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Abstract

We present a graphical approach to deriving inequality constraints for
directed acyclic graph (DAG) models, where some variables are unob-
served. In particular we show that the observed distribution of a discrete
model is always restricted if any two observed variables are neither ad-
jacent in the graph, nor share a latent parent; this generalizes the well
known instrumental inequality. The method also provides inequalities on
interventional distributions, which can be used to bound causal effects. All
these constraints are characterized in terms of a new graphical separation
criterion, providing an easy and intuitive method for their derivation.

1 Introduction

Models based on directed acyclic graphs (DAGs) are commonly used for causal
inference on account of their simple to understand conditional independence con-
straints, and the intuitive appeal of using arrows to display causal dependences.
If all the variables in a DAG are observed then causal quantities of interest are
typically point identified, and derivable in terms of conditional probabilities.
However, it is common for some variables to be unobservable, possibly repre-
senting confounding factors which may bias inference; in this case we can only
observe the marginal distribution over the remaining variables.

The models which result from the marginalization of a DAG are much less
well understood and, unlike DAGs, are not described merely in terms of condi-
tional independence constraints. In particular, causal effects may not be point
identified, and we can only hope for inequality constraints describing the range
of possible values.

Existing methods for deriving bounds on observed distributions are either
specific to a particular model Pearl (1995); Balke and Pearl (1997), or compu-
tationally intensive and lacking the intuitiveness of a graphical approach Bonet
(2001); Kang and Tian (2006). See Ramsahai (2012) for an approach which is
graphical in spirit, but uses computationally difficult variable elimination meth-
ods. In this paper we take steps to remedy these problems by providing a simple
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graphical separation criterion for determining the existence of constraints, and
for constructing them explicitly.

The remainder of the paper is organised as follows: §2 introduces DAGs and
related terminology and notation. §3 gives a new method for deriving known
constraints on the observed distribution of the instrumental variables model,
and related causal effects. §4 applies these methods to give new constraints for
general DAG models, and §5 contains examples. A discussion is found in §6,
and longer proofs are in an appendix.

2 Graphical Models

A directed graph G is a set of vertices V , with a collection of ordered pairs of
distinct vertices, or edges, E . If (X,Y ) ∈ E we write X → Y , and say that X is
a parent of Y . The set of parents of Y is denoted paG(Y ). A path is a sequence
of adjacent edges in a graph, without repetition of vertices; for example, the
graph in Figure 1(a) contains the path π1 : Z → X ← U → Y . A path is
directed from X to Y if all the arrows point away from X and towards Y . If
there is a directed path from X to Y we say that Y is a descendant of X , and
X an ancestor of Y . A directed graph is acyclic if there is no directed path
from a vertex to itself; such an object is called a directed acyclic graph (DAG).

We associate each vertex X with a random variable under some multivariate
distribution P ; let P admit a density f . For convenience, in what follows we
will use X to denote both the vertex and the random variable, and similarly use
operators and bold face letters (e.g. paG(X), C) to refer to both a set of vertices
and the associated vector of random variables. The factorization criterion for
DAGs says that P is in the model corresponding to the DAG G if the joint
density factorizes as

∏

V ∈V
f(V | paG(V )).

Internal vertices on a path with two adjacent arrowheads are called colliders
on the path; other internal vertices are non-colliders. On the path π1, X is a
collider, and U a non-collider. A path π from X to Y is blocked given a set of
vertices C if there is a non-collider on π in C, or a collider on π which is not
an ancestor of any vertex in C.

We say that two sets of vertices A and B are d-separated given a set of
vertices C, if every path from any vertex in A to any vertex in B is blocked by
C. A probability distribution P obeys the global Markov property for a DAG G
if whenever A and B are d-separated by C in G, then A ⊥⊥ B |C [P ].

It is well known that d-separation is equivalent to the factorization criterion
Verma and Pearl (1988). In particular, all constraints implied by a DAG on fully
observed random variables can be interpreted as conditional independences.

Assigning a causal interpretation to a DAG model requires extra assump-
tions, in particular that the system under observation is stable under interven-
tions with respect to the graph. We will denote an intervention to fix X = x by
do(X = x), or do(x) for short; graphically this may be represented by removing
the edges of the form Y → X , so that X has no parents in the new graph. The
density f(V | do(x)) is given by dividing the joint density f by f(x | paG(X))
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Figure 1: (a) The instrumental variables (IV) model; U is unobserved. (b) The
IV model with the effect of X on Y removed.

and multiplying by the indicator function 1{X=x}. See Pearl (2009) for details.
If some of the variables in a DAG are unobserved, we may be interested in

the implications of the underlying graph for the observable margin. Let U ⊂ V

denote the set of latent or unobservable vertices; the observable margin is then

∫

U∈U

∏

V ∈V

f(V | paG(V )) dU. (1)

The marginal distribution over the observed variables is completely identifiable,
but some of the structure of the underlying graph may be impossible to deter-
mine in the presence of latent variables. We will make no assumption about the
state space of the latent variables, since these are unobserved. Some conditional
independences may still be observable, but other kinds of constraint also arise,
including Verma constraints Verma and Pearl (1991), and inequalities on the
observed distribution (see next section).

Without loss of generality we will assume that none of the latent variables
have any parents.

3 Instrumental Variables

Perhaps the most thoroughly studied causal DAG model is the instrumental
variables model, represented in Figure 1(a). It arises naturally in randomized
trials with imperfect compliance, in which Z represents a randomized treatment
assignment, X the treatment actually taken by the subject, and Y an outcome;
U represents unmeasured confounding factors which may affect both the prob-
ability of the subject taking the treatment and the outcome of interest, so that
näıve estimators of the effect of X on Y will be biased.

The graph encodes (amongst other assumptions) that the assignment Z does
not affect the outcome Y other than through the treatment X . This is known
as the exclusion restriction, and is important for assessing the effect of X on Y ;
implications of the exclusion restriction which can be subjected to an empirical
test are therefore very useful.

Making no assumptions about the character of U , and if X is continuous,
the observable margin is unconstrained Bonet (2001). However, if the observed
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variables have finite and discrete state spaces, then the observed distribution
obeys the instrumental inequality of Pearl (1995):

max
x

∑

y

max
z

p(x, y | z) ≤ 1; (2)

here p(x, y | z) is used to denote P (X = x, Y = y |Z = z). This restriction can
be used to falsify the IV model. Pearl’s proof of the inequality is model specific,
and it is not clear how it might be applied to other graphs. Below we present
a new approach to the derivation of (2), and a more graphical interpretation of
its meaning; as we shall see, this method can be adapted to many other DAG
models, and provides some causal constraints.

Proposition 3.1. Let P be a probability distribution over three random vari-
ables Z, X and Y , taking values in discrete sets Z, X and Y respectively. Then
P obeys the IV model only if for each ξ ∈ X , the collection of conditional prob-
abilities (p(ξ, y | z), y ∈ Y, z ∈ Z) is compatible with a distribution under which
Y ⊥⊥ Z.

In other words, only if for each ξ ∈ X there exists a distribution P ∗ such
that Y ⊥⊥ Z [P ∗], and p∗(ξ, y | z) = p(ξ, y | z) for each y ∈ Y and z ∈ Z.

This condition implies the instrumental inequality (2).

Proof. Suppose that P is in the IV model. Then

p(x, y | z) =

∫

f(u) p(x |u, z) p(y |u, x) du;

construct a distribution P ∗ by

p∗(x, y | z) =

∫

f(u) p(x |u, z) p(y |u, ξ) du.

Under P ∗, the effect of X on Y has been broken, because Y behaves as though
X = ξ regardless of its actual value. P ∗ obeys the factorization criterion with
respect to the graph in Figure 1(b); thus Y ⊥⊥ Z [P ∗], and by construction
p∗(ξ, y | z) = p(ξ, y | z) for each y ∈ Y and z ∈ Z.

To see that this implies (2), first note that the independence is equivalent to

p∗(y | z) = p∗(y | z′)

p(ξ, y | z)+
∑

x 6=ξ

p∗(x, y | z)=p(ξ, y | z′)+
∑

x 6=ξ

p∗(x, y | z′)

for each y ∈ Y, z, z′ ∈ Z. Suppose we are given the probabilities p(ξ, y | z) and
asked to construct a distribution P ∗ satisfying these equations. Since all the
quantities are positive, and this equality holds for each z′, we have

max
z′

p(ξ, y | z′)− p(ξ, y | z) ≤
∑

x 6=ξ

p∗(x, y | z).
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Figure 2: The model from Figure 1(a) with a possible effect of Z on Y added.

However the sum of the quantities on the RHS over y cannot be greater than
1− p(ξ | z) = 1−

∑

y p(ξ, y | z), so

∑

y

(

max
z′

p(ξ, y | z′)− p(ξ, y | z)
)

≤ 1−
∑

y

p(ξ, y | z)

∑

y

max
z′

p(ξ, y | z′) ≤ 1.

Applying this to each ξ gives (2).

Remark 3.2. Whilst these inequalities are not new, the importance of the above
result lies in the proof technique; we will see in the next section that it generalizes
to many other DAG models, giving novel results.

The instrumental inequality is exact when X, Y and Z are binary, but insuf-
ficient if Z takes three states Bonet (2001). The sufficient bounds are difficult
to derive without using computationally intensive linear programming techniques
and Fourier-Motzkin elimination, which become infeasible for moderately sized
state spaces.

3.1 Causal bounds on the IV model

We next try to invert the problem and ask how much effect Z can have on Y

given the observed distribution. In some sense we are trying to quantify the
strength of the dashed arrow in Figure 2. A suitable measure is the average
controlled direct effect (ACDE) of Z on Y , controlling for X = x; this is defined
for binary Z, X and Y as

ACDEZ→Y (x) ≡ p(y1 | do(z1, x)) − p(y1 | do(z0, x)).

Here y1 is a shorthand for {Y = 1}, whilst x means {X = x}, etc. Generaliza-
tions to non-binary state spaces are also possible Cai et al. (2008). Note that
ACDEZ→Y (x) = 0 for each x if Z 6→ Y . For the DAG in Figure 2,

p(y | do(z, x)) =

∫

u

f(u) p(y |x, z, u) du,

5



which is not identified. However, constructing P ∗ as above,

p(y | do(z, ξ)) =

∫

u

f(u) p∗(y | z, u) du

= p∗(y | z)

= p(y, ξ | z) +
∑

x 6=ξ

p∗(y, x | z)

≤ p(y, ξ | z) + 1− p(ξ | z).

Also p(y | do(z, ξ)) ≥ p(y, ξ | z), so

ACDEZ→Y (x) ≤ p(y1, x | z1)+1−p(x | z1)−p(y1, x | z0)

= 1− p(y0, x | z1)− p(y1, x | z0),

and similarly

ACDEZ→Y (x) ≥ p(y1, x | z1) + p(y0, x | z0)− 1.

Note that the ACDE bounds include zero if and only if the instrumental in-
equality (2) is satisfied. These bounds were derived by Cai et al. (2008) using
linear programming, and shown to be tight. In the next section we will extend
this method to other graphs.

4 Other Models

Just as d-separation provides a graphical criterion for finding observable condi-
tional independences, we now provide a graphical criterion for finding observable
inequality constraints. For a DAG G with vertex set V and edge set E , define
the induced subgraph GW for W ⊂ V as the DAG with vertex set W and edge
set E ∩ (W ×W ).

Now we define our new separation criterion: let A, B, C and D be disjoint
sets of observed vertices. A and B are e-separated (extended d-separation)
given C after deletion of D in G, if A and B are d-separated by C in GV \D.
In other words, if we remove the vertices in D from the graph, then A and B

are d-separated by C.
For example, in the graph in Figure 1(a), Z and Y are e-separated after

deletion of X . The following lemma gives an alternative characterization of
e-separation which will prove useful. Its proof is elementary, and omitted for
brevity.

Lemma 4.1. Let G be a DAG, and let G∗ be the DAG formed from G by remov-
ing all edges which are oriented away from some vertex in D (i.e. of the form
D → E for D ∈ D). Then A is e-separated from B by C after deletion of D
in G if and only if A is d-separated from B by C in G∗.
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Graphs formed by removing the edges emanating from vertices form a part
of Pearl’s do-calculus Pearl (2009). The node-splitting method in Robins et al.
(2006) is also related.

Suppose now that we are interested in the detecting the presence or absence
of the edge X → Y in a general graph, and in estimating the strength of the
(direct) causal effect of X on Y . We first show that if X and Y are not directly
confounded with each other, which is to say that they do not share a latent
parent, then falsifiable constraints (such as the instrumental inequality) for the
absence of the edge X 6→ Y always exist.

Theorem 4.2. Let G be a DAG, and let A, B, C and D be disjoint sets of
observable vertices such that no vertex in C is a descendant of any in D. If A
is e-separated from B by C after deletion of D, then for any fixed value D = d,
the conditional probabilities p(a, b,d | c) must be compatible with a distribution
P ∗ in which A ⊥⊥ B |C [P ∗].

If in addition no vertex in A is a descendant of any element of D, then
the probabilities p(b,d |a, c) must be compatible with a distribution P ∗ in which
A ⊥⊥ B |C [P ∗].

Corollary 4.3. Let G be a DAG containing observable vertices X,Y , which do
not share a latent parent nor are joined by an edge; let G′ be equal to G, except
that X → Y in G′. Then if the observed variables in the graphs are discrete, the
model defined by the observed margin of G′ is strictly larger than the one defined
by G.

Proof. Under the conditions given, we can apply Theorem 4.2 to G with A =
{X}, B = {Y }, C = ∅ and D = V \ (U ∪ {X,Y }).

To see that this implies a constraint, consider a distribution in which all
vertices other than X and Y are completely independent, and P (D = d) =
1 − ǫ for some arbitrarily small ǫ > 0. Then P (X,Y,D |C) ≈ P (X,Y |C) =
P (X,Y ), and if X and Y are strongly correlated, it becomes impossible to find
a compatible distribution under which X ⊥⊥ Y |C. However, since the only
dependence is between X and Y , such a distribution would certainly obey the
global Markov property with respect to G′, which contains the edge X → Y .

Remark 4.4. In other words, the Corollary states there exists some non-trivial
(i.e. falsifiable) condition on the joint distribution which must be satisfied under
G, but not necessarily under G′. In many cases we can choose smaller sets D

than the one used in the proof of Corollary 4.3; the generated inequalities will
tend to be more powerful if D is smaller, so certainly a minimal set should be
used.

It is important to stress that this result is not a causal one, and the con-
straints are merely a consequence of marginalizing distributions obeying certain
conditional independence constraints. In the next subsection, however, we will
extend this method to estimate the strength of causal relationships.

In the IV graph in Figure 1(a), Z is e-separated from Y after deletion of X ,
giving an inequality constraint. In general, the additional constraint implied by
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the Theorem may be an inequality or a conditional independence (if D = ∅); an
inequality constructed will in some cases be a weaker manifestation of a Verma
constraint, or possibly some other as yet unknown form of equality constraint.
Verma constraints are still poorly understood; see Tian and Pearl (2002) for
methods on deriving them.

Remark 4.5. Theorem 4.2 can be extended to continuous state spaces without
difficulty, but it is necessary for the set D to contain only discrete variables. The
IV model from Figure 1(a) with continuous X is unconstrained, for example.

4.1 Causal Bounds

As with the IV model, we can find bounds on the average controlled direct effect
due to the edge X → Y in arbitrary models, so long as X and Y are not directly
confounded. First we generalize the average controlled direct effect slightly to
allow conditioning:

ACDEX→Y (d | c) ≡ p(y1 | do(x1,d), c)

− p(y1 | do(x0,d), c).

In general ACDEX→Y (d | c) 6= ACDEX→Y (d, c), but for appropriate graphs if
ACDEX→Y (d | c) 6= 0, then X → Y .

Theorem 4.6. Let G be a DAG containing the edge X → Y and observable
sets of vertices C, D such that no vertex in C is a descendant of one in D.
Suppose further that if the edge X → Y is removed, X is e-separated from Y by
C after deletion of D.

Let

L(x, y,d | c) = max

{

0,
p(x, y,d | c)

p(x,d | c) + 1− p(d | c)

}

U(x, y,d | c) = min

{

p(x, y,d | c) + 1− p(d | c)

p(x,d | c) + 1− p(d | c)
, 1

}

.

Then

L(x, y,d | c) ≤ p(y | do(x,d), c) ≤ U(x, y,d | c)

and consequently for binary X and Y ,

L(x1, y1,d | c)− U(x0, y1,d | c) ≤ ACDEX→Y (d | c)

≤ U(x1, y1,d | c)− L(x0, y1,d | c).

If in addition X is not a descendant of any vertex in D, these inequalities can
be strengthened using

L(x, y,d | c) = p(y,d |x, c)

U(x, y,d | c) = p(y,d |x, c) + 1− p(d |x, c).

8
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Figure 3: The unrelated confounding (UC) model.

X Y

Z W

(a)

X Y

Z

(b)

Figure 4: (a) A DAG with three independent unobserved variables; we have
avoided explicitly drawing a vertex for each of the three unobserved variables,
and instead use a bidirected (↔) edge to indicate its two (observed) children.
(b) The same graph after deletion of W .

Proof. See appendix.

Remark 4.7. This result shows that we can always bound the effect correspond-
ing to a directed edge, at least for some observed distributions, provided the two
variables involved are not directly confounded with one another. The bounds
for the ACDE include zero if the compatibility requirement from Theorem 4.2
is satisfied. If they exclude zero, then the edge X → Y must be present in the
graph (given the other assumptions).

5 Examples

The graph in Figure 3, which we refer to as the unrelated confounding (UC)
model, has no edge between Z and Y , and nor are these two variables directly
confounded. Theorem 4.2 and Corollary 4.3 therefore tell us that in the dis-
crete case, the joint distribution of (X,Y, Z) is restricted, and in particular that
for each ξ, the joint probabilities p(ξ, y, z) must be compatible with a distri-
bution in which Z ⊥⊥ Y . Let pijk ≡ p(xi, yj, zk); in the binary case, given
p000, p010, p001, p011, we need to find non-negative p∗

100
, p∗

110
, p∗

101
, p∗

111
such that

(p000 + p∗
100

)(p011 + p∗
111

) = (p010 + p∗
110

)(p001 + p∗
101

)

and
∑

jk p0jk+
∑

jk p
∗
1jk = 1. This will not be possible if, for example, p000 and

p011 are both large; that is, we cannot have both P (X = ξ) be large and Z and
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Y strongly correlated conditional on X = ξ. Unlike in the IV model we cannot
apply the stronger condition of Theorem 4.2, because Z is a descendant of X .
We remark that (observationally) the UC model strictly contains the IV model
in Figure 1(a). Note that a linear programming approach to finding constraints
on this graph is not possible, so the constructive nature of the proof of Theorem
4.2 is crucial in determining how we can test this model.

The graph in Figure 4(a) is constrained in the discrete case because there is
no edge between X and Y . Specifically X is e-separated from Y given W after
deletion of Z, and also given Z after deletion of W (the latter being illustrated
in Figure 4(b)). Note that X is a descendant of W , but not of Z, so the bounds
given by Theorem 4.6 are not symmetric in the two cases. For example:

p(y | do(x,w), z) ≤ p(y, w |x, z) + 1− p(w |x, z)

p(y | do(x, z), w) ≤
p(x, y, z |w) + 1− p(z |w)

p(x, z |w) + 1− p(z |w)
.

The first bound is likely to be stronger, though this will not hold in all cases.

6 Discussion

We have presented a graphical approach to finding inequality constraints in
distributions corresponding to marginalized DAGs, based on the e-separation
criterion. It can be shown that the bounds derived from the algorithm of Kang
and Tian (2006) also imply the causal constraints given in Theorem 4.6, however
that approach involves listing exponentially many inequalities and then using
Fourier-Motzkin elimination to derive bounds. For even modestly sized graphs
this becomes infeasible because Fourier-Motzkin is doubly-exponential in the
number of variables in the elimination.

The advantage of the results given above is that they are ‘off the shelf’, in the
sense that we need only check the conditions of the Theorems and then apply the
results. Exhaustively searching possible setsC andD would be computationally
intensive, but in many cases it is likely that good heuristics could be obtained
for their selection. This could be highly advantageous in systems with large
numbers of variables, especially during computationally intensive model search
procedures. A further benefit of the e-separation criterion is that it is much
easier and more intuitive for a human user to apply than using the algorithm of
Kang and Tian (2006).

The bounds derived from Theorem 4.2 are known not to be tight in some
cases, including the IV model when the instrument takes three or more states.
However finding constraints from marginalized models is computationally inten-
sive, even if the inequalities are linear, so a fast method for finding a subset of
conditions may be very useful in practice.
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A Proofs

Proof of Theorem 4.2. By the global Markov property for DAGs, the joint dis-
tribution P over the observed variables takes the form (1). Now, for each fac-
tor f(V | paG(V )), construct a new conditional density f∗(V | pa∗(V )) where
pa∗(V ) = paG(V ) \D, by fixing any element of D ∩ paG(V ) to the value speci-
fied by D = d. Note we only fix elements in the conditioning set, so f∗ is still
a valid conditional density.

Then the joint distribution P ∗ given by
∫

U∈U

∏

V ∈V

f∗(V | pa∗(V )) dU

factorizes according to the DAG G∗ formed by removing any edges in G which
originate in D (i.e. the non-arrowhead end is incident to a vertex in D). By
Lemma 4.1, A and B are d-separated by C in G∗, and therefore the global
Markov property for DAGs says that A ⊥⊥ B |C [P ∗]. Further, P (a, b, c,d) =
P ∗(a, b, c,d) for the fixed D = d and any a, b, c, and P ∗(c) = P (c) because
the distribution of vertices ordered before D will be unchanged. This gives the
compatibility condition. If A is also ordered before D then P ∗(a, c) = P (a, c),
giving the stronger condition.

Proof of Theorem 4.6. For simplicity we will assume C = ∅, but the extension
to the general case is easy. Let P ∗ be the distribution formed by fixing D = d

in conditioning sets in the factorization of P , as in the proof of Theorem 4.2.
Then

p(y | do(x,d)) = p∗(y |x) =
p∗(y, x)

p∗(x)

=
p(y, x,d) +

∑

d′ 6=d
p∗(y, x,d′)

p(x,d) +
∑

d′ 6=d
p∗(x,d′)

Clearly
∑

d′ 6=d
p∗(y, x,d′) ≤

∑

d′ 6=d
p∗(x,d′) ≤ 1− p(d); the expression is max-

imized by both these sums taking their largest possible values, and minimized
when the first is zero and the second is 1 − p(d). This gives the main result.
If X is not a descendant of D we have p∗(x) = p(x), and arrive at the tighter
bounds by a similar analysis.
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