2 shows the results on the
“football’ image (figure 2a) where the sampling threshold is set to be 5= 0.2. The only
nonspatial feature used here is the gray value of pixels. As can be seen from the first row,
unconstrained clustering result is not satisfying because the ball is very similar to its
background in terms of the intensity. We used Max = 100 in Algorithm 1, therefore 100
pairs of must- and cannot-links are generated sequentially (2x100=200 constraints in total).
In the second row we show the final clustering result on the selected samples (figure 2d) and
also the whole image after generalization (2e). For comparison purposes, we have also tried
random query selection method which differs only on step 4. Figure 2e shows that active
learning could help the algorithm achieve a higher accuracy with much less fluctuations.

We also applied the algorithm on a retinal image, where the vessels are to be segmented.
Although retinal vessel segmentation is a very challenging problem, there are few significant
efforts for making it user-interacted; [15, 16] are two examples. In figure 3 we have used the
output of the Frangi filter [17] followed by a localized histogram equalization as the
nonspatial feature. We found that for such complicated vessel structures selecting must-links
as the closest point with the same class gives better results. Besides, because of the non-
convexity of shapes in the image, for each query we put four additional cannot links (so 1
must-link and 5 cannot-links). In this case, the accuracy doesn’t increase very fast and also
have some fluctuations. This indicates that although active queries are selected according to
the maximally uncertain pixel principle, the constraints provided for them are unsatisfactory
for complicated structures. However, still we can see after getting 6x30=180 constraints the
result (figure 3g) is significantly more similar to the ground truth (figure 3h).

5. CONCLUSION

In this paper, we have employed constrained spectral clustering to image segmentation after
novelty-based down-sampling. Implementation details of the algorithm are also discussed to
show how to segment with constrained spectral clustering efficiently. Moreover, some
deficiencies with the main algorithm and also the uncertainty-based active learning are
illustrated. Despite there being significant rooms for improvement, the results indicate
clearly that few user inputs can be effectively used to interactively segment images to a
solution. Future work will include modifying the algorithm to exclude heuristics.
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(b)

(d)

(2 (h) @

Fig. 1.

Putting constraints on sampled pixels: (a) the original image (476x321); (b) clustered
sampled pixels using no constraints (1228 samples); (c) result of generalizing the
unconstrained clustering; (d,g) two set of constraints: blue lines are must-links and red lines
are cannot-links; (e,h) clustered sampled pixels after applying the constraints; (f,i) result of
generalizing the constrained clusterings.
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Fig. 2.

Constrained clustering on the “football” image:

(a) the original image, the goal is to cluster

the ball; (b) unconstrained sample-wise clustering result; (c) labels shown in subfigure (b)
generalized to the whole pixels; (d) constrained sample-wise clustering result after putting

2x100 constraints actively; (e) labels shown in

subfigure (d) generalized to the whole pixels;

(e—f) accuracies vs. the number of constraints for active and random query selection

strategies respectively.

|EEE Int Workshop Mach Learn Sgnal Process. Author manuscript; available in PMC 2014 January 22.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Sourati et al. Page 11

0.5
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number of actively selected constraints (x6)

(b)

® (2) (h)

Fig. 3.

Constrained clustering on a ‘retinal’ image: (a) green channel of a retinal image; (b)
accuracies vs. the number of actively selected constraints; (c—d) sample-wise unconstrained
and constrained clustering results; (e) difference between un/constrained full clustering
results (f—g) unconstrained and constrained full-labels; (h) full ground truth.
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Algorithm 1

Constrained spectral clustering with automatic constraint generation

10:
11:

run unconstrained spectral clustering using K to get labels yq;
Max <— Maximum number of constraints;

fori=1— Maxdo

select x, from equation (7);
Cq ¢ actual class of Xgb
find point with largest likelihood at the same class:

Xpq — arg maxP(x | c.);
M
XES q

put a must-link between x and Xy;
find the closest point to x4 with the opposite actual class c(x):
Xc ¢ arg min|| x-X

XES
#
c(x) cq

q|| »

put a cannot-link between x4 and Xc;
update the affinity matrix to get K; from equation (8);

run spectral clustering on K; to get update labels y;;

end for
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