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ABSTRACT
The main objective of the project† is to enhance the already
effective health-monitoring system (HUMS) for helicopters
by analysing structural vibrations to recognise different flight
conditions directly from sensor information .

The goal of this paper is to develop a new method to se-
lect those sensors and frequency bands that are best for de-
tecting changes in flight conditions. We projected frequency
information to a 2-dimensional space in order to visualise
flight-condition transitions using the Generative Topographic
Mapping (GTM) and a variant which supports simultaneous
feature selection. We created an objective measure of the
separation between different flight conditions in the visuali-
sation space by calculating the Kullback-Leibler (KL) diver-
gence between Gaussian mixture models (GMMs) fitted to
each class: the higher the KL-divergence, the better the inter-
class separation. To find the optimal combination of sensors,
they were considered in pairs, triples and groups of four sen-
sors. The sensor triples provided the best result in terms of
KL-divergence. We also found that the use of a variational
training algorithm for the GMMs gave more reliable results.

Index Terms— Condition monitoring, vibration, signal pro-
cessing, flight condition, sensor selection, KL-divergence, data visu-
alisation

1. INTRODUCTION

The main objective of the project is to enhance the HUMS for
helicopter airframes by analysing structural vibration. Past
approaches to helicopter structural health monitoring with vi-
bration data have used simple features with direct classifiers
and had too many false positives to be practical. Thus there
is a necessity to develop a more sophisticated approach to
achieve a significant advance in predictive maintenance for
helicopters, improving safety and reliability at less cost.

Vibration information during flight is provided by sensors
located at different parts of the aircraft. Before structural
health can be inferred, features (i.e. sensors and frequency

†Thanks to EPSRC and AgustaWestland Ltd. for industrial CASE
(1000239X) funding.

bands) must be chosen which provide the best information
on the state of the aircraft. These selected features will be
then used to infer the flight modes and eventually the health
and deviations from the normal state of the aircraft. The pur-
pose of this paper is to propose and evaluate a novel selection
process. The data provided by AgustaWestland Ltd. is con-
tinuously recorded vibration signals from 8 different sensors
during flight. Each sensor measures the vibration in a partic-
ular direction at chosen locations on the aircraft. During test
flights, the aircraft carries out certain planned manoeuvres:
our goal is to infer flight condition from the vibration data
only, since this will be required for a practical health moni-
toring system. The construction of flight state models from
vibration data is completely novel; indeed, to our knowledge,
there is no prior work on models of different flight modes for
helicopters (as opposed to fixed-wing aircraft) and vibration
analysis has mainly been used to monitor engine and trans-
mission system condition, rather than airframe integrity.

Our approach is to study the (non-stationary) frequency
information by applying a short-time Fourier transform. In
this way, it is possible to detect certain signatures or inten-
sities at fundamental frequencies and their higher harmon-
ics. Many of the key frequencies are related to the period
of either the main or tail rotor. The intensity at these fre-
quencies is greater during certain periods of time and these
periods can be associated to flight conditions and transition
periods. Figure 1 shows the STFT and flight-state transi-
tions. To understand the nature of the data and to extract
more information, the high-dimensional STFT data was pro-
jected to a 2-dimensional manifold with the help of machine-
learning algorithms. For this purpose we used the Principal
Component Analysis (PCA), Generative Topographic Map-
ping (GTM) and a variant of GTM which supports simulta-
neous feature selection. GTM provided better structure than
PCA in the visualisation therefore only GTM will be dis-
cussed. To determine which sensors are the most useful, we
created an objective measure of the separation between differ-
ent flight conditions in the visualisation space. The remainder
of this paper is structured as follows: Section 2 describes the
GTM and GTM-FS (the feature-selection variant); Section 3
defines the class-separation measure we have developed; Sec-



Fig. 1. STFT of sensor 7 with vertical lines at transitions
between flight conditions. The x and y-axis provide the time
[s] and frequency [Hz] respectively.

tion 4 describes the evaluation experiments that we have per-
formed; finally, Section 5 contains the conclusions of the pa-
per.

2. DATA VISUALISATION ALGORITHMS

2.1. Generative Topographic Mapping

The Generative Topographic Mapping is a non-linear prob-
abilistic data visualisation method that is based on a con-
strained mixture of Gaussians, in which the centres of the
Gaussians are constrained to lie on a two-dimensional space.
GTM can be viewed as an improved version of the self-
organising map (SOM) algorithm [1]. In this algorithm, data
vectors xn ∈ RD in the D-dimensional data space are sum-
marized by a set of reference vectors in a lower-dimensional
space (usually in a regular grid in two dimensions to aid visu-
alisation). Some of the drawbacks of this algorithm are: the
absence of a cost function, lack of proof of convergence of
the training algorithm, and the lack of density model [2].

In the GTM, a D-dimensional data point (x1, . . . , xD) is
represented by a point in a lower-dimensional latent (hidden)-
variable space t ∈ Rq (with q < D) so that it can be visualised
in a lower-dimensional space q. The mapping between the la-
tent and data space is non-linear and is achieved using a for-
ward mapping function x = y(t;W ) which is then inverted
using Bayes’ theorem. This function (which is usually chosen
to be a radial-basis function (RBF) network) is parameterised
by a network weight matrix W . The image of the latent space
under this function defines a q-dimensional manifold in the
data space.

To induce a density p(y|W ) in the data space, a proba-
bility density p(t) is defined on the latent space. The data is
not expected to lie exactly on the q-dimensional manifold, a
spherical Gaussian model with inverse variance β2 is added
in the data space so that the conditional density of the data is

given by:

p(x|t,W, β) =

{
β√
(2π)

}D
exp

{
− (β||y(t;W )− x||)2

2

}
.

(1)
To get the density of the data space, the hidden space variables
must be integrated out:

p(x|W,β) =

∫
p(x|t,W, β)p(t) dt. (2)

In general, this integral would be intractable for a non-linear
model y(t;W ). Hence p(t) is defined to be a sum of delta
functions with centres on nodes t1, . . . , tK in the latent space:

p(t) =
1

M

M∑
i=1

δ(t− ti). (3)

This can be viewed as an approximation to a uniform distri-
bution if the nodes are uniformly spread. Now equation (2)
can be written as:

p(x|W,β) =
1

K

K∑
i=1

p(x|ti,W, β). (4)

This is a mixture of K Gaussians with each kernel having a
constant mixing coefficient 1/K and inverse variance β2. The
ith centre is given by y(ti;W ). As these centres are depen-
dent and related by the mapping, it can be viewed as a con-
strained mixture model. Provided y(t;W ) defines a smooth
mapping, two points t1 and t2 which are close in the latent
space are mapped to points y(t1;W ) and y(t2;W ) which are
close in the data space.

The log likelihood for a dataset containing N points the
following is given by:

L(W,β) =

N∑
n=1

ln

{
1

K

K∑
i=1

p(xn|ti,W, β)

}
. (5)

The parameters W and β can be found by searching for
the maximum likelihood using an expectation maximization
(EM) algorithm [2]. GTM has been shown to be an effective
data visualisation method that outperforms linear algorithms
such as Principal Component Analysis [3].

2.2. GTM-Feature Selection

In this paper there are about 102 frequency bands for each
of the eight sensors: thus there are nearly 800 features al-
together. Clearly, we would prefer to work in a lower-
dimensional space while still representing all of the important
information in the signal so as to avoid being distracted by ir-
relevant features and noise. So, to attain optimal results while
visualizing the data, relevant features should be extracted
from the data set. The GTM-FS model uses GTM-based



visualisation simultaneously with a measure of feature im-
portance [4]. As discussed earlier in section 2, GTM uses a
mixture of spherical Gaussians to model the data distribution.
GTM-FS associates a variation measure with each feature
by using a mixture of diagonal-covariance Gaussians. This
assumes that the features are conditionally independent. The
probability density function is given by:

p(Xn | K, θ) =

K∑
k=1

1

K

D∏
d=1

p(xnd | θkd), (6)

where K is the number of mixture components, p(xnd | θkd)
is the probability density function for the dth feature for the
kth component, and θkd = {y(t;W ), β} with β being the
corresponding variance.

The dth feature is irrelevant if its distribution is indepen-
dent of the component labels, i.e. if it follows a common
density, denoted by q(xnd|λd) which is defined to be a diag-
onal Gaussian with parameters λd. Let {Ψ = (ψ1, . . . , ψD)}
be an ordered set of binary parameters such that ψd = 1 if
the dth feature is relevant and ψd = 0 otherwise. Now the
mixture density is:

p(xn|Θ) =

K∑
k=1

1

K

D∏
d=1

[p(xnd | θkd)]ψd [q(xnd | λd)](1−ψd).

(7)
where parameters: {K, θ, ψ} are summarized by Θ. The
value of the feature saliencies is obtained by firstly treating
the binary values in the set Ψ as missing variables in the EM
algorithm (for structure refer to [4]) and then defining it by a
probability pd that a particular feature is relevant (ψd = 1).
Cheminformatics data from was analysed in [4] using GTM,
GTM-FS and SOM. In GTM and GTM-FS, the separation of
data clusters was better while GTM-FS showed more compact
results because the irrelevant features were projected using a
different distribution. In addition to the projection, the feature
saliency plot derived from GTM-FS showed the the feature
saliencies which gave an indication of relevant and important
features whereafter it can be used in selecting features which
are above a certain high saliency.

We have applied this approach to determine the most im-
portant frequency bands in the STFT data. Figure 2 shows
the feature saliencies for each frequency band in the STFT
dataset for a single sensor. A line is drawn at 0.7 and the
features which have saliencies above this line were selected.
This threshold has been chosen somewhat arbitrarily, and the
issue will be revisited in the future.

3. CLASS SEPARATION METRIC

The next stage of our analysis is to develop a numeric measure
of the separation of classes of flight conditions. Our method
is to use the Kullback-Leibler divergence between the proba-
bility distribution of each class.

Fig. 2. GTM-FS feature saliencies for frequency bands [Hz]
for sensor 7 for a single flight.

3.1. Kullback-Leibler divergence

Consider visualisation plots of data drawn from several dif-
ferent flight conditions. Our goal is to compare visualisa-
tion plots that are based on different subsets of sensors and
to choose the subset that provides the best separation (in la-
tent space) between the flight conditions. We aim to do this
in latent space rather than the original data space, since the
ability to visualise the results helps to interpret them. In a
good visualisation, each flight condition corresponds to a dis-
tinct cluster of data, but to compare the plots objectively, we
need a quantitative measure of class separation. For simplic-
ity, suppose that there are two clusters representing two dis-
tinct classes. The Kullback-Leibler divergence is a measure
of the divergence between two probability distributions P and
Q [5]: P and Q can be chosen to be models of the probabil-
ity density of each of the two classes. The KL-divergence is
defined as:

DKL(P ||Q) =
∑
n

P (xn) log
P (xn)

Q(xn)
. (8)

If the data contains more than two classes, the KL-divergences
of all possible class pairs (in both orders, since KL-divergence
is not symmetric) are added up to calculate the overall sepa-
ration. The higher the KL-divergence, the more separated the
classes are from each other.

To calculate the KL-divergence, it is necessary to fit a
probability density model to each class: we have chosen to
use a mixture of Gaussians. A class label is assigned to each
point according to the flight condition at that time during a
flight. The time points for the different conditions and the
transitions between them were provided by AgustaWestland
for a number of test flights. We are particularly interested in
the transitions between flight conditions as these are likely to
excite unusual vibration modes. For this, a time period taken
before and after a transition is also analysed to see if there is
any transient behaviour. However, it is possible that while la-
belling classes, two different labels (before or after transition)
are associated with the same flight conditions data at differ-



ent time periods. To explain this, for example, suppose that a
transition from 60 to 80 knots forward speed begins (class 2)
at 2200 and ends at 2300 seconds and data is selected for a few
seconds before (class 1) and after (class 3). To this dataset, we
add another transition 80 to 100 kts (class 5) between 2400
and 2500 seconds with a few seconds before (class 4) and af-
ter (class 6) transition. So, the classes which correspond to
the same flight condition (80 kts) are 3 and 4. We want to
calculate the separation of different flight conditions rather
than different classes with the same flight conditions. For this
reason, classes representing the same flight condition were
grouped together. We also analysed whether our results would
generalise to different test flights, and so grouped together
conditions across multiple flights. We want the members of

Fig. 3. GTM-FS visualisation of two flights with GMM ap-
plied with a fixed number of kernels (10) for signals 1, 2 and
7 (after frequency feature selection). Markers with the same
colour are drawn from a single flight condition group. Each
ellipse denotes a kernel of the GMM used to fit a cluster.
Ellipses with dashed boundaries have a small mixing coef-
ficient. KL-Divergence was 338.

the groups to lie as close as possible to each other: Figure 3
shows a typical result. The plot contains classes representing
60 kts forward speed, 60–80 kts transition, 80 kts forward,
80–100 kts transition, and finally 100 kts. These classes are
spread across the visualisation space in a logical order (this
is easier to see with the visualisation tool than in the plots in
this paper). This figure shows that our approach can be made
to work effectively. However, there is a difficulty. We have
chosen the number of kernels in the GMM arbitrarily (which
may cause over-fitting), and also the EM algorithm is suscep-

tible to being trapped in local minima. In the next section
we discuss how variational Bayesian methods can be used to
address both of these issues.

3.2. Variational mixture of Gaussians

To make the calculation of the KL-divergence more robust,
we modified the algorithm that we used to fit the density
model to each class. A variational Bayesian Gaussian Mix-
ture model automatically adjusts the number of components
to avoid over-fitting [6]. The result of applying this model

Fig. 4. GTM-FS visualisation of two flights with VMM ap-
plied optimal kernels for signals 1, 2 and 7 (after frequency
feature selection). KL-Divergence was 133. For other details,
see the caption to Figure 3.

is shown in Figure 4. It can be seen that the number of ker-
nels is much lower than in Figure 3 and is different for each
group. Thus we have confidence that the optimal number
of components has been selected and the calculation of the
KL-divergences has been improved. We now give a brief
summary of the variational mixture model.

A Bayesian model is constructed for a mixture of Gaus-
sians, in which the mixing coefficients are made random vari-
ables. A latent variable sin is provided for each data point
and component [7]. For example, if the data point xn is gen-
erated by the ith Gaussian of the mixture model, sin is 1, and
0 otherwise. The conditional distribution of s is given by:

P (s|π) = ΠK
i=1ΠN

n=1π
sin
i , (9)

where πi is the ith mixing coefficient. The likelihood of the



model is given by:

P (W |µ,Σ) = ΠK
i=1ΠN

n=1N (xn|µi,Σ−1
i )sin , (10)

where µi, Σi are the means and inverse covariance matri-
ces of the ith Gaussian component. In order to complete the
Bayesian model, priors are needed over the latent space vari-
able s, means and inverse covariance matrices.

P (µ) = ΠK
i=1N (µi|0, αI), (11)

where N is the normal distribution, α is a small valued fixed
parameter which relates to prior over µ and I is identity ma-
trix.

P (Σ) = ΠK
i=1W(Σi|v, V −1), (12)

where W is the Wishart distribution, v is the number of de-
grees of freedom and V is theD×D scale matrix for the prior
over Σ.

P (s) = PiKi=1ΠN
n=1π

sin
i . (13)

The likelihood of the dataset D is given by:

P (D, θ) = ΠN
n=1P (xn|µ,Σ, s)P (s)P (µ)P (Σ). (14)

All the parameters (s, µ, Σ) are summarized as θ. In order
to select a Bayesian model, θ has to be integrated out. The
distribution function of the data P (D) (the evidence) is then
maximized with respect to the mixing coefficients πi. After
the maximization, any mixture coefficients that degenerate to
0 are removed and others are kept.

Unfortunately, integrating the likelihood with respect to θ
is not tractable. For this reason a variational approximation
approach has been developed [7]. The assumption is made
that the variational distribution can be factorized over each
group of parameters.

Q(s, π, µ,Σ) = Qs(s)Qµ(µ)QΣ(Σ). (15)

Now the distribution Q that best approximates likelihood
P (D, θ) can be computed as follows:

Qs(s) = ΠK
i=1ΠN

n=1p
sin
in , (16)

where pin are the variational parameters of theQ distribution.

Qµ(µ) = ΠK
i=1N (µi|m(i)

µ , |Σ(i)−1
µ ), (17)

QΣ(Σ) = ΠK
i=1W(Σi|v(i)

Σ , V
(i)−1
Σ ), (18)

Once Q has been calculated we can approximate the lower
bound of the log-likelihood. The mixing coefficients that
maximize the lower bound are given by:

πi =
1

N

N∑
n=1

pin. (19)

In order to get the optimal number of components in a mix-
ture, the variational approximation and the update of the mix-
ing coefficients that maximize the lower bound are iterated
alternately until the lower bound converges.

4. RESULTS

We evaluated our approach to sensor selection by applying it
to a dataset that combined two test flights. The aim of the
experiment was to select the best group of sensors to model
flight state and transitions. We started by computing the KL-
divergences for visualisation plots based on each sensor in-
dividually. We then combined the best four senors in pairs
and repeated the measurement for each pair. This continued
for triples and all four top sensors. This greedy search can

Fig. 5. Average performance (in seconds) of the GMM (black
bars) and VMM (white bars) for 4 different data sets. Set I has
a single, set II two, set III three and set IV has four sensor(s)
information from two flights combined respectively.

be carried out in a reasonable time scale (≤ 72 seconds) as
shown in Figure 5. The time scale includes the time taken to
calculate the STFT, training the data set, applying GMM’s to
groups of classes in the visualisation and finally evaluating the
KL-divergences between these groups. As seen in the Figure,
the time taken for each process increases when adding sensor
information which is unsurprising since the computational ef-
fort increases with increasing dimensionality. Overall, as we
can see, the VMM process takes a bit more time than GMM
process as the alternative iteration for finding minimum lower
bound as explained in section 3.2 consumes much of the pro-
cessing time.

Sensor No. GMM KL-D VMM KL-D
1 160 87
2 190 95
3 110 75
4 130 78
5 85 31
6 220 104
7 255 113
8 82 36

Table 1. KL-divergences for single sensors.



Sensor pair GMM KL-D VMM KL-D
1-2 265 120
1-6 225 135
1-7 215 127
2-6 185 118
2-7 300 122
6-7 198 171

Table 2. KL-divergences for sensor pairs.

Sensor triples GMM KL-D VMM KL-D
1-2-6 265 122
1-2-7 338 133
1-6-7 288 177
2-6-7 312 154

Table 3. KL-divergences for sensor triples.

Sensors GMM KL-D VMM KL-D
1-2-6-7 317 173

Table 4. KL-divergences for 4 sensors together.

Table 1 shows the KL-divergences for each individual
sensor. The top four sensors were: 1, 2, 6 and 7. The KL-
divergences for these sensor pairs and triples are shown in
Table 2 and 3 respectively. From the analysis, it has been
found that the group of three sensors (triples) from the top
selected provide the best KL-divergence when compared to
individual, pairs or 4 sensors together. The four selected sen-
sors provide the best KL-divergence results as compared to
pairs and triples with other sensors (3, 4, 5 and 8). To confirm
this, KL-divergences of all possible sensor pairs and triples
have been computed for single and muliple flights. It was
found that no pair or triple had a higher KL-divergence than
the selected four sensors.

The values of the KL-divergence computed using GMM
and VMM are different: this is caused by the fact that the
VMM typically uses fewer components in the mixture model.
More fundamentally, it is noticeable that the sensor impor-
tances using both methods for computing KL-divergence are
not the same. To investigate this, we carried out experiments
to calculate the KL-divergence with both the GMM and the
VMM. For a given visualisation plot, each method was run ten
times with different initial conditions. We found that the KL-
divergence values for the VMM were much more consistent
over these replicates than for the GMM. The variability of the
KL-divergences of Gaussian mixture model is higher (stan-
dard deviation ∼ 30-50) as compared to variational Gaussian
mixture (standard deviation ∼ 2-5). For this reason, the sen-
sor triple 1, 6 and 7 will be used for further analysis.

5. CONCLUSIONS

We have developed a feature selection procedure that is
based on visualisation of data, feature saliency (for selecting
frequency bands for a single sensor), and a KL-divergence
metric to compare class separation. The selection proce-
dure showed that sensor triples gave the best possible KL-
divergences for two flights combined indicating better in-
ference for flight conditions, maneuvers and health of the
aircraft. This information is valuable since it enables us
to work in a much lower-dimensional feature space which is
more compuational efficient than the original data (which, us-
ing all frequency bands and sensors, would have been nearly
800-dimensional) .

Future work on this methodology will include a more sys-
tematic approach to setting the threshold for feature saliency,
evaluation on a larger range of flight conditions and test
flights, and consideration of generalisation to unseen flight
data.
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